

COMPREHENSIVE WATERSHED MANAGEMENT
WATER USE TRACKING PROJECT

Software Architecture Document

Southwest Florida Water Management District
2379 Broad Street

Brooksville, FL 34604-6899

Date Revision Description Author

Water Use Tracking Project – February 13, 2007
Software Architecture Document

i

Table of Contents

1 Introduction.. 1

1.1 Use Case Driven Software Engineering Process .. 1
1.2 Software Architecture ... 1
1.3 Purpose.. 2
1.4 Background... 2
1.5 WUT Software Architecture Document Review .. 3

2 WUT Architectural Representation ... 4
2.1 Introduction... 4
2.2 WUT Architecturally Significant Decisions... 4
2.3 WUT Architectural Views .. 5

3 WUT Architectural Goals and Constraints.. 7
3.1 Support for the WUT Business and Functional Requirements....................................... 7
3.2 Support for the WUT Non-Functional Requirements... 7
3.3 Mitigation of WUT Technical Risks... 7

4 WUT Technical Risks.. 8
4.1 District Staffing Issues.. 9

4.1.1 Description.. 9
4.1.2 Architectural Significance .. 9

4.2 Legacy System Issues ... 9
4.2.1 Description.. 9
4.2.2 Architectural Significance .. 9

5 WUT Architecturally Significant Decisions.. 10
5.1 Introduction... 10
5.2 Overview of the WUT Architecturally Significant Decisions...................................... 10
5.3 Object-Oriented Software Development Methodology .. 11
5.4 Layering .. 11

5.4.1 Problem Domain Layers ... 12
5.4.2 Solution Space Layers... 13
5.4.3 WUT Software Layers .. 14

5.5 Boundary, Control, and Entity Design Pattern ... 15
5.5.1 Model, View, and Controller Design Pattern.. 15
5.5.2 Boundary, Controller, and Entity Design Pattern ... 16
5.5.3 WUT Design Model and the BCE Design Pattern.. 19

5.6 Distributed 3-Tier Client/Server Architecture .. 19
5.7 Thin Web Client Architecture... 21
5.8 Security Architecture .. 23

5.8.1 WUT Application Level Security ... 23
5.8.2 WUT System Level Security .. 23

5.9 Relational Database Management System.. 24
5.10 Object-Relational Broker Design Pattern ... 24
5.11 Trusted User Design Pattern ... 25

Water Use Tracking Project – February 13, 2007
Software Architecture Document

ii

5.12 WUT Technical Architecture.. 25
5.12.1 Windows 2000 Server... 26
5.12.2 Oracle RDBMS... 26
5.12.3 GIS Technologies.. 26

5.12.3.1 ArcSDE... 26
5.12.3.2 ArcIMS ... 26
5.12.3.3 MapDotNet ... 27

5.12.4 Microsoft .NET Development Technologies.. 27
5.12.5 Crystal Reports for Visual Studio .NET ... 28

6 WUT Use Case View... 29
6.1 Architecturally Significant and High Risk Use Cases .. 29

6.1.1 Architecturally Significant Use Cases .. 29
6.1.2 High Risk Use Cases... 30

6.1.2.1 Risk ... 30
6.1.2.2 Coverage ... 30
6.1.2.3 Criticality .. 31

6.2 WUT UML Use Case Model .. 31
6.3 Process Database Replication ... 33

6.3.1 Local WUT UML Use Case Model .. 33
6.3.2 Business Context... 33

6.4 Process WUT System Startup Use Case... 34
6.4.1 Local WUT UML Use Case Model .. 34
6.4.2 Business Context... 34

6.5 Maintain WUT News.. 35
6.5.1 Local WUT UML Use Case Model .. 35
6.5.2 Business Context... 35

6.6 View Map.. 36
6.6.1 Local WUT UML Use Case Model .. 36
6.6.2 Business Context... 36

6.7 View Report .. 37
6.7.1 Local WUT UML Use Case Model .. 37
6.7.2 Business Context... 37

6.8 View Water Use Permit .. 38
6.8.1 Local WUT UML Use Case Model .. 38
6.8.2 Business Context... 38

6.9 View Water Use Permit Search .. 39
6.9.1 Local WUT UML Use Case Model .. 39
6.9.2 Business Context... 39

7 WUT Logical View ... 40
7.1 Introduction... 40
7.2 Object-Oriented Software Development Methodology .. 41

7.2.1 Overview... 41
7.2.2 UML Model Elements from the WUT Design Model.. 42

7.3 Layering .. 43
7.3.1 Overview... 43

Water Use Tracking Project – February 13, 2007
Software Architecture Document

iii

7.3.2 UML Model Elements from the WUT Design Model.. 43
7.4 Boundary, Control, and Entity Design Pattern ... 45

7.4.1 Overview... 45
7.4.2 UML Model Elements from the WUT Design Model.. 46

7.4.2.1 Process Database Replication Use Case – Stereotyped VOPC 46
7.4.2.2 Process WUT System Startup Use Case – Stereotyped VOPC 47
7.4.2.3 Maintain WUT News Use Case – Stereotyped VOPC ... 48
7.4.2.4 View Map Use Case – Stereotyped VOPC... 49
7.4.2.5 View Report Use Case – Stereotyped VOPC ... 50
7.4.2.6 View Water Use Permit Use Case – Stereotyped VOPC 51
7.4.2.7 View Water Use Permit Search Use Case – Stereotyped VOPC.......................... 52

7.5 Security Architecture .. 53
7.5.1 Overview... 53
7.5.2 UML Model Elements from the WUT Design Model.. 54

7.6 Object-Relational Broker Design Pattern ... 55
7.6.1 Overview... 55
7.6.2 UML Model Elements from the WUT Design Model.. 56

7.7 Trusted User Design Pattern ... 57
8 WUT Deployment View.. 58

8.1 Introduction... 58
8.1.1 Relational Database Management System.. 58
8.1.2 Distributed 3-Tier Client/Server Architecture .. 58
8.1.3 Thin Web Client Architecture... 59
8.1.4 WUT Technical Architecture.. 60

8.2 WUT UML Deployment Model ... 60
9 WUT Technical Risk Mitigation ... 62

9.1 Introduction... 62
9.2 District Staffing Issues.. 62

9.2.1 Architectural Significance .. 62
9.2.2 Technical Risk Mitigation... 63

9.2.2.1 Object-Oriented Software Development Methodology .. 63
9.2.2.2 Layering .. 63
9.2.2.3 Relational Database Management System.. 64

9.3 Legacy System Issues ... 64
9.3.1 Architectural Significance .. 64
9.3.2 Technical Risk Mitigation... 64

Water Use Tracking Project – February 13, 2007
Software Architecture Document

1

Software Architecture Document

1 Introduction

1.1 Use Case Driven Software Engineering Process
The software engineering process utilized by the Water Use Tracking (WUT) Project
Development Team is frequently characterized as a use case driven process. This
characterization is based on the understanding that the behaviors, as well as the business and
functional requirements that the application must support, are captured in the WUT Software
Requirement Specification (SRS) and the WUT Use Case Model. Upon the approval of the SRS
and throughout the balance of the software life cycle, the use cases that comprise the WUT Use
Case Model provide the unifying thread for the software engineering process, a role that is
particularly evident during the Elaboration Phase.

One of the primary deliverables produced during the Elaboration Phase is the WUT Design
Model, an object model that describes the realization of the use cases documented in the WUT
Use Case Model. The design model, which serves as an abstraction of the Implementation
Model and its source code, is created through a use case realization process. That is, using the
behavior described in each use case as input, the WUT Design Model is methodically
constructed, use case by use case, through the creation of a number of interaction and class

diagrams, each of which identifies the collection of classes that collaborate together to support
the behavior documented in each use case. As the design model is iteratively refined and
polished through the use case realization process, the design of the software system is conceived
and, most importantly, the software architecture begins to emerge.

1.2 Software Architecture
Software architecture is intimately related to system design and it encompasses the major
decisions being made regarding the behavior, structure, organization, implementation, and
deployment of the software system. The Rational Unified Process defines software architecture
as the set of significant decisions about:
• The organization of the software system
• The selection of structural elements and their interfaces by which the system is composed
• Their behavior, as specified in the collaboration among those elements
• The composition of these elements into progressively larger subsystems
• The architectural style embraced by the software architect that guides the project

In addition, software architecture is also concerned with usage, functionality, performance,
resilience, reuse, comprehensibility, economic and technological constraints and trade-offs, and
aesthetics.

One of the major challenges related to discussions concerning software architecture is that, due
to its breadth and complexity, there is no direct way to model the architecture as such in order to

Water Use Tracking Project – February 13, 2007
Software Architecture Document

2

facilitate communication and refinement. Rather, through the use case realization process, the
software architecture begins to emerge as the project development team makes progressively
more architecturally significant decisions and incorporates these decisions into the evolving
design of the system. As the system’s design becomes increasingly more polished and refined
over time, so too does the software architecture. Architecturally significant components of the
various system design models are then used to describe the software architecture. This
description is captured in the software architecture document, the primary architectural
deliverable produced during the Elaboration Phase.

1.3 Purpose
The purpose of the WUT Software Architecture Document is to provide a comprehensive
overview of the architecture of the proposed software system by providing architectural views of
the various system design models, focusing only on the architecturally significant elements
within each. In addition to these views, this architectural description will:
• Identify the architecturally significant decisions that have been made by the WUT Project

Development Team
• Identify the architecturally significant use cases that were input to the WUT Design Model
• Identify the technical risks confronting the WUT Project that constrain this proposed

software architecture
• Discuss how the architecturally significant decisions made by the WUT Project Development

Team contributes to the mitigation of these technical risks

The goal of the software architecture document is to effectively communicate the architecture of
the proposed software system to the members of the WUT Project Development Team as well as
WUT Project Stakeholders. Project stakeholders, including technical staff within SWFWMD’s
Information Resource Division (IRD), will be able to review the proposed software architecture
and evaluate its adequacy from the perspective of their individual areas of subject matter
expertise.

From a business point of view, the proposed software architecture can be evaluated in terms of
its ability to support the business and functional requirements documented in the WUT
Requirements Traceability Matrix as realized by the various use cases within the WUT Use
Case Model. From a technical point of view, the proposed software architecture can be
evaluated in terms of its ability to support the non-functional requirements documented in the
WUT Supplementary Specification, particularly given the constraints imposed by the technical
risks identified in the WUT Risk Assessment and Management Plan. Finally, the proposed
software architecture can be evaluated in terms of its fit within the constraints imposed by
SWFWMD’s current infrastructure.

1.4 Background
In order to mitigate the technical risks associated with a hypothetical software architecture early
during the software life cycle when it is the most cost effective to introduce change, the software
engineering process utilized by the WUT Project Development Team requires the creation of an
architectural proof-of-concept. An architectural proof-of-concept is an actual software

Water Use Tracking Project – February 13, 2007
Software Architecture Document

3

application constructed by the development team in order to test and validate the proposed
software architecture prior to the creation of the software architecture document. In any testing
effort, the targets of test must be identified in order to ensure complete test coverage. In this
particular case, the targets of test were the architecturally significant decisions that had been
made by the WUT Project Development Team.

1.5 WUT Software Architecture Document Review
The information presented in this software architecture document is organized into the following
sections:

WUT Architectural Representation

Describes the representation of the WUT software architecture in terms of the set of
architecturally significant decisions that have been made by the WUT Project Development
Team as well as a series of architectural views.

WUT Architectural Goals and Constraints

Identifies the software requirements and objectives that have a significant impact on the
WUT software architecture.

WUT Technical Risks

Elaborates upon the technical risks identified in the WUT Risk Assessment and
Management Plan.

WUT Architecturally Significant Decisions

Discusses the architecturally significant decisions that have been made by the WUT Project
Development Team.

WUT Use Case View

Identifies the architectural significant use cases from the WUT Use Case Model that were
input to the WUT Design Model.

WUT Logical View

Addresses the business and functional requirements of the system and is based upon the
WUT Design Model created through the use case realization process.

WUT Deployment View

Describes the likely physical network and hardware configurations on which the WUT
System will be deployed and run.

WUT Technical Risk Mitigation

Discusses how the architecturally significant decisions by the WUT Project Development
Team contribute to the mitigation of the WUT technical risks.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

4

2 WUT Architectural Representation

2.1 Introduction
The WUT software architecture will be represented in this document as both the set of
architecturally significant decisions that have been made by the WUT Project Development
Team and as a series of architectural views. This representation provides significantly more
information for the WUT Project Stakeholders than would be provided by the architectural views
alone. The architectural views are based upon the Unified Modeling Language (UML) Model
that has been created in Enterprise Architect by the WUT Project Development Team.

2.2 WUT Architecturally Significant Decisions
The architecturally significant decisions that have been made by the WUT Project Development
Team include the following:
• Object-Oriented Software Development Methodology
• Layering
• Boundary, Control, and Entity Design Pattern
• Distributed 3-Tier Client/Server Architecture
• Thin Web Client Architecture
• Security Architecture
• Relational Database Management System
• Object-Relational Broker Design Pattern
• Trusted User Design Pattern
• WUT Technical Architecture

 Windows 2000 Server
 Oracle RDBMS
 GIS Technologies

o ArcSDE
o ArcIMS
o MapDotNet

 Microsoft .NET Development Technologies
o Visual Studio .NET
o ADO.NET
o ASP.NET
o Oracle Data Provider for .NET (ODP.NET)

 Crystal Reports for Visual Studio .NET

These decisions have directly or indirectly influenced the design of the WUT System and they
are reflected as appropriate in the architectural view representation of the WUT software
architecture.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

5

2.3 WUT Architectural Views
The proposed WUT software architecture will also be represented as a series of architectural
views based upon the WUT UML Model that has been created in Enterprise Architect by the
WUT Project Development Team. The model is illustrated in Figure 1.

Figure 1. – WUT UML Model in Enterprise Architect

WUT Use Case View

The WUT Use Case View presents the architecturally significant use cases that were input to
the WUT Design Model and it is based upon the WUT Use Case Model in
Enterprise Architect. These use cases were considered significant for the architecture
because the major design decisions to be made during the use case realization process for
these particular use cases had far reaching impacts on the overall software architecture of the
system.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

6

WUT Logical View
The WUT Logical View addresses the business and functional requirements of the system
and it is based upon the WUT Design Model in Enterprise Architect. As described in Section
1.1, Use Case Driven Software Engineering Process, the design model is created through a
use case realization process whose input comes from the architecturally significant use cases
within the WUT Use Case Model. Because not all of design is architecturally significant,
however, this view will only focus on those UML model elements within the design model
that reflect or incorporate the architecturally significant decisions introduced in Section 2.2,
WUT Architecturally Significant Decisions.

WUT Deployment View

The WUT Deployment View describes the likely physical network and hardware
configurations on which the WUT System will be deployed and it is based upon the WUT
Deployment Model in Enterprise Architect. Similar to the WUT Logical View, this view has
been informed by a number of the architecturally significant decisions presented in Section
2.2, WUT Architecturally Significant Decisions.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

7

3 WUT Architectural Goals and Constraints
The following is an itemization of the major software requirements and objectives that have a
significant impact on the WUT software architecture. These architectural goals and constraints
are being presented as software architecture requirement statements. This information should
prove useful in the analysis of the proposed WUT software architecture.

3.1 Support for the WUT Business and Functional Requirements
The WUT software architecture must be capable of directly or indirectly supporting all the other
business and functional requirements documented in the WUT Requirements Traceability Matrix
as realized by the various use cases within the WUT Use Case Model. Although the direct
support for most of the WUT business and functional requirements will be provided through the
software components within the WUT Design Model, these components will be designed
consistent with the WUT software architecture.

3.2 Support for the WUT Non-Functional Requirements
The WUT software architecture must be capable of supporting the non-functional requirements
documented in the WUT Supplementary Specification. These qualitative systems requirements
include:
• Usability
• Reliability
• Performance
• Supportablity

3.3 Mitigation of WUT Technical Risks
The WUT software architecture must mitigate, to the extent possible, the following technical
risks identified in the WUT Risk Assessment and Management Plan:
• District Staffing Issues
• Data Quality Issues
• Database Integration Issues
• Single point of failure on the Unix side
• Data Availability Issues
• Legacy System Issues

Due to the importance of these technical risks for the WUT software architecture, these risks will
be elaborated upon in the Section 4 and their mitigation will be elaborated upon in Section 9.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

8

4 WUT Technical Risks
The WUT Risk Assessment and Management Plan identifies the potential risks to the WUT
Project and communicates a risk management plan of preventive actions that will be taken to
either reduce the probability that the risk will materialize and/or reduce the consequences if the
risk does occur. This plan was initially created during the Inception Phase of the WUT
Project. The top risk categories for the WUT Project identified within the plan include the
following:
• District Staffing Issues
• Data Quality Issues
• Database Integration Issues
• Single point of failure on the Unix side
• Data Availability Issues
• Changing Requirements
• Legacy System Issues
• External User’s Use of Data
• Ease of Use
• Lack of User Involvement
• Consultant Staffing Issues

Several of the risks above are technical in nature, but concern data issues. The WUT System is a
reporting system and will not be adding, changing, or updating data, except for data that will be
used exclusively by the WUT System (i.e., Maintain WUT News). The data used by the system
is replicated from its original source and little architectural significance exists with these data
issues and are, therefore, not included in the list below. Of the top risk categories identified
above, the WUT Project Development Team has identified the following as technical risks that
must be mitigated to the extent possible by the WUT software architecture:
• District Staffing Issues
• Legacy System Issues

Each of these technical risks will be elaborated upon in the sections that follow.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

9

4.1 District Staffing Issues

4.1.1 Description
The District staffing issues group contains several related risks concerning the availability of
staff both during the development of the WUT system and during the continued maintenance of
the system. District staff may not be available to provide input into the system due to their
already taxing daily functions. Loss of knowledgeable staff due to turnover (i.e., retirement,
changing jobs) is also an issue. In addition, the availability of experienced staff for the long-term
maintenance of the system is a concern.

4.1.2 Architectural Significance
The architectural significance of the District Staffing Issues technical risk is related to the ease
with which the WUT system design can be adapted to changing business processes and
technologies throughout the life of the software system. Within the WUT Supplementary
Specification, supportability is defined as the ability of the system to be supported by the
resources required for specific maintenance tasks. For large complex systems, supportability
considerations will be significant and will have a major impact upon the total life cycle cost. To
mitigate this risk, it is particularly important that the appropriate level of supportability is
determined in relation to other system characteristics and cost and taken into consideration
during the design of the system.

When discussing supportability, it is important to acknowledge the inevitable tension that exists
between short-term and long-term considerations. That is, short-term considerations tend to
focus more on the security of using known or established technologies, while long-term
considerations tend to focus more on utilizing newer technologies that have significant long-term
prospects. Balancing these considerations during system design is a challenge for any software
development team. This is certainly the case for the WUT Project Development Team. The use
of new technologies (e.g., Microsoft .NET) will become evident later in this document during the
discussion of the architecturally significant decisions related to the WUT technical architecture.

4.2 Legacy System Issues

4.2.1 Description
The legacy system issues group contains several related risks concerning the legacy system,
including the applications and associated databases. These systems are in current flux and lack
technical documentation.

4.2.2 Architectural Significance
The current legacy systems are mainframe-based systems and scheduled to be migrated to a
newer technology in the near future. The architecture of the WUT System needs be able to adapt
to these changing systems with minimal impact. If the architecture for the WUT System does
not take this risk into consideration, there may be a need for a total rewrite of the WUT System
when the legacy systems are moved from the mainframe.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

10

5 WUT Architecturally Significant Decisions

5.1 Introduction
As discussed in Section 2, WUT Architectural Representation, the WUT software architecture
will be represented as the set of architecturally significant decisions that have been made by the
WUT Project Development Team as well as a series of architectural views. In this section, the
representation of the WUT software architecture as the set of architectural decisions will be
presented. These decisions have directly or indirectly influenced the design of the WUT System
and they are reflected as appropriate in the WUT architectural views. This section will be
immediately followed by those architectural views in this order: WUT Use Case View, the WUT
Logical View, and the WUT Deployment View.

5.2 Overview of the WUT Architecturally Significant Decisions
As previously introduced in Section 2.2, the architecturally significant decisions that have been
made by the WUT Project Development Team include the following:
• Object-Oriented Software Development Methodology
• Layering
• Boundary, Control, and Entity Design Pattern
• Distributed 3-Tier Client/Server Architecture
• Thin Web Client Architecture
• Security Architecture
• Relational Database Management System
• Object-Relational Broker Design Pattern
• Trusted User Design Pattern
• WUT Technical Architecture

 Windows 2000 Server
 Oracle RDBMS
 GIS Technologies

o ArcSDE
o ArcIMS
o MapDotNet

 Microsoft .NET Development Technologies
o Visual Studio .NET
o ADO.NET
o ASP.NET
o Oracle Data Provider for .NET (ODP.NET)

 Crystal Reports for Visual Studio .NET

Each of these decisions will be briefly discussed in the sections that follow.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

11

5.3 Object-Oriented Software Development Methodology
The WUT System is being developed using an object-oriented development methodology; a
methodology that is based on the concepts of classes1, objects2, data abstraction3, encapsulation4,
messages5, and inheritance6. Unlike procedural programming techniques, object-oriented
development concentrates on identifying those objects that constitute the real-world problem
domain and how they are manipulated, not on how something is procedurally accomplished. The
various objects that comprise a software application have relationships, and collaborate with
each other, to perform the work of the system through message passing. One of the principal
advantages of an object-oriented development methodology is the ability to change existing
objects or add new objects to the software system with minimal impact to the other objects that
comprise the system. This advantage enhances the capability to modify and adapt the software
system to the changes that will inevitably occur over time within the real-world problem domain.

The decision to develop the WUT System using an object-oriented development methodology is
one of the primary architectural decisions that have been made by the WUT Project
Development Team. This methodology informs the team’s approach to analysis and design,
which, in turn, is reflected in the numerous interaction and class diagrams that comprise the WUT
Design Model. During construction, the WUT Design Model will be physically implemented
using object-oriented programming languages and techniques.

5.4 Layering
Critical to the success of any software project is the utilization of patterns. Patterns address
common design problems by providing generalized solutions for these problems. The major
benefit of utilizing a pattern is that the pattern documents existing, well-proven design
experience. With respect to software architecture, these common solutions are referred to as
architectural patterns. In order to utilize an architectural pattern, the development team must
adapt the pattern’s generalized solution to the specific needs and nuances of their particular
software development project.

1 A class is a description of a set of objects that share the same attributes, operations, methods (the implementation
of an operation), relationships and semantics.
2 An object is an instance of a class with a well-defined boundary and unique identity that encapsulates state and
behavior. Attributes and relationships represent state. Operations and methods represent behavior.
3 Data abstraction is concerned with thinking about collections of data as abstract entities. This is useful for grouping
related pieces of information, defining and understanding what meaningful operations can be performed on the data,
enforcing certain restrictions on the use of the data, simplifying the task of reasoning about the data, and separating
the implementation from the abstraction itself. The product of data abstraction is an abstract data type, which is
implemented as an object within an object-oriented programming language.
4 Encapsulation is the hiding of a software object’s internal representation. The object provides an interface (i.e., a
set of operations) that support the querying and manipulation of the data without exposing the underlying structure
or the implementation details that support the interface.
5 Software objects communicate with each other using messages. The types of messages that an object understands
correspond to the operation that the object supports, which, in turn, defines its behavior. The parameters required by
an operation, as well as, any returned parameters define the operation’s signature.
6 A class inherits state and behavior from its superclass. Inheritance provides a powerful and natural mechanism for
hierarchically organizing and structuring software programs.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

12

The first architectural pattern utilized by the WUT Project Development Team is the layers
design pattern. A layer represents a slice through the software architecture, with each layer
representing a grouping of related functionality. Layering provides a way to decompose the
system into more manageable software components and restrict inter-system dependencies with
the goal being to design a system that is more loosely coupled and thus easier to maintain. An
important characteristic of the layers design pattern is the directional dependencies that exist
between the various layers. That is, a software component within a given layer should ideally
access only components within its own layer or components in the layers beneath it. This
directional dependency rule is one of the mechanisms by which the goal of the layers design
pattern is realized. The extent to which this rule is followed during system design will have an
effect on the ease with which the resulting system can be enhanced and maintained over time.
To ensure that this rule does not overly restrict the system design, however, the purpose for each
layer must be precisely defined. When implementing the layers design pattern for a given
project, the number and composition of the layers required by the system will be determined by
the complexity of the problem domain and the solution space (i.e., the technical architecture).

5.4.1 Problem Domain Layers
A common application of the layers design pattern organizes and defines the various layers
within the problem domain based upon the responsibilities assigned to each layer.
Responsibility-based layering isolates and organizes the various system responsibilities into a
hierarchical structure, typically comprised of the following three layers (see Figure 2):
• Presentation Layer

This top layer provides support for the interactions between the actors, or the users of the
system, and the software system itself through the presentation of user interfaces

• Business Logic Layer
This middle layer provides support for application specific business processes, as well as,
the application and enforcement of business and data integrity rules

• Data Access Layer
This bottom layer provides support for data access and persistence when using, for
example, a relational database

With respect to directional dependencies, and based upon the hierarchical structure of the
responsibility-based layers design pattern, the Presentation Layer initiates communication with
the Business Logic Layer and, occasionally, the Data Access Layer, but neither of these two
lower layers would initiate communication with the Presentation Layer. The Business Logic
Layer initiates communication with the Data Access Layer, but the Data Access Layer would
never initiate communication with the Business Logic Layer. While the Data Access Layer
would never initiate communication with either of the two layers structurally above it, this layer
does initiate communication with the RDBMS.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

13

<< layer >>
Presentation Layer

<< layer >>
Business Logic Layer

<< layer >>
Data Access Layer

Figure 2 – Presentation, Business Logic, and Data Access Layers

The responsibilities assigned to each layer precisely define the purpose for each layer. As a
result, this architectural pattern provides an elegant solution for decomposing a complex system
in order to facilitate the comprehension, organization, manageability, and maintainability of the
system. For this reason, the WUT Project Development Team selected this architectural pattern
for use within the WUT Design Model.

5.4.2 Solution Space Layers
In addition to the problem domain layers discussed above, additional solution space layers will
be required that provide the services specific to the technical architecture of the deployment
environment. These service-based layers provide the functionality required by the problem
domain layers in order to fulfill their responsibilities. Thus, these layers are essential to
successfully deploy the software system. Although there are many ways to conceptually
describe these service-based layers, a common approach organizes the services provided by these
layers into the following two solution space layers:

Water Use Tracking Project – February 13, 2007
Software Architecture Document

14

• Middleware Layer
Contains components such as GUI-builders, interfaces to database management systems,
platform-independent operating system services (e.g., .NET Framework’s common
language runtime), communication services, etc.

• System Software Layer
Contains components such as operating systems, RDBMS, interfaces to specific
hardware, etc.

5.4.3 WUT Software Layers
The WUT problem domain and solution space layers are graphically depicted in Figure 3. Note
the directional dependencies between the layers within the problem domain as well as between
the application layer and the Middleware and System Software layers.

Application Layer

<< layer >>
Presentation Layer

<< layer >>
Business Logic Layer

<< layer >>
Data Access Layer

Middleware Layer

System Software Layer

Figure 3 – WUT Software Layers

Water Use Tracking Project – February 13, 2007
Software Architecture Document

15

5.5 Boundary, Control, and Entity Design Pattern
As noted above, a layer represents a slice through the software architecture, with each layer
representing a grouping of related functionality. The next pattern utilized by the WUT Project
Development Team, the Boundary, Control, and Entity (BCE) Design Pattern, addresses how to
implement the layers design pattern utilizing an object-oriented development methodology. This
pattern represents a refinement of the Model, View, and Controller (MVC) design pattern.

5.5.1 Model, View, and Controller Design Pattern
The goal of the MVC design pattern is to decompose the application into three distinct types of
objects: model objects, view objects, and controller objects. Rules that govern communication
between these objects are associated with these object types. Prior to the MVC design pattern,
event-driven software designers tended to collapse the logic associated with each of these three
object types into the GUI itself. As one might imagine, doing so created a very fat client
application that lacked flexibility, scalability, and the possibility of component reuse. In
addition, these fat client applications had hefty user hardware requirements and are very
expensive to satisfy. Figure 4 below graphically depicts the MVC design pattern.

Controller

Model

ViewView

Change Change

Change

Notify Notify

Query Query

Figure 4 – MVC Design Pattern’s Object Types

Water Use Tracking Project – February 13, 2007
Software Architecture Document

16

5.5.2 Boundary, Controller, and Entity Design Pattern
The Boundary, Controller, and Entity (BCE) design pattern is closely related to the MVC design
pattern. As such, its goal is to decompose the application into three distinct types of objects:
boundary, control, and entity objects. The primary distinction between these two design patterns
is the rules that govern object communication. The Rational Unified Process (RUP), a specific
and detailed instance of a more generic process described by Grady Booch, James Rumbaugh,
and Ivar Jacobson, has adopted this innovative approach to analysis and design, which was
originally introduced by Doug Rosenberg and Kendall Scott. Stereotypes based upon these three
object types are modeling tools for creating interaction and class diagrams. The WUT Design
Model uses these stereotypes in its interaction diagrams. Table 1 displays the BCE design
pattern’s object types as well as the stereotypes used in RUP. Because the BCE design pattern
has been used extensively in the WUT use case realization process, a detailed overview of this
pattern will be provided. Once this design pattern has been described, its consistent use within
the WUT Design Model will make it very recognizable to review participants.

Stereotype
UML

Element Element in Enterprise Architect
Icon in the Rational

Unified Process

<<boundary>> Class Class with stereotype <<boundary>>

<<control>> Class Class with stereotype <<control>>

<<entity>> Class Class with stereotype <<entity>>

Table 1 – Boundary, Control, and Entity Design Pattern’s Object Types

Boundary objects are responsible for supporting communications between the system’s external
environment (e.g., its users, other systems, or hardware devices) and its internal workings (i.e.,
control and entity objects). Within the context of use case realization, there will be one boundary
class for each user interface. The actor(s) identified within the Use Case Model will always
interact with the system through these boundary objects. Within the various interaction and class
diagrams created in Enterprise Architect, a boundary class is commonly used as a placeholder for
a GUI that will be created using the features and capabilities provided by an integrated
development environment (IDE) like Visual Studio .NET. Even so, the GUI will need to support
a variety of operations and these operations will be captured within the modeled boundary class.
Boundary classes, however, are not used exclusively as a placeholder for a GUI. Boundary
classes will also be used to support communications with legacy systems or hardware devices
external to the system. In these instances, the legacy system or the external hardware device will
be modeled as an actor and a boundary class will be created to provide the actor with an interface

Water Use Tracking Project – February 13, 2007
Software Architecture Document

17

to the system. Unlike view objects within the MVC pattern, a boundary object will always
interface with a control object and never directly with an entity class.

Control objects are responsible for application specific business logic. In addition, these object
types also function as an intermediary between the system’s various boundary and entity objects.
Within the context of use case realization, each boundary class will communicate with a single
control class and control classes will be used to manage each use case’s flow of execution. To
manage this flow, the control object must coordinate the activities required to support the use
case realization, including interactions with other control objects and the data aware entity
objects. Each entity object will be tightly coupled with a control object whose responsibility
includes managing the activities associated with retrieving the data, instantiating the entity
object, and making the data encapsulated within the entity object persistent. When a control
object functions in this capacity, this role is referred to as an object-relational broker.

Like the MVC design pattern’s model objects, entity objects are the data aware objects within the
system. Taken together, these objects are responsible for providing support for the entities that
constitute the problem domain (e.g., water use permits, withdrawal wells, etc.). When the
system uses a RDMBS, the data encapsulated within the system’s entity objects are made
persistent within the RDBMS by the control classes functioning as object-request brokers. When
an instance of an entity (e.g., a particular water use permit) must be retrieved from the RDBMS
for displaying at a GUI, the object-relational broker tightly coupled with that entity object will
retrieve the data from the relational database and instantiate the entity object. To display the
data, the data encapsulated within the entity object will traverse a path that eventually leads to
the control object that is tightly coupled to the boundary object, at which point the data will be
passed to the boundary object for displaying in the GUI. If the data is updated while being
displayed at the GUI, the updated data will traverse this path in reverse until the object-relational
broker makes the updated data encapsulated within the entity object persistent within the
RDBMS.

Collaborating together, the various boundary, control, and entity objects within the BCE design
pattern realize the behavior documented in the system’s Use Case Model. The rules that govern
communication between the various object types within the BCE design pattern are illustrated in
Table 2 and 3 below using RUP icons. Table 2 addresses the flows of communication that are
allowed, as viewed from the perspective of the actor or object initiating the communication.
Table 3 addresses flows of communication that are not allowed within the BCE design pattern.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

18

Actor or Object

Initiating
Communication

Legal Flow of
Communication Target Object

Table 2 – Legal Communication within the BCE Design Pattern

Actor or Object
Initiating

Communication
Illegal Flow of

Communication Target Object

Table 3 – Illegal Communication within the BCE Design Pattern

Water Use Tracking Project – February 13, 2007
Software Architecture Document

19

5.5.3 WUT Design Model and the BCE Design Pattern
The WUT Project Development Team’s implementation of the layers design pattern within the
WUT Design Model is based upon the BCE design pattern, in particular the use of this pattern’s
boundary, control, and entity stereotypes within the interaction diagrams. Recall, however, that
any software development team must adapt a pattern’s generalized solution to the specific needs
and nuances of their particular software development project. With this in mind, the BCE design
pattern has been adapted to the needs of the WUT Project in the following way: communication
between boundary objects and entity objects has been utilized in order to make use of data-aware
controls within the Presentation Layer. Since this communication does not violate the layers
design pattern’s directional dependency rule (i.e., that a software component within a given layer
should only access components within its own layer or components in the layers beneath it), the
WUT Project Development Team will allow this type of communication in order to take
advantage of the advanced GUI functionality and ease of development that is provided by data-
aware controls.

Table 4 maps the BCE stereotypes to various software components that could be created during
the construction of the WUT software to realize these stereotypes during implementation.

Stereotype
Icon in the Rational

Unified Process Implementations

<<boundary>>

• HTML
• DHTML
• ASP.NET
• Client and Server Scripts
• Presentation Services

<<control>>

• Web Services
• COM+
• Business Services

<<entity>>

• ADO.NET
• XML
• Stored Procedures
• RDBMS Objects
• Data Services

Table 4 – Mapping BCE Stereotypes to Various Software Components

5.6 Distributed 3-Tier Client/Server Architecture
The distributed 3-tier client/server architecture pattern is the next architectural pattern utilized by
the WUT Project Development Team. Unfortunately, the phrase ‘client/server architecture’ is an
often-misused phrase, including its frequent use to describe the ‘software architecture’ of a
system. While this phrase does describe the distribution aspects of the software architecture, it is

Water Use Tracking Project – February 13, 2007
Software Architecture Document

20

only one view of the overall software architecture. Indeed, there are multiple possible
client/server architectures described within this distribution pattern including:
• 3-Tier Architecture
• Fat-Client Architecture
• Thin-Client Architecture
• Distributed Client/Server Architecture

To ensure a shared understanding of the distributed 3-tier client/server architecture pattern within
the context of the WUT software architecture, each essential element of this distribution pattern
will be individually described below.

Within the context of a distributed 3-tier client/server architecture, the phrase ‘client/server’
indicates that multiple client and server processor nodes will be used to execute the software
written to support the project’s business and functional requirements. In addition, and at any
given point in time, each individual client processor node will only provide support for a single
client. In contrast, each server processor node will provide support for multiple clients. Server
processor nodes could include, but are not limited to, one or more application web and RDBMS
servers.

The use of the phrase ‘3-Tier’ within the context of this distribution pattern indicates that the
software written to support the project’s business and functional requirements will be divided
into 3 logical partitions where each partition provides a distinct service. The three logical
partitions are:
• Presentation Services
• Business Services
• Data Services

While there is clearly an overlap at this point in the discussion between this pattern and the
layers design pattern, the distinction between these two patterns will become particularly evident
in the discussion of ‘distribution’ that follows.

The use of the term ‘distributed’ within the context of this pattern indicates that the three logical
partitions will be spread among the various client and server processor nodes discussed above.
Further, this distribution of functionality will be specialized in terms of the software executed on
each of the processor nodes. That is, client processor nodes will specialize in providing support
for the presentation services. In contrast, server processor nodes will specialize in providing
support for business and data services. In some cases, the specialization at the server processor
node level can include the separation of support for the business and data services across distinct
server nodes, which enables the implementation of extremely high-performance server nodes
(e.g., AIX servers) in support of the RDBMS.

The obvious goal of this distribution pattern is scalability. That is, adding server processor nodes
and re-balancing the business and data services’ processes across the available server pool can
achieve a greater degree of scalability in support of the project’s performance requirements. If

Water Use Tracking Project – February 13, 2007
Software Architecture Document

21

for no other reason, the WUT System will utilize the distributed 3-tier client/server architecture
pattern. Although it is probably obvious, it is nonetheless important to point out that this
distributed architecture is dependent upon the BCE and layers design patterns.

5.7 Thin Web Client Architecture
The Thin Web Client architecture pattern is the next architectural pattern utilized by the WUT
Project Development Team. This architectural pattern builds upon both the layering and
distribution patterns discussed previously in that the Thin Web Client architecture pattern
provides support for the WUT’s Presentation Layer utilizing a standard web browser physically
located at the client processor node. Designing the WUT System to be a browser-based
application technically positions this software system to be able to leverage the emerging
technologies of the Internet (e.g., Web Services), positions WUT users to be able to conveniently
access important local, state, regional, and national water web sites while using the WUT
System, and provides some additional browser-based functionality not otherwise available to the
users of traditional Windows-based GUI (e.g., Find (on This Page)).

Within the context of this architecture, the browser functions as a generalized user interface
device. All user interactions with the system will be conducted through the browser. Beginning
with the WUT System startup page, each interaction with the system returns an HTML page.
This page serves as the browser’s instructions on how to render the text and graphics displayed
to the user. This architecture requires minimal client processor node computing power and has
few client configuration dependencies. As a result, the scope of supported client processor nodes
is maximized and users could conceivably access the WUT System by means of a hardware
device as powerful as a desktop computer or as minimal as a Pocket PC or a web-enabled cell
phone.

The architectural significance of the decision to use the Thin Web Client architecture, however,
goes beyond providing support for the Presentation Layer using a browser to render HTML
pages. This decision has significant implications for both the client and server’s Middleware and
System Software Layers in that these layers must now include support for:
• A standard Web Browser (Client)

As mentioned above, the browser functions as a generalized user interface device.
• A Web Server (Server)

The Web server functions as the principal access point for the users of the system. That
is, the client browsers can only access the system through a Web server. Web server
software requirements include Internet Information Services.

• HTTP (Client and Server)
HyperText Transport Protocol (HTTP) is the most common protocol for communication
between the client’s browser and the Web server.

• HTML (Client and Server)
HyperText Markup Language is the basic language that is used to build and render
hypertext documents on the World Wide Web.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

22

• XML (Server)
The Extensible Markup Language is fast becoming the universal format for representing
data on the Web.

• Web Applications and Web Services (Server)
The Middleware and System Software Layers must provide support for Web
Applications and Web Services developed by the WUT Project Development Team using
tools like Microsoft’s Visual Studio .NET, ASP.NET, and ADO.NET.

• Clustering and Load Balancing (Server)
Clustering and Load Balancing allows the workload of an application to be distributed
relatively evenly over a group of machines. In order to handle the potentiality large
number of users that will be accessing the WUT System, the System Software layer must
provide support for Clustering and Load Balancing.

• Session and State Management (Server)
Session and State Management is concerned with tracking, storing, and retrieving
application state. ASP.NET and the .Net Framework provide these services. Due to the
decision to utilize Clustering and Load Balancing in conjunction with Session and State
Management, the WUT System will utilize a centralized server to store all application
state. This means that a user's session will be able to be easily located, regardless of the
specific machine in the cluster that is fulfilling their request.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

23

5.8 Security Architecture
The WUT security architecture is organized along two dimensions – application level security
and system level security. Application level security is concerned with proactively controlling
access to WUT’s features, functions, and data after a user has gained access to the system.
Rather than allowing the user to request access when they do not have the proper security to
make the request and then negatively responding to this request, the WUT application security
will proactively deny the user access by disabling the feature or function in the GUI. In this way,
the user cannot request access to a feature or function unless they are authorized to do so. In
contrast, system level security is concerned with controlling access to the system in the first
place. An overview of both of these dimensions is provided below.

5.8.1 WUT Application Level Security
The WUT System application level security will utilize a role-based security architecture. Roles,
and the capabilities associated with each role, will be formally documented in the WUT Access
Criteria. The WUT Project Development Team, in collaboration with the WUT Project
Manager and IRD will define the roles and associated capabilities documented in the WUT
Access Criteria. Roles will be physically implemented as Windows Groups within the Window
domain controller’s Security Account Manager (SAM) security account database by IRD staff.
Individual SWFWMD users will be assigned to a WUT Group by IRD staff.

When a user accesses the WUT System from SWFWMD’s Intranet, the system will request the
username (e.g., SWFNET1/tcrain) and the WUT Group to which the user has been assigned from
the operating system. If a given user has not been specifically assigned to a WUT Group, the
user’s role will default to the WUT General User Role. Doing so will ensure that all SWFWMD
users have at least limited access to the WUT System without having to incur the overhead and
maintenance associated with having to assign each and every SWFWMD staff to a WUT Group.
Having obtained the WUT Group, the system will then proactively determine the features,
functions, and data available to the user. Doing so proactively will prevent the user from
requesting access to features, functions, and data for which they have not been explicitly granted
permission.

5.8.2 WUT System Level Security
To access the WUT System from SWFWMD’s Intranet, a user must initially connect to
SWFWMD’s LAN by logging into the network from their workstation. To accomplish this
connection, the user must supply their username and password, which will be authenticated by
SWFWMD’s Windows primary domain controller (PDC). Once the user has been successfully
authenticated, the user will then have access to SWFWMD’s LAN and Intranet and will thus be
able to access the WUT System. Since any authenticated user will be allowed to access the
WUT System, the system will rely upon the Windows user authentication process, which
controls access to SWFWMD’s LAN and Intranet, to provide for its system level security. Thus,
the WUT System will not need to present the user with a login screen to capture their username
and password for authentication purposes.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

24

5.9 Relational Database Management System
Although the decision to utilize a particular RDBMS was made prior to the start of the WUT
Project, the architectural significance of this decision on the design of the WUT System is
substantial. The WUT System will utilize an Oracle RDBMS and relational databases created
within this environment to store the project’s persistent information including:
• Regulatory Database (RDB) including Water Use Permit information
• Water Management Database (WMDB) including data on ground and surface water levels,

water quality, stream flows, and climatological trends
• Geographic data which will be stored using ESRI’s Spatial Database Engine

Utilizing an RDBMS, in combination with an object-oriented development methodology, has
obvious design implications for the WUT data access layer and the BCE design pattern’s control
objects that support data access and persistence. That is, this decision requires a special type of
control object called an object-relational broker, part of whose function is to understand and
provide software support for the differences between an object-oriented and a relational view of
persistent data. In addition, application business logic that may otherwise have been
implemented within a control object located on an application server processor node may be
implemented as an Oracle RDBMS stored procedure for performance reasons. From the
perspective of the distributed 3-tier client/server architecture, the specialized server processor
node that provides support for the data services partition will have the Oracle RDBMS installed.

5.10 Object-Relational Broker Design Pattern
When using an object-oriented development methodology in combination with relational
technology, the persistent data structure cannot be mechanically derived from the structure of
entity classes in the design model. The primary reason for not being able to derive this structure
from the design model is the constraints imposed on the design of the relational data model by
the rules of normalization, or the set of techniques for organizing data into tables within a
relational database. Normalization addresses the requirement to decompose complex data
structures into simpler, more stable relational structures using a rigorous set of analytical steps
that results in some number of normalized entities that contains only non-repeating, non-
redundant data attributes. In contrast, an object-oriented development methodology, based on
the concepts of classes, objects, data abstraction, encapsulation, messages, and inheritance, is
blind to the constraints imposed by normalization.

As a result, and to reconcile the differences between the unique demands of an object-oriented
development methodology and the relational structures within a RDBMS, the WUT software
architecture will require a specialized control object called an object-relational broker. This
object type is based upon a design pattern with the same name, the Object-Relational Broker
design pattern. This design pattern is concerned with the implementation of the functionality
required to:
• Store the data encapsulated within an entity object in the appropriate tables within the

relational database
• Validate the data encapsulated within an entity object based upon data integrity rules defined

with the WUT Data Dictionary

Water Use Tracking Project – February 13, 2007
Software Architecture Document

25

• Retrieve and instantiate an entity object whose data has previously been stored in a set of
normalized, relational tables

Within the WUT Design Model, each control object paired with an entity object is an object-
relational broker.

5.11 Trusted User Design Pattern
To enable the object-relational brokers to access the data store in the relational database on
behalf of a user, the WUT System will connect to the Oracle RDBMS through its middle tier
utilizing a trusted user architecture, which is an industry standard architecture for n-tiered
applications. The major advantage of this access architecture is connection pooling, which
enables an application to use a connection from a pool of connections instead of establishing a
new connection for each use.

To establish a connection to the Oracle RDBMS, the WUT middle tier will provide a secured
username and password, which will be authenticated by the Oracle RDBMS. Having established
an Oracle connection, the trusted user will submit requests to the WUT relational database on
behalf of users. The WUT application level security will proactively determine whether or not a
given user has the permission to submit a given request. If a user does not have permission, the
user will not be allowed access. Thus, the WUT application level security ensures that the WUT
middle tier will only receive and process valid requests for WUT data. For security purposes, the
trusted user architecture will require the WUT System to provide for the auditing of the WUT
database connections, locks, and transactions, most particularly create, update, and delete
transactions.

5.12 WUT Technical Architecture
The next five discussions focus on the architectural significance of the technical architecture
decisions that have been made by the WUT Project Development Team. These decisions, which
primarily impact the WUT Middleware and System Software Layers, include the following
technologies:
• Windows 2000 Server
• Oracle RDBMS
• GIS Technologies

 ArcSDE
 ArcIMS
 MapDotNet

• Microsoft .NET Development Technologies
 Visual Studio .NET
 ADO.NET
 ASP.NET
 Oracle Data Provider for .NET (ODP.NET)

• Crystal Reports for Visual Studio .NET

Water Use Tracking Project – February 13, 2007
Software Architecture Document

26

Recall from the previous discussion that the Middleware and System Software Layers are
solution space layers that provide the services specific to the technical architecture of the
deployment environment. These service-based layers provide the functionality required by the
problem domain layers in order to fulfill their responsibilities. Thus, these layers are essential to
successfully deploy the software system and any discussion of the WUT software architecture
would be incomplete without a discussion of these architecturally significant decisions.

5.12.1 Windows 2000 Server
The WUT Project Development Team is anticipating using the Windows 2000 Server operating
system on the WUT distributed 3-tier client/server architecture’s Business Service tier. The
proven success of this operating system ensures the WUT System has a solid base in which to
build upon. Also needed as part of this server is Microsoft’s Internet Information Service (IIS)
that will be used as the WUT System’s web server. The WUT System will also need the .NET
Framework installed on this server. The Framework is the infrastructure for the overall .NET
platform incorporating the common language runtime (CLR) and a unified set of class libraries
that include Windows Forms, ADO.NET, ASP.NET, and other capabilities.

5.12.2 Oracle RDBMS
As mentioned in Section 5.9, Relational Database Management System, the WUT technical
architecture will include the Oracle RDBMS. The decision to use this particular RDBMS was
actually decided before the starting of the WUT Project. The decision to utilize the Oracle
RDBMS will have a significant impact on the Middleware and System Software Layers. In
addition, Oracle connectivity software must be installed on the middle tier in support of WUT
trusted user architecture.

5.12.3 GIS Technologies
The WUT System will employ GIS technology as a means to display, query, and analyze water
use data. Providing support for this GIS capability will significantly improve user access to all
water data currently collected by SWFWMD. To this end, the WUT Architecture will utilize
several GIS software components including:
• ArcSDE
• ArcIMS
• MapDotNet

5.12.3.1 ArcSDE
The GIS data used by the WUT System will be stored within the Oracle RDBMS utilizing
ESRI’s Spatial Database Engine (ArcSDE). ArcSDE enables GIS data to be stored in an Oracle
database along with the application’s non-spatial data. Storing GIS data in a database within the
Oracle RDBMS environment, instead of the traditional file-based storage, provides the security
and backup capability for the GIS data, as it does for the other relational, non-spatial databases.

5.12.3.2 ArcIMS
ESRI provides several software components to view GIS data stored in ArcSDE’s database.
These tools use ArcSDE as a gateway to query the database to retrieve the requested spatial data.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

27

One of these components is ArcIMS, ESRI’s Internet map server software. Maps are created
using an authoring tool provided with ArcIMS, which connects to the GIS data through the
ArcSDE gateway. These Map Services wait for requests from a client, usually a browser, and
responds with a map or tabular information about the GIS data. Communication between the
client (browser) and the map service is accomplished using XML. ArcIMS uses a customized
form of XML for the special needs of the GIS environment called ArcXML. Typically,
communication occurs between static HTML pages with embedded JavaScript and a map
service. The WUT System will require more flexibility than these static pages can provide.
Therefore, the WUT application will use a set of tools called MapDotNet to requests maps from
an ArcIMS Map Service.

5.12.3.3 MapDotNet
MapDotNet is a rapid development suite of ASP.NET server controls and web services for
ArcGIS that allows for the easy integration of Visual Studio .NET and GIS mapping
functionality. The MapDotNet Server Controls handle all the requests to ArcIMS for maps and
data and, also, handles the responses returning from ArcIMS with the location of the map image
or the requested data. Using ESRI’s ArcSDE and ArcIMS products, MapDotNet will allow the
project development team to easily and rapidly create and deploy the GIS functionality required
of the WUT System.

5.12.4 Microsoft .NET Development Technologies
Microsoft .Net is Microsoft's latest development platform. It provides all of the tools and
services required for building and running software based on open protocols and technologies.
Based on the architecturally significant decisions outlined in Section 2.2, Microsoft .Net
provides many of the services required by the Application Layer of the Middleware and System
Software layers. Microsoft's .Net vision is of a next-generation Internet that consists of
interoperable web services that are based on open standards such as XML and Simple Object
Access Protocol (SOAP). Of the vast array of .Net tools and services, the WUT technical
architecture is particularly reliant on the following:
• Visual Studio .NET

 Microsoft’s upgrade to its Visual Studio integrated development environment
 Provides .NET programming languages including

o Visual Basic .NET
o C# .NET

 Support for Web Forms and Web Services
• ADO.NET

 An evolutionary improvement to Microsoft ActiveX Data Objects (ADO) that provides
platform interoperability and scalable data access

 Enables developers to program against objects instead of directly against database tables
and columns

 Uses strongly typed programming in which business objects figure prominently
• ASP.NET

 A revolutionary programming framework that enables the rapid development of powerful
web applications and services

Water Use Tracking Project – February 13, 2007
Software Architecture Document

28

 Provides the easiest and most scalable way to build, deploy and run web applications that
can target any browser or device

• Oracle Data Provider for .NET
 Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for

the Oracle database.
 ODP.NET uses Oracle native APIs to offer fast and reliable access to Oracle data and

features from any .NET application.

Microsoft .NET technologies, in combination with the other technologies that comprise the WUT
technical architecture, will provide the tools and functionality required to develop a state-of-the-
art application that supports all of the WUT business and functional requirements. Implementing
Microsoft’s .NET platform will, however, have a significant impact on the WUT Middleware
and System Software Layers.

5.12.5 Crystal Reports for Visual Studio .NET
According to Seagate Software, Crystal Reports for Visual Studio .NET is a product designed to
provide web developers with exceptional data visualization and analysis capabilities. Crystal
Reports delivered in Visual Studio .NET will deeply integrate with Microsoft .NET technologies
including Web Services and Web Forms. The WUT Project Development Team is planning to
use this tool to design and view WUT reports. Supported by custom parameter entry screens that
will execute the report request against WUT Web services, the returned dataset will be attached
to a report definition created and viewed online using the features and services of Crystal
Reports for Visual Studio .NET. Although this is a very strategic architectural decision
regarding how to support the large number of WUT reports, it will add additional complexity to
the WUT Middleware and System Software Layers.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

29

6 WUT Use Case View

6.1 Architecturally Significant and High Risk Use Cases
When utilizing an iterative approach to software development, the main drivers for selecting a
given use case for the first iteration of the design model include:
• Architectural Significance
• High Risk

 Risk
 Criticality
 Coverage

Note that each of these drivers will be discussed in more detail in the sections that follow. For
the purposes of this section, however, it is sufficient to be aware that the decision made by the
WUT Project Development Team to select a given use case from the WUT Use Case Model for
the first version of the design model was informed by these drivers. The set of use cases that
resulted from this selection process includes the following:
• Process Database Replication
• Process WUT System Startup
• Maintain WUT News
• View Map
• View Report
• View Water Use Permit
• View Water Use Permit Search

6.1.1 Architecturally Significant Use Cases
From a certain point of view, every use case selected for the first iteration of the design model is
architecturally significant in the sense that the development team requires a sufficient number of
use cases as input to the architectural decision making process. A select number of use cases,
however, were considered significant for the architecture because the major design decisions to
be made during the use case realization process for these particular use cases would have far
reaching impacts on the overall software architecture of the system. To illustrate this
significance, consider the Process WUT System Startup use case. Critical to the success of any
software system is the design of its security architecture, which includes considerations for both
application and system level security. This use case is considered significant for the architecture
because the major design decisions made during the Process WUT System Startup use case
realization process defined the WUT security architecture and these security-related decisions
impacted every use case realization that followed from an application level security point of
view.

The following use cases were selected for input to the WUT Design Model because the WUT
Project Development Team considered these use cases significant for the architecture:
• Process WUT System Startup
• Maintain WUT News

Water Use Tracking Project – February 13, 2007
Software Architecture Document

30

• View Map
• View Report

6.1.2 High Risk Use Cases
The balance of the use cases from the WUT Use Case Model were selected for the WUT Design
Model because they were considered a high risk to the design of the WUT System. From the
perspective of the system design process, high risk must be understood along the following three
dimensions:
• Risk
• Coverage
• Criticality

6.1.2.1 Risk
Important to the WUT Project Development Team’s software development methodology is the
early mitigation of risks, which should begin as soon as possible in the Elaboration Phase. Risk
mitigation is broad in scope and encompasses both the technical risks identified in the WUT Risk
Assessment and Management Plan as well as application specific risks. For the WUT Project,
application specific risks include the following:
• How to keep the replicated data used in the WUT System up-to-date with the data stored on

the mainframe that is being constantly updated.
• Ability to search for specific Water Use Permits, a key aspect of the system.
• Ability to display various types of information about a Water Use Permit, including key

SWUCA attributes.

Based upon an understanding of the importance of mitigating these risks early in the Elaboration
Phase, the use cases that address these application specific risks were selected for input to the
WUT Design Model.

6.1.2.2 Coverage
To ensure that the software architecture addresses all major facets of the system to be developed,
the initially selected use cases should, when taken together as a whole, provide coverage of all
distinct aspects of the system. To further elaborate on the concept of coverage, consider the
following organization. The WUT use cases are organized into the following four categories:
• Generate
• Maintain
• Process
• View

With these categories in mind and to ensure that the software architecture addresses all major
facets of the system, the list of selected use cases that are input to the WUT Design Model should
include as least one use case from each of these category types. Doing so will ensure that the
WUT software architecture is informed regarding the generalized approach that will be followed
to support each of these categories. Much like a document template, these application specific
design patterns will then be applied to each remaining use case, as appropriate to its category

Water Use Tracking Project – February 13, 2007
Software Architecture Document

31

type, in the next version of the WUT Design Model. However, the WUT Use Case Model only
includes one Generate use case, the Generate Well Package use case. This use case was not
included in this version of the design model because some of the data that will be needed to
accomplish this requirement will not be in the database until later in the Construction Phase of
the project.

6.1.2.3 Criticality
Much like coverage, it is important to ensure that the software architecture addresses the core
functionality of the system. Doing so will ensure that the architecture will be able to support
critical system features and functions, even when there is no perceived risk. To adequately
represent this core functionality in the architecture, use cases must be carefully selected from the
use case model based in part on their criticality to the system. However, not every use case that
is critical to the system needs to be selected for the first version. Similar to coverage, the
requirement is that the core functionality of the system be well represented during the software
architectural decision-making process.

In addition to the architecturally significant use cases and with consideration for risk, coverage,
and criticality, the WUT Project Development Team identified these additional use cases for
input to the WUT Design Model:
• Maintain WUT News
• Process Database Replication
• View Water Use Permit
• View Water Use Permit Search

6.2 WUT UML Use Case Model
Figure 5 provides the WUT UML Use Case Model of the architecturally significant and high-risk
use cases. In the sections that follow this UML Model, the following information will be
provided:
• Local WUT UML Use Case Model for each individual use case
• Business Context for each individual use case

Water Use Tracking Project – February 13, 2007
Software Architecture Document

32

(from Use Cases)

Process WUT System
Startup

(from View Water Use Permit Information)

View Water Use
Permit Search

(from View Water Use Permit Information)

View Water Use
Permit

(from View Water Use Permit Information)

View Map

(from View Water Use Permit Information)

View Report

(from Maintain Water Use Tracking Information)

Maintain WUT News

(from Maintain Water Use Tracking Information)

Process Database
Replication

WUT System Architectural Significant and High Risk Use Cases

«extend»

«extend»

«extend»

«extend» «extend»«extend»

«extend»

«extend»

Figure 5 – WUT System Architecturally Significant and High Risk Use Cases

Water Use Tracking Project – February 13, 2007
Software Architecture Document

33

6.3 Process Database Replication

6.3.1 Local WUT UML Use Case Model

Local View - Process Database Replication

(from Maintain Water Use Tracking Information)

Process Database
Replication

Data
Integration

System
(WMDB)

(from Non-Human Actors)

Regulatory
Database

(from Non-Human Actors)

Oracle Read
Only Database

(from Non-Human Actors)

6.3.2 Business Context
This use case will be used when an actor needs to replicate and normalize (restructure) data that
has been copied directly from a DB2 database on the IBM mainframe to a read-only Oracle
database. The current data structure was implemented to support a data entry system and not for
the use in a decision support reporting system. The data is being restructured to take advantage
of the strengths of a relational database management system. After the initial replication of the
DB2 tables, nightly updates are made to the Oracle tables with the data that has changed since
the previous replication process. By normalizing the data into relational tables, it will allow the
data to be more accessible using ad-hoc query tools.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

34

6.4 Process WUT System Startup Use Case

6.4.1 Local WUT UML Use Case Model

(from Use Cases)

Process WUT System
Startup

Local View - Process WUT System Startup

Technical
User

(from Technical Actors)

Science User
(from Science Actors)

Regulatory
User

(from Regulatory Actors)

Planning
User

(from Planning Actors)

High Lev el
User

(from High Level Use Actors)

General
WUT User

(from Actors)

6.4.2 Business Context
This use case will be used when an actor needs to access the Water Use Tracking (WUT)
System, a browser-based, distributed 3-tier client/server application initially deployed on
SWFWMD’s Intranet. To access the WUT System, the actor will request the browser to display
the WUT System Startup Page. This startup page will display information (e.g., WUT System
News) as well as provide access to the various features supported by the WUT System (e.g.,
View Water Use Permit information, performing spatial analysis using Geographic Information
Systems (GIS) maps, or running a report).

The information and features available to the actor will be controlled through the WUT System
role-based security and WUT System Roles and their associated privileges. When the actor
initially requests access, the WUT System will determine the actor’s role and this will, in turn,
determine the features available to the actor. Any actor not explicitly assigned to a WUT System
Access Criteria role (i.e., WUT Admin User, WUT Manager User) will, by default, be assigned
to the WUT System General User Role. This general role will be allowed to access all features
that are not restricted to a specific WUT user role.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

35

6.5 Maintain WUT News

6.5.1 Local WUT UML Use Case Model

Local View - Maintain WUT News

(from Maintain Water Use Tracking Information)

Maintain WUT News

WUT System
Administrator

(from Technical Actors)

6.5.2 Business Context
This use case is used when the actor needs to maintain WUT news items for communication to
users when they access the WUT Home Page. For example, the system administrator may need
to inform WUT users that the system will be down for maintenance over the weekend. Using
this feature, the system administrator can create a system maintenance news item for display
starting and ending on specified dates. Displaying news on the WUT Home Page ensures that all
users will have access to this important information when they first access the application.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

36

6.6 View Map

6.6.1 Local WUT UML Use Case Model

Local View - View Map

(from View Water Use Permit Information)

View Map

General WUT
User

(from Actors)

6.6.2 Business Context
This use case will be used when an actor needs to view water use permit (WUP) information
spatially using a map created with the functionality provided by a Geographic Information
Systems (GIS). Viewing WUP information in a pre-defined report format can be very effective
from the point of view of efficiency, organization, and the presentation of large amounts of data.
Even so, a report is simply a one-dimensional presentation of information when that information
has at its basis a spatial context. When viewing WUP information in a report, the subtlety and
complexity of the spatial relationships cannot be presented at all or is, at best, difficult to
comprehend. The viewing of information within its spatial context is exactly where GIS excels
and is the primary reason for this View Map Use Case. When additional GIS layers are added to
a map, the multi-dimensional presentation of information provides for a richness of analysis
simply not possible using a report format.

Although not intended exclusively for this actor, one of the primary actors who will use this use
case is the WUP Evaluators. They are responsible for the analysis of all new, modified, and
renewed WUPs. During the analysis process, the evaluator will frequently require access to a
map to view WUP data within its spatial context. Doing so will enable the evaluator to view
other important data within the area of interest resulting in a far richer analytical effort. By
having the ability to add different GIS layers to the map, the evaluator will have more
information at their disposal to assist in their analytical effort. Add to this the capability to pan,
zoom, and print at any time, the evaluator will have all the information and functionality required
to make better, more informed decisions.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

37

6.7 View Report

6.7.1 Local WUT UML Use Case Model

(from View Water Use Permit Information)

View Report

Local View - View Report

General WUT
User

(from Actors)

6.7.2 Business Context
This use case will be used when an actor needs to produce a report from within the WUT Report
Library. It is anticipated that the WUT System will have a large number of reports available in
its report library. Every report use case within the WUT Report Library will extend this use case
as appropriate for the specific report.

A report in this library provides information in a pre-defined format. While the information
content of the report is pre-defined, the system enhances the flexibility of the report by providing
the actor with the capability to optionally limit the information in any given report to the actor’s
specific area of interest (e.g., a specific county). This is accomplished through report
specifications. While a given report may be run frequently, the information content will often
vary from report to report based upon the run-time report specifications given by the actor.

This use case provides support for the numerous reports within the WUT Report Library. Once
the actor specifies the report of interest and optionally supplies any run-time report criteria, the
system will retrieve the information for the actor and present it in the pre-defined format. The
actor can then choose to simply view the report online or download the report for analysis,
printing, or saving as an electronic file in a variety of supported formats.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

38

6.8 View Water Use Permit

6.8.1 Local WUT UML Use Case Model

Local View - View Water Use Permit

(from View Water Use Permit Information)

View Water Use
Permit

General WUT
User

(from Actors)

6.8.2 Business Context
This use case will be used when an actor needs to view information about a specific water use
permit. This water use permit information is collected at the time the permit is submitted and
approved by the District. A water use permit is required from the District when:

• Total capacity of the permit is greater than or equal to 1 million gallons per day
• Total annual average quantities for the permit is greater than or equal to 100,000 gallons per

day
• Well diameter is greater than or equal to 6 inches
• Surface water withdrawal pipe diameters are greater than or equal to 4 inches
• Cumulative well diameters greater than or equal to 6 inches, if in MIA and constructed after

April 11, 1994, and is not a replacement well of same or smaller diameter of one being
plugged

• If withdrawal is likely to cause significant adverse impacts to existing water or land uses, or
the surrounding water resources

The actual area of the permit is digitized as a polygon into a GIS layer based on color infrared
(CIR) digital orthophoto quarter quadrangles (DOQQs). The general data that is collected with
the permit includes the permittee information, acreage amounts, permitted quantities, water use
information, expiration date, and aquifer information. This information will be displayed to the
actor, with the option to "drill-down" to get more detailed information, such as well information
or actual pumpage quantities.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

39

6.9 View Water Use Permit Search

6.9.1 Local WUT UML Use Case Model

General WUT
User

(from Actors)

Local View - View Water Use Permit Search

(from View Water Use Permit Information)

View Water Use
Permit Search

6.9.2 Business Context
This use case will be used when an actor needs to search for and identify a water use permit for
analysis. This use case, as well as the View Map Use Case, is considered among the class of
Find use cases. A Find use case provides the capability to identify, locate, and access
information within the WUT System, as it pertains to a water use permit. The View Water Use
Permit Search use case enables the actor to efficiently and effectively search for and identify
permits that meet a given search criteria. The system returns basic information about the permit
with the ability to get more detailed information regarding the permit (i.e., wells, Net Benefits,
compliance data). This use case is used in support of the View Water Use Permit Use Case.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

40

7 WUT Logical View

7.1 Introduction
As mentioned early in Section 2, WUT Architectural Representation, the WUT software
architecture will be represented in this document as both the set of architecturally significant
decisions that have been made by the WUT Project Development Team and as a series of
architectural views. The first of these architectural views, WUT Use Case View, was presented
in Section 6. This section continues this representation with the WUT Logical View.

The WUT Logical View addresses the business and functional requirements of the system and is
based upon the WUT Design Model, which was created through the use case realization process.
Because not all of design is architecturally significant, only those architecturally significant
components of the WUT Design Model will be presented in this section. These components are
those UML model elements within the design model that reflect or incorporate the architecturally
significant decisions presented in Section 5, WUT Architecturally Significant Decisions. As an
example, consider the decision by the WUT Project Development Team to design the WUT
System using an Object-Oriented (OO) Development Methodology. Within the WUT Logical
View, UML model elements from the design model would be presented that illustrate how an
OO development methodology has influenced or is reflected in this model. This approach will
be followed for the following architecturally significant decisions:
• Object-Oriented Software Development Methodology
• Layering
• Boundary, Control, and Entity Design Pattern
• Security Architecture
• Object-Relational Broker Design Pattern
• Trusted User Design Pattern

Note that the balance of the architecturally significant decisions will be reflected in the WUT
Deployment View. This includes the following decisions:
• Relational Database Management System
• Distributed 3-Tier Client/Server Architecture
• Thin Web Client Architecture
• WUT Technical Architecture

Water Use Tracking Project – February 13, 2007
Software Architecture Document

41

7.2 Object-Oriented Software Development Methodology

7.2.1 Overview
As discussed in Section 5.3, the WUT System is being developed using an object-oriented
development methodology; a methodology that is based on the concepts of classes, objects, data
abstraction, encapsulation, messages, and inheritance. The decision to develop the WUT System
using an object-oriented development methodology is one of the primary architectural decisions
that have been made by the WUT Project Development Team. This methodology informs the
project development team’s approach to analysis and design, which, in turn, is reflected in the
numerous interaction and class diagrams that comprise the WUT Design Model. Later during
construction, the WUT Design Model will be physically implemented using object-oriented
programming languages and techniques.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

42

7.2.2 UML Model Elements from the WUT Design Model
In the class diagram in Figure 6, the architecturally significant model elements within this
diagram illustrate the OO development methodology being utilized by the WUT Project
Development Team to create the WUT Design Model. These model elements are considered
architecturally significant because of the central importance these classes have to the whole of
the WUT application.

Architecturally Significant Model Elements

Water Use Permit

Withdrawals

Well Construction

Permittee

Owner

Contractor

County

Basin

Watersheds

0..1

+Is In

Water Use Permit to Watersheds

0..*

+Contains

0..1

+Is In

Water use Permit to Basin 0..*

+Contains

1..

+Is in

Water Use Permit to County

0..*

+Contains

1

+Completes

Contractor to Well Construction

0..*

+Is Completed By

1

+Owns

Owner to Water Use Permit 0..*

+Is Owned By

1

+Has

Permittee to Water Use Permit

0..*
+Is Permitted To

1

+Submits

Contractor to Water Use Permit

+Is Submitted By

1+Has

0..1+Is On

1
+Has

Water Use Permit to Withdrawals

0..*+Is On

Figure 6 – Architecturally Significant Model Elements

Water Use Tracking Project – February 13, 2007
Software Architecture Document

43

7.3 Layering

7.3.1 Overview
As discussed in Section 5.4, a layer represents a slice through the software architecture, with
each layer representing a grouping of related functionality. Layering provides a way to
decompose the system into more manageable software components and restrict inter-system
dependencies with the goal being to design a system that is more loosely coupled and thus easier
to maintain. An important characteristic of the layers design pattern is the directional
dependencies that exist between the various layers. That is, a software component within a given
layer should ideally access only components within its own layer or components in the layers
beneath it. This directional dependency rule is one of the mechanisms by which the goal of the
layers design pattern is realized.

7.3.2 UML Model Elements from the WUT Design Model

<<layer>>
Presentation

<<layer>>
Business Logic

<<layer>>
Data Access

WUT Problem Domain Layers

Figure 7 – WUT Problem Domain Layers

Water Use Tracking Project – February 13, 2007
Software Architecture Document

44

Presentation Layer
The WUT Presentation Layer provides support for the interactions between the actors, or the
users of the system, and the software system itself through the presentation of user interfaces.

Business Logic Layer
The WUT Business Logic Layer provides support for application specific business processes, as
well as, the application and enforcement of business and data integrity rules.

Data Access Layer
The WUT Data Access Layer provides support for data access and persistence in conjunction
with the WUT relational database supported by Oracle RDBMS.

Each of these layers is comprised of numerous classes. To illustrate this approach, stereotyped
control classes from the WUT Business Logic Layer are provided in the class diagram in Figure
8.

Process WUT System Startup Controller

(from Process WUT System Startup)

View WUP Search Controller

(from View WUP Search)

View WUP Controller

(from View WUP)

Stereotyped Control Classes within the WUT System Business Logic Layer

View WUT Report Controller

View Withdrawal Controller View Well Construction Controller

View Map Controller

Figure 8 – Stereotyped Control Classes

Water Use Tracking Project – February 13, 2007
Software Architecture Document

45

7.4 Boundary, Control, and Entity Design Pattern

7.4.1 Overview
As discussed in Section 5.5, the goal of the Boundary, Control, and Entity design pattern is to
decompose an application into three distinct types of objects:
• Boundary Objects
• Control Objects
• Entity Objects

Boundary objects are responsible for supporting communications between the system’s external
environment (e.g., its users, other systems, or hardware devices) and its internal workings (i.e.,
control and entity objects). Boundary classes will also be used to support communications with
legacy systems or hardware devices external to the system. Control objects are responsible for
application specific business logic. In addition, these object types also function as an
intermediary between the system’s various boundary and entity objects. Entity objects are the
data aware objects within the system. These objects are responsible for providing support for the
entities that constitute the problem domain (e.g., water use permits, withdrawal wells, etc.).
Collaborating together, the various boundary, control, and entity objects within the BCE design
pattern realize the behavior documented in the system’s Use Case Model, as shown in Figure 9.

Figure 9 – The Packaging of the WUT Boundary, Control, and Entity Objects

Water Use Tracking Project – February 13, 2007
Software Architecture Document

46

There is a natural association between the WUT layers, described in Section 7.3, Layering, and
boundary, control, and entity objects. That is, boundary objects are associated with the
Presentation Layer, control objects are associated with the Business Object Layer, and entity
objects are associated with the Data Access Layer. Within the WUT Design Model, this
association is reflected in the WUT interaction and class diagrams as well as the Business Logic,
Data Access, and Presentation packages.

7.4.2 UML Model Elements from the WUT Design Model
In the sections that follow, the stereotyped View of Participating Classes (VOPC) class diagram
from each of use case realization in WUT Design Model will be provided. These
VOPC class diagrams will illustrate the application of the Boundary, Control, and Entity design
pattern in the use case realization process that was followed to create the design model.

7.4.2.1 Process Database Replication Use Case – Stereotyped VOPC

ProcessDatabaseController

DataBaseEntities

Process Database Replication - VOPC

The controller wil l be a
PL/SQL stored procedure
triggered from an insert,
update, or delete.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

47

7.4.2.2 Process WUT System Startup Use Case – Stereotyped VOPC

Default LogonController

News Controller

(from Maintain WUT News)

QuickLink Controller

QuickLinks

WUTPrinciple

Process WUT System Startup - VOPC

ControlBase

NewsItems

(from Maintain WUT News)

Water Use Tracking Project – February 13, 2007
Software Architecture Document

48

7.4.2.3 Maintain WUT News Use Case – Stereotyped VOPC

newsDefault AddNewsItem EditNewsItem InactiveNews

NewsItems

NewsControl

Maintain WUT News - VOPC

Water Use Tracking Project – February 13, 2007
Software Architecture Document

49

7.4.2.4 View Map Use Case – Stereotyped VOPC

View Map - VOPC

ViewMapDefault

MapDotNetServ ice
(from Non-Human Actors)

ViewMapController

Water Use Tracking Project – February 13, 2007
Software Architecture Document

50

7.4.2.5 View Report Use Case – Stereotyped VOPC

Report

ReportController

Reports

View Report - VOPC

Report specific
controllers wil l be
created based on the
selected report.

ReportxxxController

ReportControlBase

ReportxxxCriteria.aspx

ReportPageBase

Water Use Tracking Project – February 13, 2007
Software Architecture Document

51

7.4.2.6 View Water Use Permit Use Case – Stereotyped VOPC

WUP

View WUP Controller

Water Use Permit

View Water Use Permit - VOPC

Other entities have been
removed to simplify the
diagram.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

52

7.4.2.7 View Water Use Permit Search Use Case – Stereotyped VOPC

WupOpen

View WUP Search Controller

Water Use Permit

Permittee

Owner

Contractor

County

Watersheds

Basin

Withdrawals

Well Construction

Other entites have been
removed to simplify the
diagram.

View Water Use Permit Search - VOPC

Water Use Tracking Project – February 13, 2007
Software Architecture Document

53

7.5 Security Architecture

7.5.1 Overview
As discussed in Section 5.8, the WUT security architecture is organized along two dimensions:
• Application Level Security
• System Level Security

System level security is concerned with controlling access to the system in the first place. In
contrast, application level security is concerned with proactively controlling access to WUT
features, functions, and data after a user has gained access to the system. Rather than allowing
the user to request access when they do not have the proper security to make the request and then
negatively responding to this request, the WUT application security will proactively deny the
user access by disabling the feature or function in the GUI. In this way, the user cannot request
access to a feature or function unless they are authorized to do so.

The WUT application level security will utilize a role-based security architecture. The WUT
Roles, and the capabilities associated with each role, will be formally documented in the WUT
Access Criteria, an Elaboration/Construction Phase deliverable. When a user accesses the WUT
application from SWFWMD’s Intranet, the control objects related to each boundary object
within the WUT Design Model will be responsible for identifying each user and will use the .Net
Framework to accomplish this identification task. Specifically, the IsInRole function will be
used to establish the user’s group membership and their group membership will be the basis for
determining the user’s access privileges consistent with the WUT Access Criteria. If a given user
has not been specifically assigned to a WUT Group, the user’s role will default to the WUT
General User Role. Doing so will ensure that all SWFWMD users have at least limited access to
the WUT system without having to incur the overhead and maintenance associated with having
to assign each and every SWFWMD staff to a WUT Group.

To illustrate the WUT security architecture, the WUT Process System Startup Use Case
Realization’s View of Participating Classes class diagram is provided. This use case implements
the IPrincipal interface to provide facilities for integrated .NET security checks at a use case
level. This IPrincipal implementation provides an additional method, HasAccess, which can be
used in lieu of the WUTPrincipal.IsInRole method. The HasAccess method provides more
granular access control for the WUT application, while the WUTPrincipal.IsInRole method is
overridden to support the same level of control, but through a custom string format for the 'role'
parameter. The class also manages the loading and saving of the WUTPrincipal object from the
user's Session object with a value name provided by the caller. For debug purposes, you can
define the NO_SECURITY conditional compilation variable in Configuration
Properties/Build/Code Generation/Conditional Compilation Constants of the project properties
dialog. This object cannot be instantiated directly, but must be "Installed" using one of the
public static methods (see InstallOnAppDomain and InstallOnAspNetThread).

Water Use Tracking Project – February 13, 2007
Software Architecture Document

54

7.5.2 UML Model Elements from the WUT Design Model

SWFWMD.WUT.UI.Web::_Default

PageHeaderMain: SWFWMD.WUT.UI.WebControl.PageHeader
RepeaterQuickLink: System.Web.UI.WebControls.Repeater
CodeDropDownListPurpose: SWFWMD.WUT.UI.WebControl.CodeDropDownList
DropDownList1: System.Web.UI.WebControls.DropDownList
RepeaterNews: System.Web.UI.WebControls.Repeater

- Page_Load(object, System.EventArgs) : void
«property» QuickLinkData() : DataTable
«property» NewsData() : DataTable
~ OnInit(EventArgs) : void
- Initial izeComponent() : void

Page
SWFWMD.WUT.UI.Web::PageBase

- pageUseCaseType: UseCaseType
- businessRuleControl: BusinessRuleControl = null
- logonControl: LogonControl = null
- newsControl: NewsControl = null
- notesControl: NotesControl = null
- reportControl: ReportControl = null
- WupSearchControl: WupSearchControl = null
- wupControl: WupControl = null

+ PageBase()
«property» BusinessController() : BusinessRuleControl
«property» LogonController() : LogonControl
«property» NewsController() : NewsControl
«property» NotesControl ler() : NotesControl
«property» ReportController() : ReportControl
«property» WupSearchControl ler() : WupSearchControl
«property» WupControl ler() : WupControl
~ OnInit(EventArgs) : void
+ HasAccess(AccessLevel) : bool
+ HasAccess(UseCaseType, AccessLevel) : bool
+ HasAccess(UseCaseType, AccessLevel, bool) : bool
+ HasAccess(AccessLevel, bool) : bool
«property» PageUseCaseType() : UseCaseType
~ OnLoad(EventArgs) : void
GetDisplayableTypedRowValue(object, string) : string
- DisplayServerVariables() : void
- CleanUpSessionState() : void
GetValueFromUrlOrSessionState(string, string, object) : object
GetValueFromUrlOrSessionState(string, string, System.Type, string) : object
GetValueFromUrlOrViewState(string, string, object) : object
GetValueFromUrlOrViewState(string, string, System.Type, string) : object
GetValueFromQueryString(string, object) : object
GetValueFromQueryString(string, System.Type, string) : object
CorrectRouteFormat(string) : string
Escape(string) : string
DivideBy1000(long) : string
DivideBy1000(object) : string
DivideBy1000(string) : string
GetNoteImage(long) : string
GetNotesLink(UseCaseType, string, string) : string
GetIDFromLabel(System.Web.UI.WebControls.WebControl, string) : long
GetValueFromControl(System.Web.UI.WebControls.WebControl, string, System.Type) : object
+ EncryptStringForUrl(string) : string
+ DecryptEncodedString(string) : string
+ EncryptString(string) : string
+ DecryptString(string) : string
- InitializeEncryptionProvider(TripleDESCryptoServiceProvider) : void
- ByteArrayToString(byte[]) : string
- StringToByteArray(string) : byte[]
- MemoryStreamToString(MemoryStream) : string
- InitializeComponent() : void
+ SecureDataGrid(DataGrid, Control, System.Type) : void

SWFWMD.WUT.Business::
LogonControl

+ QuickLinkLoadAll() : DataTable
+ NewsItemLoadCurrent() : DataTable

SWFWMD.WUT.Business::ControlBase

- bsrlDataAccess: BSRLDataAccess = null
- bsrlprmDataAccess: BSRLPRMDataAccess = null
- bsrlprmvlDataAccess: BSRLPRMVLDataAccess = null
- bsrlrngDataAccess: BSRLRNGDataAccess = null
- ntatchDataAccess: NTATCHDataAccess = null
- ntDataAccess: NTDataAccess = null
- nwsitmDataAccess: NWSITMDataAccess = null
- qcklnkDataAccess: QCKLNKDataAccess = null
- rdt004DataAccess: RDT004DataAccess = null
- rdt006DataAccess: RDT006DataAccess = null
- rptDataAccess: RPTDataAccess = null
- statlgDataAccess: STATLGDataAccess = null
- wup_countyDataAccess: WUP_COUNTYDataAccess = null
- wup_predominant_useDataAccess: WUP_PREDOMINANT_USEDataAccess = null
- wut001DataAccess: WUT001DataAccess = null
- wut094DataAccess: WUT094DataAccess = null

«property» BSRLDataAccessor() : BSRLDataAccess
«property» BSRLPRMDataAccessor() : BSRLPRMDataAccess
«property» BSRLPRMVLDataAccessor() : BSRLPRMVLDataAccess
«property» BSRLRNGDataAccessor() : BSRLRNGDataAccess
«property» NTATCHDataAccessor() : NTATCHDataAccess
«property» NTDataAccessor() : NTDataAccess
«property» NWSITMDataAccessor() : NWSITMDataAccess
«property» QCKLNKDataAccessor() : QCKLNKDataAccess
«property» RDT004DataAccessor() : RDT004DataAccess
«property» RDT006DataAccessor() : RDT006DataAccess
«property» RPTDataAccessor() : RPTDataAccess
«property» STATLGDataAccessor() : STATLGDataAccess
«property» WUP_COUNTYDataAccessor() : WUP_COUNTYDataAccess
«property» WUP_PREDOMINANT_USEDataAccessor() : WUP_PREDOMINANT_USEDataAccess
«property» WUT001DataAccessor() : WUT001DataAccess
«property» WUT094DataAccessor() : WUT094DataAccess
Escape(string) : string

DataAccessBase
SWFWMD.WUT.DataAccess::QCKLNKDataAccess

+ LoadAll() : DataTable
- GetLoadAllCommand(OracleConnection) : OracleCommand
+ LoadById(long) : DataTable
- GetLoadByIdCommand(OracleConnection, long) : OracleCommand
+ Add(long*, string, string, string) : void
- GetAddCommand(OracleConnection) : OracleCommand
- GetAddCommand(OracleConnection, string, string, string) : OracleCommand
+ Modify(long, string, string, string) : void
- GetModifyCommand(OracleConnection) : OracleCommand
- GetModifyCommand(OracleConnection, long, string, string, string) : OracleCommand
+ Remove(long, string) : void
- GetRemoveCommand(OracleConnection) : OracleCommand
- GetRemoveCommand(OracleConnection, long, string) : OracleCommand
+ Save(DataTable) : void

DataAccessBase
SWFWMD.WUT.DataAccess::NWSITMDataAccess

+ LoadAll() : DataTable
- GetLoadAllCommand(OracleConnection) : OracleCommand
+ LoadById(long) : DataTable
- GetLoadByIdCommand(OracleConnection, long) : OracleCommand
+ LoadCurrent() : DataTable
- GetLoadCurrentCommand(OracleConnection) : OracleCommand
+ LoadActive() : DataTable
- GetLoadActiveCommand(OracleConnection) : OracleCommand
+ LoadInactive() : DataTable
- GetLoadInactiveCommand(OracleConnection) : OracleCommand
+ Add(long*, string, DateTime, DateTime, string, string) : void
- GetAddCommand(OracleConnection) : OracleCommand
- GetAddCommand(OracleConnection, string, DateTime, DateTime, string, string) : OracleCommand
+ Modify(long, string, DateTime, DateTime, string, string) : void
- GetModifyCommand(OracleConnection) : OracleCommand
- GetModifyCommand(OracleConnection, long, string, DateTime, DateTime, string, string) : OracleCommand
+ Remove(long, string) : void
- GetRemoveCommand(OracleConnection) : OracleCommand
- GetRemoveCommand(OracleConnection, long, string) : OracleCommand
+ Save(DataTable) : void

«enumeration»
SWFWMD.WUT::

AccessLev el

+ None: int
+ Read: int
+ Full: int

«enumeration»
SWFWMD.WUT::UseCaseType

+ GenerateWellPackage: int
+ ProcessDatabaseReplication: int
+ ProcessWutSystemStartup: int
+ MaintainBusinessRuleParameters: int
+ MaintainQuickLinks: int
+ MaintainWaterUseEstimates: int
+ MaintainWutNews: int
+ ViewChangeInUseTypeOrOwner: int
+ ViewComplianceInformation: int
+ ViewCropReportInformation: int
+ ViewLandUseInformation: int
+ ViewMitigationOfMflImpacts: int
+ ViewNetBenefitSummary: int
+ ViewResourceInformation: int
+ ViewUseOfLapsedQuantities: int
+ ViewUseOfQuantitiesAssociatedWithDistrictProjects: int
+ ViewWaterUsePermit: int
+ ViewWaterUsePermitSearch: int
+ ViewWaterWithdrawalCredit: int
+ ViewWellConstructionInformation: int
+ ViewWithdrawalPumpageInformation: int
+ ViewMap: int
+ ViewLapsedOrProjectQuantitiesSummary: int
+ ViewReport: int
+ Report: int
+ ReportXXX: int

IPrincipal
SWFWMD.WUT::WUTPrincipal

- originalPrincipal: IPrincipal
- accessLevelsHT: Hashtable = new Hashtable()

WUTPrincipal(IPrincipal)
+ Instal lOnAspNetThread(HttpSessionState, string) : WUTPrincipal
+ Instal lOnAppDomain() : WUTPrincipal
+ IsInRole(string) : bool
+ «property» Identity() : IIdentity
+ «property» OriginalPrincipal() : IPrincipal
+ HasAccess(UseCaseType, AccessLevel) : bool
- getUseCaseAndPermissionFromRoleString(String, UseCaseType*, AccessLevel*) : void
- initial izeAccessLevels() : void

Process WUT System Startup

+pageUseCaseType

+qcklnkDataAccess

+nwsitmDataAccess

+logonControl

Water Use Tracking Project – February 13, 2007
Software Architecture Document

55

7.6 Object-Relational Broker Design Pattern

7.6.1 Overview
As discussed in Section 5.10, the persistent data structure cannot be mechanically derived from
the structure of entity classes in the design model when using an object-oriented development
methodology in combination with relational technology. The primary reason for not being able
to derive this structure from the design model is the constraints imposed on the design of the
relational data model by the rules of normalization, or the set of techniques for organizing data
into tables within a relational database. As a result, and to reconcile the differences between the
unique demands of an object-oriented development methodology and the relational structures
within a RDBMS, the WUT software architecture will require a specialized control object called
an object-relational broker. This object type is based upon a design pattern with the same name,
the Object-Relational Broker design pattern. This design pattern is concerned with the
implementation of the functionality required to:
• Store the data encapsulated within an entity object in the appropriate tables within the a

relational database
• Validate the data encapsulated within an entity object based upon data integrity rules defined

within the data dictionary
• Retrieve and instantiate an entity object whose data has been previously been stored in a set

of normalized, relational tables

Within the WUT Design Model, each control object paired with an entity object is an object-
relational broker. In the following class diagram, based upon the Maintain WUT News Use Case
Realization’s VOPC, the following classes are provided to illustrate this design pattern:
• Default – The Maintain WUT News web form
• NewsController – The control object related to the Maintain News’ default web form
• NWSITMDataAccess – The WUT News’ object-relational broker
• NWSITMDataTable – The WUT News’ entity object in the form of an ADO collection

Water Use Tracking Project – February 13, 2007
Software Architecture Document

56

7.6.2 UML Model Elements from the WUT Design Model

PageBase
Maintain WUT News::_Default

PageHeaderMain: SWFWMD.WUT.UI.WebControl.PageHeader
HyperLinkAddNew: System.Web.UI.WebControls.HyperLink
DataGridNews: SWFWMD.WUT.UI.WebControl.EditDataGrid
LabelMessage: System.Web.UI.WebControls.Label
- DefaultSortExpression: string = "NWSITM_START_DT_TM"
- DefaultSortDirection: string = "DESC"
- MaintainItemText: string = "News Item"
- maxVal: int = 1000000

- Page_Load(object, System.EventArgs) : void
- BindData(int, NewsDataSet) : void
- DataGridNews_ItemDataBound(object, System.Web.UI.WebControls.DataGridItemEventArgs) : void
- RenderHeader(object, System.Web.UI.WebControls.DataGridItemEventArgs) : void
- RenderPager(object, System.Web.UI.WebControls.DataGridItemEventArgs) : void
- ResetCounts(NewsDataSet) : void
- CheckPageIndex(int, int) : int
- DataGridNews_DeleteCommand(object, System.Web.UI.WebControls.DataGridCommandEventArgs) : void
- DataGridNews_EditCommand(object, System.Web.UI.WebControls.DataGridCommandEventArgs) : void
- DataGridNews_ItemCreated(object, System.Web.UI.WebControls.DataGridItemEventArgs) : void
- DataGridNews_PageIndexChanged(object, System.Web.UI.WebControls.DataGridPageChangedEventArgs) : void
- DataGridNews_SortCommand(object, System.Web.UI.WebControls.DataGridSortCommandEventArgs) : void
- LinkButtonViewAll_Click(object, System.EventArgs) : void
- LinkButtonViewByPage_Click(object, System.EventArgs) : void
~ OnInit(EventArgs) : void
- Initial izeComponent() : void

ControlBase
NewsControl

+ LoadActiveNews() : NewsDataSet
+ LoadInactiveNews() : NewsDataSet
+ LoadById(long) : NewsDataSet
+ Insert(string, DateTime, DateTime, string, string) : long
+ Update(long, string, DateTime, DateTime, string, string) : void
+ Delete(long, string) : void

DataAccessBase
NWSITMDataAccess

+ LoadAll() : DataTable
- GetLoadAllCommand(OracleConnection) : OracleCommand
+ LoadById(long) : DataTable
- GetLoadByIdCommand(OracleConnection, long) : OracleCommand
+ LoadCurrent() : DataTable
- GetLoadCurrentCommand(OracleConnection) : OracleCommand
+ LoadActive() : DataTable
- GetLoadActiveCommand(OracleConnection) : OracleCommand
+ LoadInactive() : DataTable
- GetLoadInactiveCommand(OracleConnection) : OracleCommand
+ Add(long*, string, DateTime, DateTime, string, string) : void
- GetAddCommand(OracleConnection) : OracleCommand
- GetAddCommand(OracleConnection, string, DateTime, DateTime, string, string) : OracleCommand
+ Modify(long, string, DateTime, DateTime, string, string) : void
- GetModifyCommand(OracleConnection) : OracleCommand
- GetModifyCommand(OracleConnection, long, string, DateTime, DateTime, string, string) : OracleCommand
+ Remove(long, string) : void
- GetRemoveCommand(OracleConnection) : OracleCommand
- GetRemoveCommand(OracleConnection, long, string) : OracleCommand
+ Save(DataTable) : void

DataTable
System.Collections.IEnumerable

«inner class»
NWSITMDataTable

- columnNWSITM_ID: DataColumn
- columnNWSITM_TTL_NM: DataColumn
- columnNWSITM_START_DT_TM: DataColumn
- columnNWSITM_END_DT_TM: DataColumn
- columnNWSITM_DSCR: DataColumn
- columnACTN_USER_NM: DataColumn
- columnACTN_DT_TM: DataColumn
- columnNT_CNT_NBR: DataColumn
+ «event» NWSITMRowChanged: NWSITMRowChangeEventHandler
+ «event» NWSITMRowChanging: NWSITMRowChangeEventHandler
+ «event» NWSITMRowDeleted: NWSITMRowChangeEventHandler
+ «event» NWSITMRowDeleting: NWSITMRowChangeEventHandler

~ NWSITMDataTable()
~ NWSITMDataTable(DataTable)
+ «property» Count() : int
~ «property» NWSITM_IDColumn() : DataColumn
~ «property» NWSITM_TTL_NMColumn() : DataColumn
~ «property» NWSITM_START_DT_TMColumn() : DataColumn
~ «property» NWSITM_END_DT_TMColumn() : DataColumn
~ «property» NWSITM_DSCRColumn() : DataColumn
~ «property» ACTN_USER_NMColumn() : DataColumn
~ «property» ACTN_DT_TMColumn() : DataColumn
~ «property» NT_CNT_NBRColumn() : DataColumn
+ «indexer» this(int) : NWSITMRow
+ AddNWSITMRow(NWSITMRow) : void
+ AddNWSITMRow(long, string, System.DateTime, System.DateTime, string, string, System.DateTime, System.Decimal) : NWSITMRow
+ FindByNWSITM_ID(long) : NWSITMRow
+ GetEnumerator() : System.Collections.IEnumerator
+ Clone() : DataTable
CreateInstance() : DataTable
~ InitVars() : void
- InitClass() : void
+ NewNWSITMRow() : NWSITMRow
NewRowFromBuilder(DataRowBuilder) : DataRow
GetRowType() : System.Type
OnRowChanged(DataRowChangeEventArgs) : void
OnRowChanging(DataRowChangeEventArgs) : void
OnRowDeleted(DataRowChangeEventArgs) : void
OnRowDeleting(DataRowChangeEventArgs) : void
+ RemoveNWSITMRow(NWSITMRow) : void

Maintain WUT News - Object-Relational Broker Design Pattern

Water Use Tracking Project – February 13, 2007
Software Architecture Document

57

7.7 Trusted User Design Pattern
As discussed in Section 5.11 and to enable the WUT object-relational brokers to access the data
store in the relational database on behalf of a user, the WUT System will connect to the Oracle
RDBMS through its middle tier utilizing a trusted user architecture. The major advantage of this
access architecture is connection pooling, which enables an application to use a connection from
a pool of connections instead of establishing a new connection for each use. To establish a
connection to the Oracle RDBMS, the WUT middle tier will provide a secured username and
password, which will be authenticated by the Oracle RDBMS.

Having established an Oracle connection, the trusted user will submit requests to the WUT
relational database on behalf of the users. The WUT application level security will proactively
determine whether or not a given user has the permission to submit a given request. If a user
does not have permission, the user will not be allowed access. Thus, the WUT application level
security ensures that the WUT middle tier will only receive and process valid requests for WUT
data. The username and password for the trusted user will be stored in the application’s
Web.Config file as part of the database connection string. The Web.Config file can be edited in
a text editor at any time if the username and/or password change.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

58

8 WUT Deployment View

8.1 Introduction
In Section 7, the WUT Logical View, the WUT software architecture was represented by the
architecturally significant UML model elements from the WUT Design Model that reflected the
following architecturally significant decisions:
• Object-Oriented Software Development Methodology
• Layering
• Boundary, Control, and Entity Design Pattern
• Security Architecture
• Object-Relational Broker Design Pattern
• Trusted User Design Pattern

In this final architectural view, the likely physical network and hardware configurations on
which the WUT System will be deployed will be presented. This view is based upon the WUT
Deployment Model, which has been created in Enterprise Architect. Similar to the WUT Logical
View, the WUT Deployment View has been informed by a number of the architecturally
significant decisions presented in Section 2.2 including:
• Relational Database Management System
• Distributed 3-Tier Client/Server Architecture
• Thin Web Client Architecture
• WUT Technical Architecture

Following an overview of these decisions, the WUT UML Deployment Model will be presented.

8.1.1 Relational Database Management System
As described in Section 5.9, the WUT System will utilize an Oracle RDBMS and relational
databases created within this environment to store the project’s persistent information including:
• Regulatory Database (RDB) including Water Use Permit information
• Water Management Database (WMDB) including data on ground and surface water levels,

water quality, stream flows, and climatological trends
• Well Construction Database (WCT) including well construction details (i.e., well depth,

casing size, casing type, etc.)
• Geographic data which will be stored using ESRI’s Spatial Database Engine

In addition to this persistent information, some application business logic will be implemented as
Oracle RDBMS stored procedures for performance reasons.

8.1.2 Distributed 3-Tier Client/Server Architecture
As described in Section 5.6, each conceptual component of a distributed 3-tier client/server
architecture must be individually discussed in order to ensure that a clear understanding of this
architecture has been conveyed.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

59

Client/Server
Within the context of a distributed 3-tier client/server architecture, the phrase ‘client/server’
indicates that multiple client and server processor nodes will be used to execute the software
written to support the project’s business and functional requirements. In addition, and at any
given point in time, each individual client processor node will only provide support for a single
client. In contrast, each server processor node will provide support for multiple clients. Server
processor nodes could include, but are not limited to, one or more application web and RDBMS
servers.

3-Tier
The use of the phrase ‘3-tier’ within the context of this distribution pattern indicates that the
software written to support the project’s business and functional requirements will be divided
into 3 logical partitions where each partition provides a distinct service. The three logical
partitions are:
• Presentation Services
• Business Services
• Data Services

Distributed
The use of the term ‘distributed’ within the context of this pattern indicates that the three logical
partitions will be spread among the various client and server processor nodes discussed above.
Further, this distribution of functionality will be specialized in terms of the software executed on
each of the processor nodes. That is, client processor nodes will specialize in providing support
for the presentation services. In contrast, server processor nodes will specialize in providing
support for business and data services. In some cases, the specialization at the server processor
node level can include the separation of support for the business and data services across distinct
server nodes, which enables the implementation of extremely high-performance server nodes
(e.g., AIX servers) in support of the RDBMS.

8.1.3 Thin Web Client Architecture
As discussed in Section 5.7, the Thin Web Client architecture pattern builds upon both the
layering and distribution patterns discussed previously in that this architecture pattern provides
support for the WUT Presentation Layer utilizing a standard web browser on the client processor
node. Within the context of this architecture, the browser functions as a generalized user
interface device and most user interactions with the system will be conducted through the
browser. Beginning with the WUT startup page, each interaction with the system returns an
HTML page. This page serves as the browser’s instructions on how to render the text and
graphics displayed to the user. This architecture requires minimal client processor node
computing power and has few client configuration dependencies. As a result, the scope of
supported client processor nodes is maximized and users could conceivably access the WUT
System by means of a hardware device as powerful as a desktop computer or as minimal as a
Pocket PC or a web-enabled cell phone.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

60

8.1.4 WUT Technical Architecture
As discussed in Section 5.12, the technical architecture decisions that have been made by the
WUT Project Development Team include the following technologies:
• Windows 2000 Server
• Oracle RDBMS
• GIS Technologies

 ArcSDE
 ArcIMS
 MapDotNet

• Microsoft .NET Development Technologies
 Visual Studio .NET
 ADO.NET
 ASP.NET
 Oracle Data Provider for .NET (ODP.NET)

• Crystal Reports for Visual Studio .NET

These technologies primarily impact the WUT Middleware and System Software Layers. Recall
from the discussion presented in Section 5.4.2, Solution Space Layers, that the Middleware and
System Software Layers are solution space layers that provide the services specific to the
technical architecture of the deployment environment. These service-based layers provide the
functionality required by the problem domain layers in order to fulfill their responsibilities.
Thus, these layers are essential to successfully deploy the software system.

8.2 WUT UML Deployment Model
The WUT UML Deployment Model is presented in Figure 10 on the following page. In addition
to being informed by the architecturally significant decisions discussed above, this model is
consistent with, and supports the layers design pattern discussed in Section 5.4, as well as the
BCE design pattern discussed in Section 5.5.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

61

Client Workstation

Application Serv er

Database Serv er

Internet Explorer

Oracle RDBMS
ArcSDE
WUT Relation Database

Web Server
Business Application Server

Web Server
· Internet Information Server
· .NET Framework
· ASP.NET

Business Application Server
· Internet Information Server
· .NET Framework
· Business Web Services
· Data Access Web Services
· MapDotNet Server Controls
· MapDotNet SDE Client

WUT UML Deployment Model

SWFWMD LAN

SWFWMD LAN

Figure 10 – WUT UML Deployment Model

Water Use Tracking Project – February 13, 2007
Software Architecture Document

62

9 WUT Technical Risk Mitigation

9.1 Introduction
As discussed in Section 4, many risks were identified during the Inception Phase of the WUT
Project and are documented in the WUT Risk Assessment and Management Plan. Of the risks
that were technical in nature, most were concerned with data issues. The WUT System is a
reporting system and will not be adding, changing, or updating data, except for data that will be
used exclusively by the WUT System (i.e., Maintain WUT News). The data used by the system
is replicated from its original source and little architectural significance exists with these data
issues and are, therefore, not included in the list below. Of the top risk categories identified, the
WUT Project Development Team has identified the following as technical risks that must be
mitigated to the extent possible by the WUT software architecture:
• District Staffing Issues
• Legacy System Issues

Having provided an overview of the architecturally significant decisions in Section 5 and the
various WUT architectural views in Sections 6, 7, and 8, this section will provide a discussion of
how these decisions have contributed to the mitigation of the technical risks identified above.
This discussion will be organized by technical risk.

9.2 District Staffing Issues

9.2.1 Architectural Significance
The architectural significance of the District Staffing Issues technical risk is related to the ease
with which the WUT system design can be adapted to changing business processes and
technologies throughout the life of the software system. Within the WUT Supplementary
Specification, supportability is defined as the ability of the system to be supported by the
resources required for specific maintenance tasks. For large complex systems, supportability
considerations will be significant and will have a major impact upon the total life cycle cost. To
mitigate this risk, it is particularly important that the appropriate level of supportability is
determined in relation to other system characteristics and cost and taken into consideration
during the design of the system.

When discussing supportability, it is important to acknowledge the inevitable tension that exists
between short-term and long-term considerations. That is, short-term considerations tend to
focus more on the security of using known or established technologies, while long-term
considerations tend to focus more on utilizing newer technologies that have significant long-term
prospects. Balancing these considerations during system design is a challenge for any project
development team. This is certainly the case for the WUT Project Development Team. The use
of new technologies (e.g., Microsoft .NET) will become evident later in this document during the
discussion of the architecturally significant decisions related to the WUT technical architecture.

Water Use Tracking Project – February 13, 2007
Software Architecture Document

63

9.2.2 Technical Risk Mitigation
Some of the major decisions that were made by the WUT Project Development Team were made
in part to specifically mitigate the District Staffing Issues technical risk. These major decisions
include:
• Object-Oriented Software Development Methodology
• Layering
• Relational Database Management System

The contributions of each of these decisions to the mitigation of this technical risk will be
individually discussed in the sections that follow.

9.2.2.1 Object-Oriented Software Development Methodology
Utilizing an object-oriented development methodology contributes to the mitigation of this risk
because this methodology will enable the WUT Project Development Team to more easily adapt
the WUT System to changing business processes and technologies. As mentioned above, object-
oriented development concentrates on identifying those objects that constitute the real-world
problem domain and how they are manipulated, not on how something is procedurally
accomplished. The resulting software components reflect this ‘real-world’ approach to the
problem domain and these components lend themselves to adaptation as changes occur in this
domain. Encapsulation, the hiding of a software object’s internal representation, is particularly
relevant in this regard. That is, as along as the object’s operation signature remains the same, the
method that implements that operation can change in support of changing business processes
without disturbing the other operations within that object or other objects within the system. In
addition, this methodology supports the development of altogether new objects that can be added
to the WUT System’s support of new business processes or in support of new technology
without disturbing the other objects that comprise the software system. Hence, the WUT System
can be refined and enhanced as required over the software’s full life cycle.

9.2.2.2 Layering
Utilizing a layers design pattern also contributes to the mitigation of this risk because layering
provides a way to restrict inter-system dependencies with the goal being to design a system that
is more loosely coupled and thus easier to maintain. As a result, the WUT Project Development
Team will be able to isolate and modify specific software components within a particular layer in
support of changing business processes and technologies. In addition, and because this design
pattern supports the decomposition of the system into responsibility-based layers, different
software developers with highly-tuned skill sets can work on, or specialize in, specific layers.
This allows the software developers to build in-depth knowledge of a particular part of the
application without having to learn the details of all the other components of the application.

The layers design pattern will also help minimize the impact of changing components within the
technical architecture’s Middleware and System Software Layers in support for new and
emerging technologies. As discussed above, the WUT System will connect to the Oracle
RDBMS only through its object-relational brokers to access the data stored in the relational
database. This design pattern isolates RDBMS connectivity to a single set of objects within the

Water Use Tracking Project – February 13, 2007
Software Architecture Document

64

WUT System. If the software that supports the RDBMS connectivity changes, only this set of
objects is impacted by this change.

9.2.2.3 Relational Database Management System
Finally, the decision to use the true advantages of a RDBMS to store the WUT data contributes
to the mitigation of this risk. In order to take advantage of the power of the RDBMS, the current
data replicated from the mainframe will be normalized. In addition, and as a result of the
normalization process, adding new entities to the data model and modifying existing entities in
support of changing business processes or to support new functionality is also easier to
accomplish when using a RDBMS. Although one cannot emphasize enough the importance of
the analysis that must be performed prior to making a relational database change, once the
change has been approved, RDBMS technologies make implementing this change comparatively
easy. It is this ‘ease of use’ quality of an RDBMS that contributes to the ability of the WUT
software architecture to mitigate this particular risk.

9.3 Legacy System Issues

9.3.1 Architectural Significance
The current legacy systems are mainframe-based systems and scheduled to be migrated to a
newer technology in the near future. The architecture of the WUT System needs be able to adapt
to these changing systems with minimal impact. If the architecture for the WUT System does
not take this risk into consideration, there may be a need for a total rewrite of the WUT System
when the legacy systems are moved from the mainframe.

9.3.2 Technical Risk Mitigation
Many of the decisions made regarding the architecture for the WUT System were made to help
mitigate the risks associated with the future changes in the Legacy System. Change is inevitable
and decisions made regarding the system architecture will determine how difficult it will be to
evolve the WUT System as these changes occur. The architectural decisions made for the WUT
System have been fully discussed in the previous sections and include:
• Object-Oriented Software Development Methodology
• Layering
• Boundary, Control, and Entity Design Pattern
• Distributed 3-Tier Client/Server Architecture
• Thin Web Client Architecture
• Security Architecture
• Relational Database Management System
• Object-Relational Broker Design Pattern
• Trusted User Design Pattern

All of these architectural decisions help mitigate the risk of a changing Legacy System.

