
1 Overview

Contents

1. 1.1 Table of Contents

1 Overview
Papyrus is an environment for editing any kind of EMF model, particularly supporting
UML 2 (Unified Modeling Language (UML) version 2.4.1) and related modeling
languages such as SysML (System Modeling Language) and MARTE (Modeling and
Analysis of Real-Time and Embedded systems). Papyrus also offers very advanced
support for UML profiles that enables users to define editors for DSLs (Domain
Specific Languages) based on the UML 2 standard.

Papyrus is a collection of plug-ins and features on top of the Eclipse Modeling
Framework. For more information about Eclipse, please go to the Eclipse web site
eclipse.org. Some of the terminology used in this Papyrus user guide are basic
Eclipse concepts and briefly described here. To get more information about the
Eclipse concepts, please visit the Workbench User Guide by selecting Help > Help
Contents from within Eclipse.

1.1 Table of Contents

1 Overview
1.1 Table of Contents

2 Introduction
2.1 Legend

3 Installation
3.1 Install Eclipse Standard
3.2 Install basic Papyrus
3.3 Additional installation steps

4 Eclipse
4.1 Architecture
4.2 Workspace
4.3 Resources
4.4 Workbench

4.4.1 Views
4.4.1.1 Single views
4.4.1.2 Stacked views

4.5 Preferences
4.6 Import and Export

5 Modeling
5.1 Model and diagrams

6 Tutorials
6.1 Getting started with general Eclipse functionality

6.1.1 Exploring perspectives
6.1.1.1 Exploring the ''Papyrus'' perspective
6.1.1.2 Exploring and customizing the Resource perspective

6.1.2 Creating a new project, folder and files
6.1.2.1 Creating a new general project
6.1.2.2 Creating a new folder
6.1.2.3 Creating and editing a new file
6.1.2.4 Creating another file

6.1.3 Exploring editors and views
6.1.3.1 Maximizing and restoring an editor
6.1.3.2 Tiling and restacking the editors
6.1.3.3 Organizing views
6.1.3.4 Using view menus
6.1.3.5 Closing and opening views

6.1.4 Exporting and importing a project
6.1.4.1 Exporting a project
6.1.4.2 Removing the project from the workspace
6.1.4.3 Importing a project

6.1.5 Conclusion
6.2 Creating profiles
6.3 Creating models using Papyrus

6.3.1 Use-case modeling

6.3.1 Use-case modeling
6.3.2 Design modeling

6.3.2.1 Create a new UML project
6.3.2.2 Create new packages to be used for classes
6.3.2.3 Create new classes
6.3.2.4 Create new class diagrams
6.3.2.5 Create new operations and attributes
6.3.2.6 Create new relationships between classes
6.3.2.7 Create a new package to be used for objects
6.3.2.8 Create new objects
6.3.2.9 Create a new class diagram
6.3.2.10 Create new relationships between objects
6.3.2.11 Conclusion

6.3.3 RT modeling
7 Papyrus

7.1 Papyrus resources in the workspace
7.2 The Papyrus perspective

7.2.1 Project Explorer view
7.2.2 Model Explorer view
7.2.3 Editing view
7.2.4 Outline view
7.2.5 Properties view
7.2.6 Model Validation view
7.2.7 Search view

7.3 Diagram editing in Papyrus
7.3.1 Diagram editors
7.3.2 Basic tool techniques

7.3.2.1 Creating diagrams
7.3.2.2 Scrolling and panning in diagrams
7.3.2.3 Creating an element in a diagram
7.3.2.4 Delete and hide
7.3.2.5 Formating and validating diagrams

7.4 UML modeling
7.4.1 Package
7.4.2 Use-case
7.4.3 Actor
7.4.4 Class

7.4.4.1 Attributes on classes
7.4.4.2 Operations on classes

7.4.5 Object
7.4.6 Relationships
7.4.7 Diagrams

7.4.7.1 Diagrams related to use-cases
7.4.7.2 Diagrams related to classes

7.5 Internationalize a model
7.5.1 How to use internationalization in model
7.5.2 How to edit labels
7.5.3 How the labels are managed in properties file
7.5.4 Sub-models

7.6 UML RT modeling
7.6.1 Additional modeling elements

7.6.1.1 Capsule class
7.6.1.2 Protocol class

7.6.2 Using C++ in a model
7.6.3 C++ service library

7.6.3.1 Sending messages
7.6.4 Transformation from model to code
7.6.5 Edit the generated code
7.6.6 Compiling and linking the generated code
7.6.7 Using external libraries
7.6.8 Running the system

7.7 Papyrus in a team environment
7.7.1 Model fragmentation
7.7.2 Source configuration management
7.7.3 Compare and Merge

7.8 Model validation
7.8.1 Object Constrain Language (OCL)
7.8.2 Defining constraints using OCL

7.9 Searching
7.10 Sample models

7.10.1 Class model with inheritance
7.10.2 Send and receive data
7.10.3 Interprocess communication

7.10.3 Interprocess communication
7.11 UML profiling

8 Support
9 References

2 Introduction
Papyrus is built on the extensible Eclipse framework and is an implementation of the
OMG (Object Management Group) specification Unified Modeling Language (UML)
version 2.4.1. Papyrus is a comprehensive UML modeling environment, where many
diagrams can be used to view different aspects of a system. Behind all diagrams,
there is a model where all modeling elements, used in these diagrams, are kept. The
model keeps the consistency between the diagrams.

UML diagrams can help system architects and developers understand, collaborate on
and develop a system. Architects and managers can use diagrams to visualize an
entire system or project and separate systems into smaller components for
development.

System developers can use diagrams to specify, visualize, and document systems,
which can increase efficiency and improve their system design. Also code can be
generated from UML models.

Since UML is general-purpose modeling language in the field of software
engineering, it is possible to adapt UML to specific domains. This is done by creating
and applying UML profiles. Papyrus is a complete UML modeling environment, which
also can be used to develop UML profiles.

2.1 Legend

In this user guide, bold text is used for menu selections, e.g. Help > Welcome
means from the Help item on the main menu, select the Welcome item.

A context menu is the pop-up menu that appears when right clicking on something,
e.g. right click on a class select New Child > Create a new Operation, will create
a new operation on the class, using the class' context menu.

When text should be typed in, it is indicated by inline code, e.g. this text should be
typed in.

Fields in wizards, pop-up windows, different editors, radio buttons and check boxes
are indicated by italic text, e.g. set the field Name to MyClass.

3 Installation
It is a several step process to install Papyrus and its optional components. The
Eclipse Standard must first be installed and when that is done, Papyrus is installed on
top of Eclipse Standard.

3.1 Install Eclipse Standard

Eclipse Standard is installed from the Eclipse download page. On the download page
select Eclipse Standard <version number> to install. Follow the install wizard to
complete the installation.

3.2 Install basic Papyrus

When Eclipse Standard is installed, go to Help > Install New Software and type in
http://download.eclipse.org/releases/kepler/ in the field named Work with:.

Note! When this user guide was written, the Kepler release of Eclipse was the latest.
Select the latest official Eclipse release.

Note! In some industrial environments, a proxy has to be used instead of this type of
direct URL to the Eclipse web-site. To configure Eclipse to use a proxy is done under
Windows > Preferences and General > Network Connections

Figure 1: Install New Software wizard

In the Name column of the wizard, scroll down to Modeling and expand to the next
level. Under Modeling, select Papyrus UML and follow the installation wizard to
complete the installation.

When Eclipse is restarted, the environment is now ready for UML modeling.

3.3 Additional installation steps

After installation of the basic Papyrus feature, go to Help > Install Papyrus
Additional Components. In the wizard that pops up, select the needed additional
Papyrus components, e.g. to be able to do UML RT modeling, the Real Time
component is needed. It is also recommended to install the Diagram Stylesheets and
Papyrus Compare components. Follow the installation wizard to complete the
installation.

Figure 2: The Install Papyrus Additional Components
wizard

4 Eclipse
Papyrus is built on the Eclipse framework, so most of its look and feel is inherited
from Eclipse.

The Eclipse framework has a plug-in architecture, where plug-ins can be grouped
into features. Features and plug-ins can be added to an existing Eclipse installation.

4.1 Architecture

The plug-in architecture applies also for all subsystems. A plug-in is the smallest unit
of Eclipse Platform functionality that can be developed and delivered separately.
Usually, a small tool is written as a single plug-in, whereas a complex tool has its
functionality split across several plug-ins. Except for a small kernel known as the
Platform Runtime, all of the Eclipse Platform's functionality is located in plug-ins.
Plug-ins can be grouped into features.

Figure 3: The Eclipse architecture

Plug-ins are coded in Java. A typical plug-in consists of Java code in a JAR (Java
Archive) library, some read-only files, and other resources such as images, Web
templates, message catalogs, native code libraries, and so on. Some plug-ins do not
contain code at all. One such example is a plug-in that contributes online help in the
form of HTML pages. A single plug-inâ€™s code libraries and read-only content are
located together in a directory in the file system, or at a base URL on a server. There
is also a mechanism that permits a plug-in to be synthesized from several separate
fragments, each in their own directory or URL. This is the mechanism used to deliver
separate language packs for an internationalized plug-in.

Each plug-in has a manifest file declaring its interconnections to other plug-ins. The
interconnection model is simple: a plug-in declares any number of named extension
points, and any number of extensions to one or more extension points in other plug-
ins.

Figure 4: Plug-ins and Features

4.2 Workspace

The workspace is located in the file-system and is the place where Eclipse resources
(files, folders and projects) are stored. When Eclipse is started, a pop-up window
appears, where a workspace should be selected. One instance of Eclipse is
connected to one workspace.

Figure 5: Pop-up window to select the workspace

In the file system all resources are stored in the selected workspace and in the same
hierarchical structure as in the Project Explorer.

4.3 Resources

Resources are a collective term for the projects, folders, and files that exist in the
workbench. The resources are stored in the workspace, where the projects are on
the first level. Inside a project, there are files and folders in the same hierarchical
structure as in the Project Explorer and Model Explorer.

Files appear in the file system as files and folders are Unix directories or Windows
folders and may contain other files and folders. Each time a file is saved, a copy is
saved, which makes it possible to replace the current file with a previous edit or even
restore a deleted file. Earlier versions of a file can be compared to the contents of all
the local edits. Each edit in the local history is time stamped, i.e. is uniquely
represented by the date and time the file was saved.

Projects can be viewed as the top level folder in the file system under the workspace.
In Eclipse there are different types of projects, e.g. Model, C/C or Java projects and
they are the top level resource in the Project Explorer. Projects can be closed and
opened in the Project Explorer.

4.4 Workbench

The workbench is the Eclipse user interface and is used to navigate, view, and edit
resources in a workspace, i.e. the workbench is the Eclipse IDE's application window.
The workbench presents one or more editors and views that are gathered into
adjustable groups (perspectives).

The first time Eclipse is started, after the installation, a Welcome page is presented.
Take a few minutes to explore the product overview and getting started information
that is located here.

Figure 6: The Eclipse welcome page

To return to the ordinary workbench, just click on the workbench icon up to the right.
When starting Eclipse, subsequent times, the workbench appears directly. To visit the
welcome page at any time, just select Help > Welcome.

The title bar of the workbench window and the little Papyrus icon to the right
indicates which perspective is active. In this example, the Papyrus perspective is in
use. The Project Explorer and the Model Explorer, Outline, Properties views, etc. are
open, along with a Class Diagram editor and its tool palette.

Figure 7: The Papyrus perspective in the workbench

It is easy to toggle between perspectives by clicking on some shown perspective in
top of the right hand corner or open a new one by clicking on the Open Perspective
icon and browse to the perspective to open. It is also possible to reorganize a
perspective, open/close views, customize menus, etc. and then save the perspective
with a new name by Window > Save Perspective As

4.4.1 Views

Views and editors are the main visual entities that appear in the workbench. Any
given perspective can contain multiple editors and a number of surrounding views
that provide context. Views provide different ways to visualize, navigate and edit the
resources in the Eclipse workspace. Views can be single or stacked on top of each
other.

Views, including editor views, can be resize, moved, detached. In addition, a view can
be maximized to cover the entire workbench by double-clicking on its tab. By double-
clicking once more, it will return to its original size. Some views has a view specific
menu, e.g. Project Explorer view, where some specific view settings could be done.

To add a new view to the active perspective, use Window > Show Viewand if the
desired view does not appear on top of the pop-up menu, select Other, which opens
up a view browser, where all available views are organized in different categories.

4.4.1.1 Single views

In the workbench figure, above, several single views appears, e.g. Outline, Class
Diagram editor, Help, Project Explorer and Model Explorer views. The single view has
only one tab with the view name. By draging a single view tab and release it on
another single view tab, stacked views are created.

4.4.1.2 Stacked views

In the workbench figure, above, also stacked views appear, e.g. Properties and
Model Validation views. To select the one that should be on top of the stack, just click
on its tab and it becomes visible. By selecting a stacked view and drag it besides
another view in the workbench, a single view will appear.

4.5 Preferences

To customize the settings for the Eclipse workbench and the installed features, the
preference window is used. Use Windows > Preferences to open it, e.g. under
General > Keys in the preference window there are shortcuts and keys defined for
the user interface. Here they can be redefined or own sets could be defined.

Figure 8: The preference window

The preference window pages can be searched using the filter function. To filter by
matching the page title, simply type the name of the page and the available pages
will be presented below.

The filter also searches on keywords. By the history controls (the left, right and drop-
down arrows up in the right corner of the preference window) it is possible to
navigate through previously viewed pages. To step back or forward several pages at
a time, click the drop-down arrow and a list of the most recently viewed preference
pages are displayed.

4.6 Import and Export

Projects can be shared between workspaces by using project import and export,
which are done through wizards. To open the import wizard, use File > Import and
in several steps select what, where from and if it should be imported as a copy or
just referenced. To export resources, There are also an export wizard, which is
opened by File > Export and select details about what should be exported, if it
should be compressed and where to export it to.

Figure 9: Import wizard

Figure 10: Export wizard

When importing a project into the used workspace, it can be copied by checking the
box Copy ... in the import wizard. If this check box is unchecked, there will just be a
reference to the other workspace and when editing that project, it will be edited in its
original place. Be aware of that when doing so, several instances of Eclipse may edit
the same resource.

When exporting a project, browse to the place where to export it to name it and
select if and how compression should be used.

5 Modeling
Papyrus is a comprehensive UML modeling environment, where diagrams can be
used to view different aspects of a system. Behind all the diagrams, there is a model
where the modeling elements, used in these diagrams, are stored. The model
maintains the consistency between all diagrams.

A model is the collection of all the modeling elements and relationships that
compose a software system. Papyrus enables the creation, viewing and manipulation
of UML diagrams as specified in the UML 2 specification.

The model defines every element, representing some part of the system. Multiple
model diagrams can reference an element many times. Each of the different
diagrams can view a different aspect of the system.

The model is the basis of the diagrams and keep the diagrams consistent. The
diagrams are stored in the model's hierarchical structure. Some are owned by a
modeling element like a class and some are just organized into packages and then
owned by the package (a.k.a folders in basic Eclipse projects). Note! the top level of
the model is the model package, which is a special kind of a package.

5.1 Model and diagrams

The model is the basis for all diagrams and maintains the consistency between the
diagrams. The model is a collection of definitions of elements that compose the
system and the relationships between them. Diagrams can be used to view subsets
of the underlying model and from various view points. A model of a system may
require many different diagrams to represent different views of the system for
different project stakeholders.

In Papyrus, diagrams are be viewed and created in the Model Explorer view. The
Model Explorer shows diagrams in their logical place within the model.

The visual representation of a system that diagrams provide can offer both low-level
and high-level insights into the concepts and design of a system.

6 Tutorials
The tutorials are focused on selected topics regarding the use of Papyrus and
contains step by step instructions on how to create and manipulate the workbench
and models.

6.1 Getting started with general Eclipse
functionality

This tutorial is about to understand the workbench environment and the basic Eclipse
terminology.

6.1.1 Exploring perspectives

This part demonstrates the differences between the Papyrus and the Resource
perspectives and also how to customize the Resource perspective.

6.1.1.1 Exploring the Papyrus perspective

Explore the Papyrus default menus, toolbar, and views in the Papyrus perspective.

1. To switch to the Payrus perspective, click Window > Open Perspective >
Other. Then choose the Papyrus perspective. (Notice the workbench title bar
and perspective bar reflect that the Papyrus perspective is active. Notice also
the main menu items, toolbar buttons, and views that is visible in this
perspective.)

2. Click File > New and notice that the menu contains the items Papyrus Project
and Papyrus Model among other items.

3. Click Window > Show View and notice that the menu contains the items
Model Explorer, Model Validation and more.

6.1.1.2 Exploring and customizing the Resource perspective

Explore the default menu, toolbar, and views in the Resource perspective and
customize a menu.

1. To switch to the Resource perspective, click Window > Open Perspective >
Other. Then choose the Resource perspective. Notice that the workbench title
bar and perspective bar reflect that the Resource perspective is active. (Notice
the main menu items, toolbar buttons, and views visible in this perspective)

2. Click File > New and notice that there are no Papyrus items in the menu.
3. Click Window > Show View and notice that the menu does NOT contain the

items Model Explorer and Model Validation.
4. Click Window > Customize Perspective. Ensure that the workbench title bar

and perspective bar reflect that the Resource perspective is active.
5. In the Customize Perspective - Resource pop-up window, select the Shortcuts

tab and select Show View from the Submenus combo box.
6. Clear all check boxes in the Shortcut Categories list.
7. Click General(not check the check box) in the Shortcut Categories list, select the

check box next to Project Explorer in the Shortcuts list, and click OK.
8. Click Window > Show View and notice the menu now just contains the Project

Explorer item.

6.1.2 Creating a new project, folder and files

In this section a new project, folder and files will be created in the Resource
perspective.

6.1.2.1 Creating a new general project

Create a new project in the Resource perspective by completing these steps:

1. If necessary switch to the Resource perspective by clicking on Window > Open
Perspective > Other. Then choose the Resource perspective. If the Resource
perspective already is active, click on Window > Reset Perspective... to get
back to its default configuration.

2. Click File > New > Project.
3. In the New Project wizard, name the project My Project and click Finish.

6.1.2.2 Creating a new folder

6.1.2.2 Creating a new folder

Create a folder in the project:

1. Right-click on My Project in the Project Explorer and select New > Folder.
2. Type Text Files in the the field Folder name, and then click Finish.

6.1.2.3 Creating and editing a new file

Create a file in the folder:

1. In the Project Explorer, right-click on the Text Files folder and select New >
File.

2. In the New File wizard, ensure that My Project/Text Files is the parent folder.
Type My File as the file name and click Finish. (Notice that a text editor opens in
the editing view for the created resource)

3. Enter any text into the editor view for My File. Notice the asterisk (*) next to the
file name indicates unsaved changes.

4. Press Ctrl S to save the work. Notice that the asterisk disappears.

6.1.2.4 Creating another file

Create another file in the Text Files folder, using the workbench menu this time.

1. On the workbench menu, click File > New > File.
2. In the New File wizard, expand My Project and then select Text Files as the

parent folder.
3. Type My Other File as the file name and click Finish.
4. Reviewing the contents of the Project Explorer view, which should be like this

6.1.3 Exploring editors and views

This section demonstrates how to manipulate views and editors.

6.1.3.1 Maximizing and restoring an editor

Maximize one of the editors to expand the viewable area:

1. Double-click the file name on the editor tab for My File.
2. Double-click the file name again to restore the editor to its original size.

6.1.3.2 Tiling and restacking the editors

Currently, the editors are stacked one in front of the other. Try tiling them
horizontally and vertically:

1. Click the My Other File editor tab and drag it to the bottom of the editor pane.
Colored frames indicates how the views will be tiled. Drop the editor and notice
that the editors are tiled horizontally.

2. Drag the My Other File editor tab to the left of the editor pane and release it.
Notice that the editors are tiled vertically.

3. Restack the editors by dragging one of the editor tabs on top of the other.

6.1.3.3 Organizing views

Try moving a view:

1. Drag the title bar of the Outline view onto the title bar of the Project Explorer.
2. Experiment by dragging the title bar of the Outline view to various locations

within the workbench.
3. Return the Outline view to its original place to the lower left of the workbench. It

is always possible to return to the default configuration of the active perspective
by clicking on Windows > Reset Perspective...

6.1.3.4 Using view menus

Some views has view menus, e.g. Project Explorer view, which is indicated by a down

Some views has view menus, e.g. Project Explorer view, which is indicated by a down
arrow in the upper-right corner of the view. Click this down arrow of the Project
Explorer view and review the pull-down menu options specific for this view.

6.1.3.5 Closing and opening views

If a view does not appear in the workbench, it can be open by using the Window
menu:

1. Close the Project Explorer view by right-click on the Project Explorer view tab
and select Close.

2. Click Window > Show View > Other and type Project Explorer in the filter
text box.

3. Select Project Explorer and click OK which opens the view again.

6.1.4 Exporting and importing a project

This section demonstrates how projects can be shared between users and
workspaces using the export and import feature.

6.1.4.1 Exporting a project

Export My Project to a compressed file:

1. Select File > Export... from the workbench menu.
2. In the Export wizard, expand General, and then select Archive File. Click Next.
3. Check the check box next to My Project in the resource list.
4. Click Browse to specify an export destination in the To archive file field. Note

the available options for archive formats.
5. In the Browse window, select the Desktop as the destination folder and type My

Project as the file name. Click OK.
6. In the Export wizard, click Finish to perform the export process.
7. View the desktop and notice the new compressed (.zip) file.

6.1.4.2 Removing the project from the workspace

Remove My Project from the workspace:

1. Right-click My Project in the Project Explorer and select Delete from the
context menu.

2. In the Delete Resources pop-up window, make sure to check the

Delete project contents on disk check box. Click OK. Note: If this check box is
unchecked, the resource will just be deleted from the Workbench, but it will still exist
in the workspace. (Notice My Project is no longer listed in the Project Explorer)

6.1.4.3 Importing a project

Import My Project from a compressed file:

1. Select File > Import... from the workbench menu.
2. In the Import wizard, expand General, and then select Existing Projects into

Workspace. Click Next.
3. Click the Select archive file radio button.
4. Click the Browse button.
5. In the Browse window, browse to the Desktop and select My Project.zip and

click Open.

#In the

Import wizard, check the check box next to My Project and click Finish to perform the
import process. (Notice My Project is once again listed in the Project Explorer)

6.1.5 Conclusion

The basic features of the Eclipse workbench have now been demonstrated.

How to view and customize perspectives.
How to create a project, folder and files.
How to manipulate editors and views.
How to export and import projects.

6.2 Creating profiles

6.2 Creating profiles

6.3 Creating models using Papyrus

6.3.1 Use-case modeling

6.3.2 Design modeling

This is a tutorial about general class and object modeling using Papyrus.

6.3.2.1 Create a new UML project

Create a new UML modeling project as follows:

1. If necessary switch to the Papyrus perspective by clicking on Window > Open
Perspective > Other. Then choose the Papyrus perspective. If the Papyrus
perspective is already active, click on Window > Reset Perspective... to get
back to its default configuration.

2. Click File > New > Papyrus Project.
3. In the New Papyrus Project wizard, name the project My Design Model and click

Next.
4. Make sure that the radio button UML is selected and click Next.
5. Under the section You can load a template, check the box A UML model with

basic primitive types (ModelWithBasicTypes) and click on Finish.

6.3.2.2 Create new packages to be used for classes

Create two packages in the model:

1. Right-click on the model package in the Model Explorer, select New Child >
Create a new Package and select the created package in the Model Explorer.

2. In the Properties view type Clients in the the field Name.
3. Right-click on the model package in the Model Explorer, select New Child >

Create a new Package and select the created package in the Model Explorer.
4. In the Properties view type Server in the the field Name.

6.3.2.3 Create new classes

Create two classes in the Server package. One is called Server1 and the other is
called DataClass1:

1. Right-click on the Server package in the Model Explorer, select New Child >
Create a new Class and select the created class in the Model Explorer.

2. In the Properties view type Server1 in the the field Name.
3. Right-click on the Server package in the Model Explorer, select New Child >

Create a new Class and select the created class in the Model Explorer.
4. In the Properties view type DataClass1 in the the field Name.

Create three different client classes in the Clients package:

1. Right-click on the Clients package in the Model Explorer, select New Child >
Create a new Class and select the created class in the Model Explorer.

2. In the Properties view type Client1 in the the field Name.
3. Right-click on the Clients package in the Model Explorer, select New Child >

Create a new Class and select the created class in the Model Explorer.
4. In the Properties view type Client2 in the the field Name.
5. Right-click on the Clients package in the Model Explorer, select New Child >

Create a new Class and select the created class in the Model Explorer.
6. In the Properties view type ClientRoot in the the field Name.

6.3.2.4 Create new class diagrams

Create two class diagrams in the model:

1. Right-click on the model package in the Model Explorer, select New Diagram >
Create a new Class Diagram and type Packages in the Enter a new diagram
name pop-up window.

2. Right-click on the model package in the Model Explorer, select New Diagram >
Create a new Class Diagram and type Classes in the Enter a new diagram
name pop-up window.

6.3.2.5 Create new operations and attributes

6.3.2.5 Create new operations and attributes

1. Right-click on the class DataClass1 and select New Child > Create a new
Property and select the created attribute in the Model Explorer.

2. In the Properties view, type Field1 in the field Name and by the Type field click

on the key and select Integer from the UML Primitive Types. This cause the
created attribute to be named Field1 and to be of type Integer.

3. Follow the above pattern to also create the attributes Field2 of type Integer,
Field3 of type String, and Field4 of type String on class DataClass1.

4. Create the attributes Attribute2 of type String, Attribute4 of type Integer and
Attribute5 of type DataClass1 on class Client1.

5. Create the attribute Attribute3 on class Client2.
6. Create the attribute Attribute1 on class Server1.
7. Create the operation service1 on class Server1 by right-click on on the class

Server1 and select New Child > Create a new Operation and select the
created operation in the Model Explorer.

8. In the Properties view, type service1 in the the field Name and by the Owned

parameter field click on the key.
9. In the Create a new parameter pop-up window, type service1return in the Name

field, select return from the Direction field drop down list and by the Type field

click on the key and select Integer from the UML Primitive Types. This
causes the return type of the operation to be defined as an integer.

6.3.2.6 Create new relationships between classes

Create a Dependency relationship between the Clients and the Server packages:

1. Open the Diagram Packages diagram by double click on it in the Model Explorer
2. Drag the Clients package to the class diagram (by click on it and while holding

the mouse button down, move the cursor to the editing area in the class
diagram editor and release it).

3. Drag the Server package to the class diagram.
4. Select the Dependency tool from the Edges drawer in the Palette, click on the

Clients package and then on the Server package in the class diagram.
5. Type Dependency as the name of the relationship.

Create a Generalization relationship between the classes Client2 and Client1, i.e.
make Client2 a sub-class of Client1:

1. Open the Diagram Classes diagram by double click on it in the Model Explorer
2. Drag the Client1 class to the class diagram.
3. Drag the Client2 class to the class diagram.
4. Select the Generalization tool from the Edges drawer in the Palette, click on the

Client2 class and then on the Client1 class in the class diagram.

Create a Composite relationships between the classes ClientRoot and Client1 plus
ClientRoot and Client2:

1. Continue with the already opened class diagram Diagram Classes.
2. Drag the ClientRoot class to the class diagram.
3. Select the Association tool from the Edges drawer in the Palette, click on the

ClientRoot class and the on the Client1 class in the class diagram.
4. Select the created association in the class diagram and in the Properties view,

rename the association to cr-c1.
5. Also in the same Properties view, at the member end, named client1, by the

Aggregation field, select composite from the drop down list.
6. Select the Association tool from the Edges drawer in the Palette, click on the

ClientRoot class and the on the Client2 class in the class diagram.
7. Select the created association in the class diagram and in the Properties view,

rename the association to cr-c2.
8. Also in the same Properties view, at the member end, named client2, by the

Aggregation field, select composite from the drop down list.

6.3.2.7 Create a new package to be used for objects

Create a new package in the model:

1. Right-click on the model package in the Model Explorer, select New Child >
Create a new Package and select the created package in the Model Explorer.

2. In the Properties view type Objects in the the field Name.

6.3.2.8 Create new objects

6.3.2.8 Create new objects

Create objects (instances of classes) in the Objects package:

1. Right-click on the Objects package in the Model Explorer, select New Child >
Create a new InstanceSpecification and select the created object
(InstanceSpecification) in the Model Explorer.

2. In the Properties view type clientObj1 in the the field Name and by the Classifier

field click on the key. In the Classifier window that pops up, browse to the

Client2 class and click on the key, which specifies the object's class as
shown in figure 11.

Figure 11: The Classifier pop up window

Follow the same pattern to create:

1. An object called clientObj2 in the Objects package based on class Clent2.
2. An object called serverObj1 in the Objects package based on class Server1.

6.3.2.9 Create a new class diagram

Create a class diagrams in the model to depicts the created objects:

1. Right-click on the model package in the Model Explorer, select New Diagram >
Create a new Class Diagram and type Objects in the the Enter a new
diagram name pop-up window.

6.3.2.10 Create new relationships between objects

Create a Dependency relationship between the clients and the server objects:

1. Open the Diagram Objects diagram by double click on it in the Model Explorer
2. Drag the clientObj1 object to the class diagram (by click on it and while holding

the mouse button down, move the cursor to the editing area in the class
diagram editor and release it).

3. Drag the clientObj2 object to the class diagram
4. Drag the serverObj1 object to the class diagram.
5. Select the Dependency tool from the Edges drawer in the Palette, click on the

clientObj1 object and then on the serverObj1 object in the class diagram. Leave
the default name on the relationship.

6. Also create a Dependency relationship between the clientObj2 and the
serverObj1''.

6.3.2.11 Conclusion

In this tutorial the following model was created:

Figure 12: Two packages on top in the model

Figure 13: Relationships between the client
classes

Note! The inherited attributes depicted in figure 13 on the Client2 class.

Figure 14: Objects in the model and their
relationships

6.3.3 RT modeling

7 Papyrus
Papyrus can be used to do

General UML modeling.
UML RT modeling, which is described in the section 6.3.3_RT_modeling when the
UML RT profile is applied.
SysML modeling when the SysML profile is applied.
MARTE modeling when the MARTE profile is applied.
UML profiles, which is described in the section UMLprofiling .

In Papyrus, different UML profiles can be applied. When installing Papyrus, as
described in section Installation , also the UML, UML RT, SysML and MARTE profiles
can be added. When creating a new Papyrus project, the type of Papyrus project is
selected. Project types to chose from are SysML, Profile and UML.

7.1 Papyrus resources in the workspace

When modeling in Papyrus, three types of resources are stored in the workspace.

Figure 15: Resources in the file system Figure 16: Resources in
the Project Explorer

.di file persists the status of the workbench, i.e. which diagrams and views are
opened, etc.
.notation file persists the information about the diagrams in the model.
.uml file persists the UML model.
.properties file persists the UML labels.

Note! In this case the model is contained in three files. When working in an industrial
context, the model may need to be split up into several fragments in order for
several designers to work concurrently with the same model. This is described in
section Papyrus in a team environment .

7.2 The Papyrus perspective

When Papyrus is installed a predefined perspective called Papyrus is made available.
This is the perspective to use when modeling with Papyrus. The Papyrus perspective
can be customized to the user needs and saved as new perspective (see section
Workbench).

7.2.1 Project Explorer view

The Project Explorer view is used to browse, select and manipulate resources in the
workspace. Projects or working sets are the top level in this view. From the Project
Explorer's (right click on the white space) context menu, e.g. new projects can be
created.

Figure 17: The Project
Explorer

In some views, as in this case, there is a view specific menu (indicated in Figure 13
with a red ring). Here some settings can be applied for the view, e.g. if the top level
should be working sets or projects.

7.2.2 Model Explorer view

In the Model Explorer view, the model that has been opened in the Project Explorer,
can be browsed and edited. Model elements can be added by using the context
menu of any existing modeling element, including the model package and packages.
Diagrams can also be added by using the context menus. Existing diagrams can be
opened in an appropriate editor by just double clicking on the diagram in the Model
Explorer.

Figure 18: The Model
Explorer

Explorer

7.2.3 Editing view

The Editing View is in the middle part of the workbench and here opens different
types of editors, depending on the type of resource to edit, e.g. if a class diagram is
opened, the class diagram editor will be visible in the Editing View.

Figure 19: The Editing View

How to use editors is described in section Editors in Papyrus.

7.2.4 Outline view

The Outline View is connected to the Editing View and gives an overview of what is
open in the Editing View. The Outline View may be used to pan the Editing View or to
select some information that will be highlighted in the Editing View. The shaded area
is the area that is visible in the Editing View.

Figure 20: The Outline
View

7.2.5 Properties view

The Properties view is a stacked view which is located at the bottom of the
workbench and shows the properties of a selected modeling element. The modeling
element can be selected in the Model Explorer or in a diagram. The properties are
categorized under different tabs located to the left in the Properties view.

Figure 21: The Properties View

In this view the properties may be viewed and edited, e.g. rename the operation and
change the visibility of the operation.

7.2.6 Model Validation view

From the context menu in the Model Explorer it is possible to validate the entire
model or parts of it (for more details see section Model validation . All warnings and
errors appear in the Model Validation View, which is a stacked view together with the
Properties View and the Search View at the bottom of the workbench.

Figure 22: The Model Validation View

The model validation constraints are customizable and how to work with it is
described in section Model validation .

7.2.7 Search view

It is possible to do searches on a selected resource in a specific project or in the
entire workspace. When the search is finished, the result appears in the Search View.
Details about specifying searches is described in the Searching section.

Figure 23: The Search View

The example in Figure 23 shows the result of a model search for Class1 in the entire
workspace.

7.3 Diagram editing in Papyrus

To edit diagrams different editors are available in Papyrus. They have the same
basic look and feel. When double clicking on some diagram in the Model Explorer,
the diagram opens in the editing view. An outline view and a tool palette are also
opened. Creating a new diagram in the Model Explorer will also open up a diagram
editor together with its tool palette and outline view.

7.3.1 Diagram editors

When a diagram editor is opened in Papyrus, three views are opened:

Editing surface
Palette
Outline

Figure 24: Parts of a diagram editor (as an example, the class
diagram editor is used)

Figure 24 shows the different parts of a diagram editor. In this case the class
diagram editor has been chosen as an example. The Editing surface is where the
diagram editing is taken place. The Outline view gives an overview of the entire
diagram. The blue shaded part in the Outline view shows what is visible in the editing
surface. The Palette contains Drawers and in each drawer there are Tools to be used
to add different things into the diagram. In Figure 22, the Nodes drawer is closed and

to add different things into the diagram. In Figure 22, the Nodes drawer is closed and
the Edges drawer is opened. In the Edges drawer there are Tools to create different
types of edges. By clicking on a drawer, it toggles open and close drawer.

7.3.2 Basic tool techniques

Diagrams can be created in different places in the model such as they can be owned
by model elements like classes or packages. Diagrams can also be placed on top of
the model directly under the model package.

7.3.2.1 Creating diagrams

To create a diagram, right click on the model element that should be the owner of
the diagram and select New Diagram from the context menu. A new level of menu
appears, displaying all types of diagrams that are available to create in this place,
e.g. Figure 21 shows the available diagram types that can be created directly on top
in the model package.

Figure 25: Available diagram types that can be created
directly under the model package

Note! In Figure 25, no adaptation of Papyrus has taken place, hence all diagram
types according pops up.

7.3.2.2 Scrolling and panning in diagrams

Scrolling and panning in diagrams can be done by either:

Use the outline view and click (hold down) and drag the blue shaded area
around, which simultaneously pans the editing surface.
Use the vertical and horizontal scroll bars in the editing surface.

7.3.2.3 Creating an element in a diagram

Elements can be created in a diagram directly, by using a tool from the palette, e.g.
to create a class

1. Open a class diagram
2. Open the nodes drawer
3. Click on the class tool
4. Click somewhere in the editing surface
5. Name the class

If an element already exists in the model, just click on (hold down) the element in the
Model Explorer and drag it to the editing surface. When releasing the mouse key, the
modeling element appears in the diagram.

7.3.2.4 Delete and hide

In a diagram, elements can be deleted or hided.

Figure 26: Context menu
of an element in a

diagram

Right click on an element in a diagram and do

Delete Selected Element will delete the element from the entire model and
also from all diagrams where it was present.
Hide Selected Element will hide the element just in this diagram.

Note! These menu items have short cuts, i.e. instead of using the context menu, just
select the element in the diagram and use the Delete or Shift-Delete keys

7.3.2.5 Formating and validating diagrams

Diagrams can be adjusted and graphically edited to get a nicer look also using the
element context menu. From the same context menu it is also possible to validate
the model or specific parts of the model.

Figure 27: Example of the Format sub
context menu

In Figure 27 several menu items are shown, e.g.:

Validation to validate the model partly or fully
Format to do some advanced formating of the diagram like adjustments,
routing, etc. as shown in the sub context menu in Figure 25
Filter to select/unselect parts of symbols that should be visible or not

7.4 UML modeling

With Papyrus, UML models can be created. This is done using different types of
diagrams. Modeling elements can be created in these diagrams or directly in the
Model Explorer. Diagrams are created in the Model Explorer and when doing so a
diagram editor together with its tool palette and outline view are also opened.
Section Diagram editing in Papyrus describes how to work with diagram editors.

The most common modeling elements are:

Package
Use-case
Actor
Class
Object

7.4.1 Package

A package is a general UML grouping element, comparable to a folder in Windows or
a directory in Unix. It is used to bring order in the model. A package may have a
semantical meaning (e.g. representing a subsystem) and then a UML stereotype,
defined in a applied UML Profile, may be added to it (e.g. << subsystem >>). To
create a new package, right click on the owning element, e.g. the model package
and from the context menu select New Child > Create a new Package

Figure 28: Create a new Package

7.4.2 Use-case

A use-case is a functionality in the system. A use-case is a model of the dialogue
between actors and the system. It should return a result of measurable value to at
least one actor. A use-case is initiated by an actor to invoke a certain functionality in
the system. A use-case is a complete and meaningful flow of events. Taken together,
all use-cases constitute all possible ways of using the system.

To create a new use-case, right click on the owning element, e.g. a package and
from the context menu select New Child > Create a new UseCase

Figure 29: Create a new use-case

7.4.3 Actor

An actor is something external to the system, but interacts with it. An actor may be a
human being or another system. It may be active or passive. An actor interacts
(active actor) or receive (passive actor) information from one or several use-cases.

To create a new actor, right click on the owning element, e.g. a package and from
the context menu select New Child > Create a new Actor

Figure 30: Create a new actor

7.4.4 Class

A class is an extensible template for creating objects, providing initial values for state
(member variables, attributes) and implementations of behavior (member functions,
methods, operations).

Collectively attributes define the structure of a class. A class may have any number
of attributes or none. Attributes are typically implemented as variables. An attribute
has a type, which tells us what kind of attribute it is. Typical types of attributes are
integer, Boolean, real, and enumeration. These types are called primitive types.
More complex types are defined by other classes.

Collectively operations define the behavior of the class. A class may have any
number of operations or none. Operations are implemented as functions or
procedures.

To create a new class, right click on the owning element, e.g. a package and from
the context menu select New Child > Create a new Class

Figure 31: Create a new class

7.4.4.1 Attributes on classes

When a class is created, attributes can be added to it by using the context menu of
the class. To create a new attribute on the a class select New Child > Create a
new Property from its context menu.

Figure 32: Create a new attribute

The visibility, type and default value of the attribute are set in the properties view
when the attribute is selected.

7.4.4.2 Operations on classes

When a class is created, operations can be added to it by using the context menu of
the class. To create a new operation on the a class select New Child > Create a
new Operation from its context menu.

new Operation from its context menu.

Figure 33: Create a new operation

The visibility, arguments and return type of the operation are set in the properties
view when the operation is selected.

Regarding the arguments and return type of the an operation, select the key by
the Owned parameter field.

Figure 34: Create a new argument

Then the following window pops up and from the drop list in the Direction field, select
the direction of the argument. In the Name field the name of the argument is written
and the type is defined in the Type field.

Figure 35: Select the argument�s direction

The direction return defines the return type of the operation. Only one argument can
have the return direction.

7.4.5 Object

An object is an instance of a class. In UML it is called and InstanceSpecification,
which is a more general term since it can be used for instances of other classifiers
than classes.

To create a new object, right click on the owning element, e.g. a package and from
the context menu select New Child > Create a new InstanceSpecification

Figure 36: Create a new object

The class to be instanciated is selected by clicking on the key by the Classifier
field in the Properties view of the InstanceSpecification. This will open the Classifier
pop-up window (figure 37), where the class to be used is selected.

Figure 37: Classifier pop-up window

7.4.6 Relationships

There are different types of relationships that can be used in diagrams, hence in the
model between different modeling elements.

Navigability can be unidirectional or bidirectional for Association, Aggregation and
Composition.

Association specifies peer-to-peer relationships between model elements, e.g. if a
Class-x has an attribute of type Class-y, it can be viewed in a class diagram as and
Association between Class-x and Class-y.

Aggregation is used to model a whole/part relationship between model elements.
The part element can exist without the whole. Aggregation causes the generated
code to contain the aggregate either by reference or by value, depending on the
details of the relationship. E.g. to model an aggregation, the aggregate (Department)
has an aggregation association to its constituent parts (Employee). A hollow diamond
is attached to the end of an association path on the side of the aggregate (the
whole) to indicate aggregation.

Composition is an aggregation with strong ownership, i.e. when the container is
destroyed, all of its composite objects are destroyed as well.

Dependency is a relationship in which one model element uses another. Dependency
may exist between classes if a message is sent from one class to the other or if one
class mentions the other as a parameter to an operation. Dependency may exist
between packages if one package is dependent on another.

A Dependency relationship causes a class to be generated with inclusions or
references to another class.

A Generalization relationship causes a class to be generated as a subclass of another
class.

The Realizes relationship specifies that, e.g. an implementation realizes a
specification. The Realizes relationship does not affect the code.

To create a relationship between two modeling elements, use the tool palette in the
diagram editor, e.g. to create an Association between two classes, select the
Association tool in the tool palette, click on the source element and then click on the
destination element as described in figure 38.

Figure 38: Create a new Association

In the Edges drawer in the tool palette, all available relationships are shown. To
create a Generalization relationship, select the Generalization tool from the tool
palette and follow the same procedure as described.

The Aggregation and the Composition relationships are a special kind of an
Association relationship. To create any of these, an Association relationship needs
first to be created. Then select the created Association and in the properties view,
change the Aggregation field at the appropriate end of the Association to shared(if
an Aggregation is desired) or to composite (if a Composition is desired). Figure 39
shows how to do it.

Figure 39: Create a new Association

When the Association is created, the Aggregation field is set to none by default.
When doing the change at the destination end (as in figure 35), the diamond shows
up at the source end of the relationship.

7.4.7 Diagrams

UML has many different types of diagrams to capture all different aspects of a
system. To capture and refine requirements, diagrams related to use-cases are
used. To specify the architecture and design, diagrams related to classes and
packages are used. To specify the implementation, state and activity diagrams are
used, etc.

The different diagrams in UML 2 are shown in figure 40 and here they are structured
after diagram type. In the following of this section they are organized how they are
used.

Figure 40: UMl 2 diagram types

Note! In Papyrus class diagrams are also used as object diagrams.

7.4.7.1 Diagrams related to use-cases

When working with requirement capture and refinement, use-case modeling is used
and any or all of the following diagrams can be used:

Use-case diagram
Activity diagram
Interaction diagram

Sequence diagram
Collaboration diagram

A use-case diagram describe how different Actors use different functionality of the
system. Implicitly, it also define the system boundary, since it shows what should be
performed by the system and what exists outside the system. The elements used in
use-case diagrams are:

Actors interact with, but are outside the system.
Use-cases are some functionality that are performed by the system.
Relationships between elements.

A diagram may depict all or some of the use-cases of a system.

Figure 41: Use-case diagram

A use-case interacts with an actor and perform something useful for that actor. A
use-case exist because of its main flow, but all odd cases and error situations have to
be specified. A use-case has a black box and a white box view. The black box view is
preferably described in plain text or by using activity diagrams. The white box view is
described by one or several sequence diagrams.

All use-cases together span the entire functionality of the system. Actors, use-cases
and use-case diagrams are owned by packages (general UML packages or model
packages).

To create a use-case diagram, right click on the owning package and select New
Diagram > Create a new UseCase Diagram from its context menu.

Diagram > Create a new UseCase Diagram from its context menu.

An activity diagram is a kind of behavioral diagram and shows flow of control from
activity to activity. It is used to specify a use-case black box view. It can also be used
to specify a flow chart for a class operation.

The main elements in an activity diagram are:

Initial and end states
Activities
States
Transitions
Synchronization lines
Decisions
Partitions

Figure 42: Activity diagram

The activity diagram is preferably used to specify the black box behavior of a use-
case instead of using plain text. It may also be used to specify a flow chart for a class
operation. Activity diagrams are owned by use-cases or classes.

To create an activity diagram, right click on the owning use-case or class and select
New Diagram > Create a new Activity Diagram from its context menu.

Interaction diagrams are used to specify how different modeling elements interacts.
Here two types are described, the sequence diagram and the communication
diagram.

A sequence diagram describes the interactions between elements as a time ordered
set of messages. One or several sequence diagrams are used to specify the white
box view of a use-case.

Sequences involving collaborating elementsThe main elements in a sequence
diagram are:

Class instances (objects)
Life lines
Messages
Combined fragments

Figure 43: Sequence diagram

The example (Figure 43) describes Interaction1, two objects (instances of Class1 and
Class2) are created and interacts by messages. The time goes down along the life
lines. In the bottom, there is a combined fragment of type "Ref" which is a reference
to another interaction, Interaction2, meaning that the sequences in that interaction
are executed.There are a lot of combined fragment types, e.g. type "Loop" specifies
a loop, type "Alt" specifies alternatives, etc. All combined fragment types are defined
in Unified Modeling Language (UML) version 2.4.1

Sequence diagrams are owned by use-cases or communication diagrams (see
below).

To create a sequence diagram, right click on the owning use-case or communication
diagram and select New Diagram > Create a new Sequence Diagram from its
context menu.

Communication diagrams show the lines of communication among a set of objects to
accomplish a specific purpose. They act as the framework for sequence diagrams
and define access paths between elements. i.e. communication diagrams are used
to specify a use-case's white box communication channels between elements in the
system.

The main elements in a collaboration diagram are:

Class instances (objects)
Access paths
Messages

Figure 44: Communication diagram

The example (Figure 44) describes access paths between objects and which
messages are passed in these paths. Communication diagrams are owned by use-
cases.

To create a communication diagram, right click on the owning use-case and select
New Diagram > Create a new Communication Diagram from its context menu.

7.4.7.2 Diagrams related to classes

When modeling classes, any or all of the following diagrams may be used:

Class diagrams
Composite structure diagrams
State diagrams

As described above, activity diagrams may also be used to specify a flowchart for a
class operation.

Class diagrams depict static views of the system. A class diagram may represent all
or part of the class structure of a system. Typically there are many class diagrams in
a model. Usually one or many class diagrams are used to specify the inheritance
structure in the system. Class diagrams may also be used to define dependency
rules between packages.

The main elements in a class diagram are:

Packages
Classes
Relationships

Figure 45: Class diagram

The example (Figure 45) shows a class diagram used to specify an inheritance
structure between classes. Note: The Generalization relationship and the indication
of the inherited attributes in Class1 and Class2.

Class diagrams are owned by ordinary UML packages or model packages.

To create a class diagram, right click on the owning package and select New
Diagram > Create a new Class Diagram from its context menu.

The composite structure diagram specifies structure classes contents, i.e. how the
class uses roles (instances from other classes) and how they are connected to fulfill
its responsibility.

The main elements in a composite structure diagram are:

Contained roles (instances of classes)
Ports (interface objects)
Connectors

Figure 46: Composite structure diagram

The example (Figure 46) shows a composite structure diagram used to specify the
structural contents of Class4. Note: Class4 uses one instance (class2) of Class2 and
one instance (class3) of Class3 and they are connected between Class2/Port1 and
Class3/Port2.

Composite structure diagrams are owned by structured classes.

To create a composite structure diagram, right click on the owning class and select
New Diagram > Create a new Composite Structure Diagram from its context
menu.

The state machine diagram specifies the behavior of a class. It is used when the
class is state rich, i.e. has an event driven behavior. If the class has no states, activity
diagrams can be used.

The main elements in a state machine diagram are:

States
Transitions
Effect code
Triggering events
Pseudo states, e.g. initial, final and choice points

Figure 47: State machine diagram

The example (Figure 47) shows a state machine diagram that has an initial pseudo
state, three states and transitions between them. On each transition (except for
initialize), a triggering event is specified, which defines the event that makes the
transition to be taken. Transitions and states may have effect code, which specify
detailed behavior to be executed when an associated transition is taken.

State machine diagrams are owned by classes.

To create a state machine diagram, right click on the owning class and select New
Diagram > Create a new State Machine Diagram from its context menu.

7.5 Internationalize a model

7.5 Internationalize a model

The internationalization is the way to manage your model with a specific language by
labels. Like Eclipse, the internationalization is managed by the 'properties' file which
is defined depending on the language as following (with for example, english
language in US country):

modelName_en_US.properties
modelName_en.properties
modelName.properties

This 'properties' file is managed directly by the Papyrus model and created (if not
existing) when a label is modified.

7.5.1 How to use internationalization in model

The internationalization can be used by checking a Papyrus model preference. The
language of the internationalization is initialized by the application language but can
be modified as well.

Figure 48: Internationalization preferences management

7.5.2 How to edit labels

The internationalization of UML elements, diagrams and tables can be edited by the
properties view with the 'Label' field:

Figure 49: 'Label' field in properties view

If the internationalization preference is active and object to modify is
internationalized, it can be modified directly by the direct editor too as following:

Figure 50: Edit label by direct editor

7.5.3 How the labels are managed in properties file

Each element which have a label must be written in the properties file like following:

Each element which have a label must be written in the properties file like following:

If this is a diagram: _labelDiagram_ DiagramOwnerQualifiedName _label_
DiagramName = DiagramLabel
If this is a table: _labelTable_ TableOwnerQualifiedName _label_ TableName =
TableLabel
If this is an UML NamedElement: _label_ NamedElementQualifiedName =
NamedElementLabel

7.5.4 Sub-models

The sub-models are managed with the properties files. Indeed, when an object is
created as sub-model, the key representing this object or its descendance in the
properties files must be moved in sub-properties files corresponding to the object of
the sub-model. During this sub-model creation, the qualified names of the keys, that
are moved, change, the new qualified names are calculated from the root of the
sub-model.

7.6 UML RT modeling

When creating models UML is used. Since UML is general-purpose modeling
language in the field of software engineering, it is possible to adapt UML to specific
domains. This is done by creating and applying UML profiles. When using UML for RT
modeling with Capsules and Protocols, the UML RT profile is applied. When a profile
is applied we can say that Papyrus has been specialized. There is a specific use-case
in Papyrus to develop UML profiles and when doing so a domain specific modeling
language is defined. This use-case is described in section UML profiling in this user
guide.

7.6.1 Additional modeling elements

7.6.1.1 Capsule class

7.6.1.2 Protocol class

7.6.2 Using C++ in a model

7.6.3 C++ service library

7.6.3.1 Sending messages

7.6.4 Transformation from model to code

7.6.5 Edit the generated code

7.6.6 Compiling and linking the generated code

7.6.7 Using external libraries

7.6.8 Running the system

7.7 Papyrus in a team environment

7.7.1 Model fragmentation

7.7.2 Source configuration management

7.7.3 Compare and Merge

7.8 Model validation

7.8.1 Object Constrain Language (OCL)

7.8.2 Defining constraints using OCL

7.9 Searching

7.10 Sample models

7.10 Sample models

In the Papyrus installation directory There are several sample models

7.10.1 Class model with inheritance

7.10.2 Send and receive data

7.10.3 Interprocess communication

7.11 UML profiling

TBD include the information in the user guide "About UML profiling"

8 Support
To report bugs, suggest improvements, view the status of the Papyrus project,
discuss different Papyrus subjects, etc. please use the following references:

The Papyrus project home page
The Papyrus discussion forum
Proposals for Papyrus improvements
Bugzilla_to_report_bugs

9 References
1. eclipse.org
2. EMF model
3. Eclipse download page
4. Unified Modeling Language (UML) version 2.4.1
5. System Modeling Language
6. Modeling and Analysis of Real-Time and Embedded systems

