
A PVS-Simulink Integrated Environment for
Model-Based Analysis of Cyber-Physical

Systems∗

Cinzia Bernardeschi, Andrea Domenici, and Paolo Masci†

Abstract

This paper presents a methodology, with supporting tool, for formal modeling
and analysis of software components in cyber-physical systems. Using our ap-
proach, developers can integrate a simulation of logic-based specifications of soft-
ware components and Simulink models of continuous processes. The integrated
simulation is useful to validate the characteristics of discrete system components
early in the development process. The same logic-based specifications can also
be formally verified using the Prototype Verification System (PVS), to gain addi-
tional confidence that the software design complies with specific safety require-
ments. Modeling patterns are defined for generating the logic-based specifications
from the more familiar automata-based formalism. The ultimate aim of this work
is to facilitate the introduction of formal verification technologies in the software
development process of cyber-physical systems, which typically requires the inte-
grated use of different formalisms and tools. A case study from the medical do-
main is used to illustrate the approach. A PVS model of a pacemaker is interfaced
with a Simulink model of the human heart. The overall cyber-physical system is
co-simulated to validate design requirements through exploration of relevant test
scenarios. Formal verification with the PVS theorem prover is demonstrated for
the pacemaker model for specific safety aspects of the pacemaker design.

1 Introduction

Cyber-physical systems connect and integrate heterogeneous components to create
control loops necessary for processing, sensing, and actuation [59]. When develop-
ing cyber-physical systems, the need typically arises to simulate, and therefore model,
components of different kinds. This happens, for example, when a physiological pro-
cess (e.g., the heart’s electrical conduction system) is monitored and controlled by an
embedded digital system (e.g., a pacemaker device). To develop the system effectively,
each of the two sub-systems, controlled process and embedded device, should be mod-
eled in the appropriate formalism, also because embedded device experts may not be
familiar with physiological process modeling, and conversely.

Many different languages and environments have been introduced to support mod-
eling and simulation. This variety and abundance of tools reflects the fact that different

∗Submitted to IEEE Transactions on Software Engineering
†C. Bernardeschi and A. Domenici are with the Department of Information Engineering, University of

Pisa, Italy. P. Masci is with HASLab/INESC TEC and Universidade do Minho, Portugal.

1

components are best modeled with domain-specific languages and concepts. For ex-
ample, a tool devised to simulate embedded systems is probably not the best solution to
simulate physiological processes. An important distinction among modeling and sim-
ulation formalisms is between those oriented to discrete systems and those oriented to
continuous processes. The former can be described as evolving through a discrete set
of states, whereas the latter can be described by a set of variables whose values change
continuously according to some law, usually defined by differential equations.

In critical application domains such as health care and avionics, developers need
to prove that the system design complies with safety requirements. Therefore, besides
analyzing the system through simulations, it is also highly desirable (and often manda-
tory) that the system is assessed using formal verification technologies.

For discrete components of a cyber-physical systems, one class of formal modeling
languages that has gained wide acceptance among software designers is the one based
on various kinds of automata. Their acceptance rests both on the immediateness of
their basic concepts (states and transitions) and their graphical representation. Logic-
based formalisms, on the other hand, are also widely used in verification technologies.
They may offer more expressiveness power in the specification of system properties
beyond the strictly behavioral ones, thanks to the more abstract nature of the concepts
they can represent. For example, they have been applied to problems not fitting the
automata paradigm, such as aircraft trajectory modeling [14], or used to derive system
constraints from a mathematical description [7].

In this work, the Prototype Verification System (PVS) [57] is adopted for formal
modeling and analysis of discrete system components. PVS is a theorem-proving envi-
ronment for higher-order logic, provided with an extension package, called PVSio [53],
that makes it possible to simulate a system specified in the purely logical language of
PVS. With this choice, developers may use the same PVS model both for simulation
and formal verification.

The continuous part of a cyber-physical system, on the other hand, is usually mod-
eled and simulated with a block-based graphical tool, such as Simulink [69] or Sci-
cosLab [65]. With these tools, a system is specified through a set of interconnected
functional blocks, each representing an operation on signals, such as integration, am-
plification or attenuation, sampling, and so on.

Software engineers would benefit from using all the above tools in combination
— each part of the system could be modeled using the most appropriate tool. How-
ever, those tools are usually not interoperable. To simulate the whole system, models
would need to be translated into a common formalism, as each model can be executed
only in its native simulation environment. This is not always feasible or convenient,
e.g., because environments like Simulink use proprietary languages [31], or because a
single environment does not fit all modeling and analysis needs. An approach capa-
ble of bridging this gap is co-simulation [30], i.e., integrated simulation of different
sub-models, each described and simulated in the respective language and environment.

The main contribution of this paper is a methodology, with supporting tools, whereby
a logical model of a discrete system is interfaced to a block-based model of a contin-
uous process. The overall system can be co-simulated, and the discrete part can be
formally verified.

This methodology aims at integrating a logic formalism and tool, the Prototype

Verification System (PVS), with other better known specification languages, and also at
integrating formal verification with validation by simulation. The core of the presented
approach is a modeling pattern for translating networks of communicating timed au-
tomata into a set of logic theories, one for each automaton plus a coordinating theory

2

for the whole network. Tool support is implemented within the PVSio-web prototyp-
ing toolkit. The theories for the single automaton are generated automatically with
the PVSio-web graphical environment. This environment is also used to simulate the
modeled system, possibly in conjunction with other models specified with different
formalisms, communicating through a messaging protocol. The messaging protocol
makes it possible to abstract from the external interfaces of the tools implementing
the models, and to run simulations in a distributed environment. This approach is il-
lustrated through a case study in the domain of electronic medical devices, namely,
the simulation of a heart-pacemaker system. The approach demonstrated for this case
study is easily generalized to other systems modeled with networks of deterministic
timed automata.

We may observe that a logic-based formalism such as PVS can also be used to
model and verify continuous systems [54], and likewise a block-based tool such as
Simulink can be used to simulate discrete systems, for example modeling automata
with the Stateflow [52] component. As a matter of fact, the co-simulation framework
presented in this paper can connect model of various kind in different combinations.
However, the present work is focused on modeling a discrete controller in a cyber-
physical system.

Organization. The rest of this paper is organized as follows. Section 2 surveys
related work. The paper’s contribution is outlined in Section 3. Section 4 introduces
the PVSio-web framework, providing essential background on the PVS language and
verification technology. Section 5 introduces the case study. Section 6 recalls basic
definitions and concepts necessary to model and analyze timed automata and networks
of timed automata. Section 7 presents the patterns developed in this work to represent
networks of timed automata in the form of logic theories. The method developed to
co-simulate a logic model together with a block-based Simulink model is presented in
Section 8. Section 9 shows how the logic model used for co-simulation can be used
also for verification by theorem proving. Finally, Section 10 concludes the paper.

2 Related Work

The problem of simulating heterogeneous systems has been addressed by many re-
searchers. In this section, five classes of related work are referenced: (i) co-simulation
of cyber-physical systems; (ii) formal verification of Simulink models; (iii) tools for
the analysis of timed automata in PVS; (iv) work addressing the specific case study
presented in the present paper; and (v) work on automata-based specification patterns.

2.1 Co-Simulation of Cyber-Physical Systems

The Functional Mockup Interface (FMI) [10, 11] is a standard for model exchange and
co-simulation. Model exchange is the ability of a modeling tool to generate a model
implementation that can be used as a component (functional mockup unit, FMU) in a
model executed by another tool, or conversely to use a model generated by another
tool as a component. Co-simulation is performed through the execution of different
submodels of an overall model by different tools in a distributed environment. The
submodels are orchestrated by a master that communicates with them through proxy
modules (FMI wrappers) whose interfaces are FMI-compliant. The FMI standard is
supported by many tools, e.g., HybridSim [74], but all of them are based on the block-
based representation of hybrid systems, whereas the tools presented in this work enable

3

co-simulation of models based on different conceptual frameworks, including logic
theories, which in turn enable formal verification.

Jalali et al. [35] discuss the issues of multisimulation, i.e., assembling one complex
simulator out of a number of pre-existing heterogeneous simulators. Their work is fo-
cused on a framework for the synchronization of the simulators, drawing on the theory
of database transactions.

In [27], an approach to co-modeling and co-simulation is presented, based on ex-
pressing a discrete-event model and a continuous-time one in the Vienna Develop-
ment Method (VDM) [9, 28] and in the Bond-Graph notation [39], respectively. The
Crescendo tool [42] is used to integrate two simulation environments, Overture [41] for
VDM and 20-sim [13] for Bond-Graphs. A key concept is a contract listing the infor-
mation needed to co-ordinate the two models, including shared parameters, variables,
and events. A co-simulation engine manages synchronization and data exchange.

Attarzadeh, Niaki, and Sander [55] extend the ForSyDe modeling framework [63]
to support heterogeneous co-simulation. A ForSyDe model is a hierarchical set of pro-
cesses, where each process may belong to a subset corresponding to a given Model

of Computation (MoC) [44]. A MoC is, roughly, the underlying time, synchroniza-
tion, and communication model assumed by a process, and the ForSyDe framework
enables processes with different MoCs to co-execute. This framework has been ex-
tended with wrapper processes interacting with external simulators or even hardware.
In a case study, three parts of a system are modeled by compiled code, VHDL code,
and a Simulink model, each executed in the respective execution environment.

A comprehensive survey of other similar co-simulation technologies for cyber-
physical systems is in [30].

Whilst these approaches to co-simulation share some similarities with our method,
they lack an integrated vision of simulation and formal verification. This integrated
perspective is especially important in application domains such as avionics, transporta-
tion, and health care, where systems require high level of assurance and system design
needs to be proved compliant to given requirements. As has been noted several times by
different authors, simulation and testing can be used to prove the presence of anoma-
lies in a system design, not their absence. Formal verification provides a different,
complementary perspective, allowing developers to analyze systematically all possible
behaviors specified by the system design.

2.2 Formal Verification of Simulink Models

The Simulink Design Verifier [70] is a component of the Simulink environment in-
cluding a property prover for discrete models. The prover is a model checker based
on Stålmarck’s proof procedure [67]. Verification is carried out by instrumenting the
model with Simulink blocks or Matlab functions specifying proof objectives to verify
and proof assumptions to use in the proof. A library of blocks or functions provides
various logical conditions and property templates, including templates for temporal
properties. Whilst Simulink Design Verifier can be used to analyze behavioral aspects
of the models, the analysis process necessary to perform the analysis of user-defined
properties can be quite complex and time consuming, as the tool is highly specialized
for the identification of specific types of design anomalies, such as division by zero
and buffer overflows. Additionally, the use of model checking poses limits to the size
and complexity of the models that can be analyzed within certain time bounds with
reasonable resources.

4

Many alternative approaches to formal verification of a subset of MATLAB/Simulink
models have been proposed that are based on model translations. In [72] a translation
of discrete-time Simulink models into the synchronous data flow language Lustre is
presented; the SCADE design verifier [64] or other model checkers can be applied on
the generated models. Similarly, in [60], models in a subset of Simulink are translated
into the Boogie [45] verification language annotated with first-order logic formulae and
verified using the Z3 theorem prover [21]. The Simulink subset consists of the blocks
in the discrete library and stateless blocks.

In [12], Simulink models are annotated with contracts specifying a model’s sub-
models, and represented as synchronous data flow graphs [43], from which function-
ally equivalent sequential programs are generated. These programs are then analyzed
by refinement-based techniques [3], and verified with the Z3 theorem prover.

The CheckMate environment [68] is a Simulink toolbox (i.e., block library) used to
simulate and verify a class of hybrid automata. Verification is done by model-checking
ACTL [22] formulae.

Chen et al. [16] present a formal representation of Simulink models in Timed Inter-

val Calculus [26], which is then translated and verified in PVS.
With these approaches based on model translation, multiple models need to be

maintained. In particular, Simulink models need to comply to certain structural proper-
ties otherwise the model translators will fail to translate the model. This can be highly
inefficient when dealing with complex systems, and in some cases may also prevent
re-use of legacy models. Our co-simulation method alleviates these shortcomings, as it
does not require model translation.

2.3 Tools for the Analysis of Timed Automata in PVS

TAME (Timed Automata Modeling Environment) [2] supports verification of timed
automata by providing two main features: A set of patterns, called templates, to repre-
sent various classes of timed automata in PVS, and a set of theories and proof strategies
built on top of the PVS proof system.

The TAME templates share various common aspects with our modeling patterns
for individual automaton models: the state of the automaton is represented as a PVS
record type; a dedicated state attribute represents time; transitions between states are
represented as PVS functions over states; and predicates over actions check which
actions are enabled at each time.

The main differences between our framework and TAME are as follows:

• TAME is more focused on automatic verification, and develops proof tactics
based on the templates. Our framework is more focused on validation of au-
tomata models and properties, providing an infrastructure for supporting co-
simulation of cyber-physical systems.

• Our framework provides a graphical front-end for modeling timed automata.
These graphical models are automatically translated into PVS theories, allow-
ing developers without expertise in formal modeling to specify and simulate a
system in PVS. In TAME, on the other hand, a front-end for instantiating the
templates has not been created, and developers need to manually edit the PVS
theories.

• Our framework defines templates for building a network of timed automata out
of a given set of automaton models. TAME provides templates only for single

5

automaton models. If developers need to model a network of timed automata in
TAME, they need to convert the network into an equivalent single automaton.

• Our framework supports co-simulation of PVS models and Simulink models. In
TAME, on the other hand, co-simulation with Simulink is out of scope of the
framework. It is also important to remark that the TAME environment cannot be
embedded in Simulink using, e.g., an S-Function.

The commonalities between TAME and our framework open new interesting op-
portunities for development. In fact, our PVS modeling patterns can be converted into
a form that is compliant with the TAME templates. Developers using our framework
can therefore use TAME tactics during verification attempts. Conversely, TAME tem-
plates can also be converted into a form compatible with our modeling patterns. This
allows TAME users to exploit our co-simulation engine, as well as to use the Emucharts
environment for visualizing automata models.

2.4 Modeling and Analysis of the Heart-Pacemaker System

Formal verification and validation of the whole pacemaker-heart system has been ex-
plored in several papers using multiple analysis tools and modeling formalisms.

For example, in [36] and [37], a pacemaker-heart system is verified and validated
using Simulink and UPPAAL [4]. The former is used for realistic simulations, the
latter is used to verify safety requirements of the pacemaker-heart system using formal
methods technologies. Ad hoc models are developed in UPPAAL to translate core parts
of the Simulink models needed for the verification.

Similarly, in [17], Simulink is used in conjunction with Prism [40]. Ad hoc Prism
models are developed to represent the behavior of the pacemaker-heart system and
verify pacemaker properties related to energy consumption.

These approaches focus solely on verification, and lack an integrated view verification-
simulation. In this case, simulation gives developers a means to validate models and
demonstrate analysis results to domain experts. Translating and analyzing Simulink
models in tools like UPPAAL or Prism requires manipulating the model, as abstrac-
tions need to be used to express the model in a different formalism and to make the
analysis tractable. Establishing a dialogue with medical domain experts is important
whenever a model translation is performed, as the model needs to be validated – verifi-
cation provides strong guarantees about a system if an accurate model of the system is
used. This dialogue with domain experts is also important for validating the translation
of informal requirements into properties of the model, as well as to check the relevance
of counter-examples obtained from failed verification attempts. Tools like UPPAAL
and Prism are not designed to support this dialogue with domain experts. Their user
interfaces are highly specialized for formal methods experts. Our framework alleviates
these shortcomings: model translation is not necessary; validation of formal models of
the pacemaker can be carried out through co-simulation with Simulink heart models;
full formal analysis of the pacemaker model can be carried out using the PVS theorem
prover, using an assume-guarantee style of reasoning; finally, formal analysis results
can again be demonstrated using co-simulation.

It is worth noting that formal verification tools for hybrid systems can alleviate
challenges related to model translation, as their specification language is expressive
enough to capture the dynamics of Simulink models. For example, KeYmaera [58, 29],
is a theorem prover for differential dynamic logic. The modeling language offered by

6

the tool is based on first order logic, and includes constructs for expressing conditions,
non-determinism, loops, composition, and continuous dynamics. Modal operators are
used for expressing state reachability properties of the model. Whilst KeYmaera and
other similar tools provide expressive modeling languages and incorporate powerful
verification technologies, these tools lack the integrated view verification-simulation
necessary to support model validation and demonstration of analysis results.

2.5 Automata-Based Specification Patterns

The modeling patterns introduced in this paper (see Section 7) define a set of logic the-
ories suitable to represent deterministic timed automata and timed automata networks.
These patterns were inspired from our previous work on modeling interactive (human-
machine) devices [47] and formal analysis of user interface software code [50].

Others have explored the definition of automata-based specification patterns for
different purposes. In [73], for example, patterns were introduced for modeling web
services based on publish-subscribe as timed automata. Another example is [66], where
a library of timed automata models has been developed for representing the character-
istics and functionalities of real-time systems. The library in this case was meant to be
used by developers as a workbench, to assess the correctness and accuracy of different
modeling and analysis tools for real-time systems.

The use of automata-based specification patterns has also been used as a means
for translating natural language requirements into temporal logic formulae in a more
intuitive manner. The argument is that there is usually a large semantic gap between
the formulation of a property in natural language and its corresponding formalization
in temporal logic. This gap makes the translation process complex and error prone (see
also [23] and [61] for a discussion on the topic). An example of such an approach
is [15], where modeling patters based on Büchi automata are introduced for expressing
temporal properties over system executions.

3 Contribution

The main contributions of this paper are: (i) the definition of a set of PVS patterns
to represent timed automata networks, (ii) a procedure to apply the patterns (Sec. 7),
and (iii) a software framework (Sec. 4) where an embedded system described by timed
automata can be co-simulated together with a plant modeled as a hybrid system with a
block-based language.

The main features of the framework are summarized below:

• a network of timed automata is created by composing deterministic timed au-
tomata developed with the graphical editor of the PVSio-web framework;

• the network is automatically translated into logic theories according to the pro-
posed patterns;

• the resulting logic specification is amenable both to verification and simulation
with the PVS theorem prover and its PVSio extension;

• the logical specification can be co-simulated with a block-based model using the
PVSio-web framework;

7

• two interface subsystems connect the respective models to a WebSocket [25]
communication framework. Their purpose is to intercept simulation events gen-
erated by the two models, and forward them from one simulation environment to
the other.

The logical patterns and the co-simulation framework are shown through a running
a example. An implantable cardiac pacemaker (ICP) model, originally described using
timed automata, is specified in PVS and is executed in a PVSio process, and a heart
model is specified in the Simulink language and executed by the Simulink tool.

The two modules communicate through the interface subsystems and operate as
follows:

• The ICP model interface is part of the PVSio simulation environment. It uses
a WebSocket connection to receive events (atrial and ventricular signals) from
the heart model. The same WebSocket connection is used to send pacing events
generated by the ICP simulation to the heart simulation.

• The heart model interface is part of the Simulink model. It receives pacing events
over a WebSocket connection from the ICP model interface. The events are
injected into the heart simulation. Atrial and ventricular events from the heart
simulation are sent to the ICP simulation using the same WebSocket connection.

The above approach extends the framework presented in [51] for integrated simu-
lation of PVS models and models described in Simulink. In that work, the WebSocket
framework was used to generate infusion pump simulations, where the user interface
component is developed in PVS, and the pump controller is developed in Simulink.
Preliminary work on the simulation of the heart-pacemaker system appeared in [8].

4 The PVSio-web Framework

The PVSio-web framework [56, 49] has been originally designed to validate the user
interface of medical devices by interactively animating a formal specification of the
user interaction with the device. This specification can be written directly in the PVS
language, or entered graphically as a state machine diagram that is automatically trans-
lated into the PVS language.

PVSio-web is implemented in JavaScript by a software platform composed of sev-
eral scripts, invoked and coordinated through a web interface. The main components
of the framework are the model builder, the Emucharts editor, and the simulator. The
model builder is used to create a realistic graphical interface of the device to be studied.
Typically, a picture of the device’s front panel is displayed in the model builder, and
the user may associate regions of the picture (e.g., buttons, knobs, or displays) to PVS
functions that simulate user input or device output. A PVS model generator for the
Emucharts editor has been implemented, which enables automatic generation of PVS
executable functions from state machine diagrams drawn with the Emucharts editor.
The modeling patterns used in the model generator are presented in Section 7. The
simulator is a PVSio process that is invoked to interactively exercise the device model
(see [24] for a detailed description of the functionalities and workflows supported by
PVSio-web).

PVS is the main verification technology used by PVSio-web. It is an interactive
theorem prover, enabling users to define theories and prove theorems within them.

8

Theories are written in a typed higher-order language, where the user can define com-
plex types and express properties of higher-order concepts, such as functions and sets.
The theorem prover provides an extensive number of inference rules based on the se-
quent calculus [71], which the user can select and apply in different proof steps. The
proof is not fully automatic but computer-assisted; the inference rules, however, are
very powerful and experienced users may find proofs in a short time.

This paper is not mainly concerned with the theorem-proving applications of PVS,
but with its use as a prototyping tool. This use is made possible by the PVSio extension.
PVSio is a ground evaluator that computes the value of ground (variable-free) expres-
sions. The evaluator can also compute functions with side effects, such as producing
outputs. It should be noted that functions with side effects are logically equivalent to
normal (i.e., purely logical) functions of the PVS language, so that they do not interfere
with theorem proving. The PVS theorem prover can be started in PVSio mode, where
it accepts as inputs ground function expressions to evaluate. In this mode, the PVSio
evaluator functions as an interpreter for a logic programming language.

4.1 Background on the PVS language and the Sequent Calculus

The PVS specification language provides the usual base types, such as Booleans, natu-
rals, integers, reals, and others. More complex types can be defined, including function

types denoted by type expressions of the form [domain → codomain], where domain

and codomain can be any type, including function types. Functions with the Boolean
codomain type are called predicates.

PVS specifications are included in theories. Formulas and definitions of a theory
may refer to and be proved with formulae and definitions from other theories made
accessible by IMPORTING declarations. A set of fundamental theories, called the
prelude, is imported implicitly, and additional libraries provide a large number of the-
ories containing standard definitions and proved facts, e.g., about sets, sequences, and
graphs.

The syntax of the PVS language is quite complex, and its basic constructs will be
shown in examples throughout the paper. A few constructs and conventions, however,
should be known beforehand:

• Comments extend from a ‘%’ character to the end of line.

• If p is a predicate over a set S, (p) denotes the subset of S whose elements satisfy
p.

• A record is a tuple whose elements are referred to by their respective field name.
For example, given the declarations:

complex: TYPE = [# % record type

r: real,

i: real

#]

c: complex = (# r := 1.0, i := 2.0 #)

% record literal

the expressions r(c) and i(c) denote the real and the imaginary part of c. Equiv-
alent notations are c‘r and c‘i.

• The overriding operator := in a WITH expression redefines record fields. With
the declarations above, the expression

9

c WITH [r := -1.0]

denotes the complex value (−1.0,2.0). Note that c is left unchanged.

• A LET . . . IN construct introduces definitions in the following expression, as in

LET a = c WITH [r := -1.0],

b = (# r = 1.0, i = 0.5 #)

IN x = a + b

• Function declarations are in the form

foo(x1: T1): T2

where foo is the function name, x is a function argument, of type T1, and T2 is
the function return type.

The sequent calculus works on expressions, called sequents, of this form: A1,A2, . . . ,An ⊢
B1,B2, . . . ,Bm, where the Ai’s are the antecedents and the Bi’s are the consequents. The
‘⊢’ symbol is called a turnstile and may be read as “entails” or “yields.” Each an-
tecedent or consequent is a formula of any form (in the underlying logic language),
except another sequent.

The inference rules of the sequent calculus are used to transform sequents. Some
rules transform one sequent into two or more new sequents, so that a proof can be
represented as a tree whose nodes are sequents and whose arcs are applications of
inference rules. A proof terminates successfully when all branches terminate with a
proved sequent, i.e., one where either any formula occurs both as an antecedent and as
a consequent, or any antecedent is false, or any consequent is true.

5 Case Study Overview

This section introduces the case study chosen to illustrate the presented tools and meth-
ods, first sketching the structure of the already available model of the heart, and then
describing the expected behavior of an ICP.

5.1 Simulink Model of the Heart

Simulink is a well known and widely used component of the Matlab tool. A Simulink
model is built of functional blocks chosen from a vast block library. A fundamental
block is the integrator, used to represent a differential equation. The core of the simu-
lation engine is an Ordinary Differential Equation (ODE) solver, which can be selected
from a supplied set according to the mathematical characteristics of the simulated sys-
tem.

The ODE solver integrates functions with respect to time, advancing time by a
given (possibly variable) increment at each integration step. At user-specified intervals,
the output of each block is sampled and fed to the next block(s) downstream.

The available Simulink library can be extended with user-defined custom blocks.
The behavior of a custom block is defined by a user-supplied function called an S-
function and written either in the Matlab programming language or in C or C++.

Models of the heart have been built [18, 75] with hybrid automata (HA) [32].
HA are characterized by a finite set of locations, representing distinct modes of

operations, and a finite set of variables, representing time-varying quantities, such as

10

speed or temperature, or stock market quotations, or morbidity rates. These quantities
vary continuously with time according to some mathematical law, e.g., differential
equations, and in different locations they may follow different laws.

In this paper, we use the Simulink model developed by Chen et al. [18]. In their
model, the heart’s electrical conduction system is specified as a network of HA imple-
mented in Simulink. The HA representing ventricular cells have four modes: resting

and final repolarization, stimulation, upstroke, and plateau and early repolarization.
In each mode, the membrane voltage follows a specific differential equation. The com-
plete Simulink model consists of over 200 functional blocks. A detailed illustration
of the model is in [18]. Here, we illustrate the overall architecture and the input and
output parameters of the model, as this is sufficient for the scope of this work.

Figure 1: Architecture of the heart model.

The heart model has two main functional modules, Atrium and Ventricle, repre-
senting the electrical behavior of the atrium and ventricle (see Fig. 1). The two modules
communicate through an AV module, which represents the atrioventricular node of the
heart. Two input parameters allow designers to inject pacemaker signals in the heart:
AP (Atrial Pacing), is used to inject the pacing stimulus generated by the pacemaker
in the atrium; VP (Ventricular Pacing), is used to inject into the ventricle the pacing
stimulus generated by the pacemaker. Another input, sasignal (Sinoatrial node signal),
represents the firing frequency of the impulse-generating tissue of the heart. This input
can be used to change the heart behavior and explore different scenarios (e.g., nor-
mal sinus rhythm, bradycardia, tachycardia). Two output parameters, Abeat and Vbeat,
can be used to check whether the electric signal from the atrium and the ventricle has
reached given thresholds.

5.2 Pacemaker Operation

Cardiac rhythm results from a complex electrochemical and biological process, where
electrical signals are carried by variations of ionic concentrations across cell mem-
branes. Schematically, signals are originated in the tissues of the sinoatrial (SA) node
and propagated to the muscle tissues of the atria and then, after a propagation delay, to
the muscle tissues of the ventricles. The SA signals determine the heart rate, and the
propagation delays determine the interval between atrial and ventricular contractions.

A cardiac pacemaker maintains the cardiac rhythm within its physiological range
by detecting pathological deviations of the heart rate (tachycardia and bradycardia)
and reacting by issuing electrical pulses. A pacemaker must ensure that cardiac cycles
occur at the correct rate, and that contractions of the atria and ventricles are appropri-
ately separated.

A dual chamber pacemaker detects atrial and ventricular sense events (AS and VS,
respectively) and issues atrial and ventricular pulse events (AP and VP), whose relative

11

timing is constrained by a set of parameters. A sense event occurs when either chamber
contracts, and a pulse event occurs when the pacemaker stimulates either chamber. We
observe that the AP and VP events, besides being generated by the pacemaker, are also
used within its internal logic, as will be shown in Section 7.

Following the schematization presented in [38], the timing parameters are:

LRI Lower Rate Interval, is the maximum allowable separation between ventricular
events;

URI Upper Rate Interval, is the minimum allowable separation between atrial events;

AVI Atrioventricular Interval, is the maximum allowable separation between an atrial
and a ventricular event;

PVAB Postventricular Atrial Blanking, is the period after a ventricular event during
which atrial events are ignored;

PVARP Postventricular Atrial Refractory Period, is the period following the PVAB
during which the pacemaker responds to atrial events by issuing an atrial event
rejection (AR) action;

VRP Ventricular Refractory Period is the period after a ventricular event during which
further ventricular events are ignored.

The timing enforced by the pacemaker can then be described as follows, using timed
automata (background notions on timed automata are in Section 6):

1. After a ventricular event, the next atrial event must occur within an interval equal
to the difference between the LRI and the AVI. If no AS event occurs within that
interval, the pacemaker issues an AP when the interval expires, as specified by
the LRI automaton in Fig. 2.

2. After an atrial event, a ventricular pacing pulse is issued if no ventricular event
has occurred within the AVI, unless the time since the last ventricular is less than
the URI. In this case, the ventricular pacing pulse is issued when the URI expires,
as specified by the AVI automaton in Fig. 2.

3. After a ventricular event, atrial events are ignored during the PVAB and the
PVARP, as specified by the PVARP automaton in Fig. 2. The AR event is not
used in the pacemaker model considered in this work.

4. After a ventricular event, further ventricular events are ignored during the VRP,
as specified by the PVARP automaton in Fig. 2.

6 Background on Timed Automata

This section introduces background notions on timed automata as used in [18] to for-
mally specify the cardiac pacemaker.

A timed automaton (TA) [1] is a graph characterized by a finite set of locations with
one initial location, a finite set of variables over the non-negative reals, called clocks,
a finite set of actions, a finite set of predicates on clock values, called constraints, and
a finite set of edges connecting locations. Each edge is labeled with one action, one

12

constraint, and a set of zero or more clocks. The state of a TA is given by the location
and the values of the clocks at a given time.

The identically true constraint, i.e., the constraint that is always satisfied, is omitted
from the graphical representation of a TA.

Intuitively, a TA models a system operating in a number of distinct modes repre-
sented by the locations, switching between them when actions labeling an edge occur,
provided the corresponding constraint is satisfied. If the edge is labeled with a set
of clocks, those clocks are reset. While the system remains in a given location, the
progress of time is reflected by the values of the clocks, whose values increase all
at the same rate. In the case study discussed in this paper, timing constraints in the
pacemaker are specified by TA.

The original concept of TA has been extended over the years by different researchers,
to allow the composition of TA into networks of TA. In the present work, as in [38],
we use a subset of the theory for networks of TA implemented in the UPPAAL model
checker [5]. In UPPAAL, synchronization between two automata is modeled by the
existence in the network of two edges, one for each of the two automata, labeled with
complementary actions. The set of synchronized actions in the network is partitioned
into two subsets of equal cardinality, such that each action in one set has a complemen-
tary action in the other one. The two subsets are called the sets of input and output

actions, respectively. One automaton executing an output action synchronizes with one
or more automata, each executing the complementary action. Two edges labeled with
complementary actions can be taken only if the constraints on each of them, if any, are
satisfied. Actions not participating in synchronizations, i.e., internal actions, are all
equivalent with respect to the network behavior, and are represented by the τ action.

Graphically, input actions are denoted by a question mark (?) and output actions
by an exclamation mark (!). The τ label is usually omitted.

Another important extension to TA as defined by Alur and Dill [1], used in UP-
PAAL, are location invariants [34], i.e., constraints on clock values that must hold
while an automaton is in a given location.

The above concepts are defined in the literature with slightly different terminology
and notation. The following definitions derive from those in [46, 19, 20, 6].

Definition 1 (Clocks and time constraints). Let C be a finite set of variables (called

clocks) ranging over R>0. A simple time constraint is an expression of the form x ⊲⊳ c

or x− y ⊲⊳ c, with x,y ∈ C , c ∈ N, and ⊲⊳∈ {<,6,>,>}. A time constraint is a simple

time constraint, or a conjunction, disjunction, or negation of time constraints.

A time constraint can be a guard or an invariant (see below). Please note that, as
in [6], we consider invariants of the form x < c or x 6 c.

Definition 2 (Resets). R = 2C is the set of resets.

A reset is a clock to be set to zero.

Definition 3 (Invariants). Let B(C) be a set of time constraints over C , and L a finite

set of locations. I(L) is the set of invariants, with I : L → B(C).

Definition 4 (Actions). Σ=Σin∪Σout∪{τ}, with Σin∩Σout = /0, is a finite set of actions,

partitioned into input actions (Σin), outputs actions (Σout), and the internal action (τ).

Action τ represents any internal action not involving communication with other au-
tomata.

13

Definition 5 (Timed I/O Automaton). A timed input/output automaton is a tuple A =
(L , l0,C ,E,Σ, I), where

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• C is a finite set of clocks;

• E ⊆ L ×Σ×B(C)×R×L is the set of edges;

• I : L → B(C) assigns invariants to locations.

In an edge (l,a,g,r, l′), g ∈ B(C) is called a guard.
In the present work, we consider deterministic timed I/O automata, i.e., such that

any edges labeled with the same action have mutually exclusive guards.

Definition 6 (Clock valuation). A clock valuation is a function v : C → R>0. We let

v+ t denote the valuation that maps each clock x to v(x)+ t, and we let [r 7→ 0]v, with

r ∈ R, denote a valuation that maps each clock in r to zero and agrees with v elsewhere.

A valuation satisfies a set of constraints if the conjunction of all constraints in the set

holds for the clock values assigned by the valuation. We let VC denote the set of all

valuations over C .

For readability, in the following we let l
a,g,r
−−→ l′ stand for (l,a,g,r, l′) ∈ E, and we let

l
α
−→ l′ stand for (s,α,s′) ∈→, with α ∈ Σ∪R>0.

Definition 7 (Semantics of a Timed I/O Automaton). The semantics of a timed I/O

automaton is captured by a Timed I/O Transition System (TIOTS), and is defined as a

quadruple S = (S,s0,Σ,→), where:

• S ⊆ L×VC is a finite set of states;

• s0 ∈ S is the initial state (l0,0);

• Σ is the set of actions of the automaton;

• →: S× (Σ∪R>0)×S is a transition relation.

The transition relation is defined by the following rules, where l, l′ ∈ L , g ∈ B(C),
r ∈ R, and v,v′ ∈ VC :

• (l,v)
d
−→ (l,v+d) if d ∈ R>0 and ∀t : t ∈ [0,d]⇒ v+ t satisfies I(l).

• (l,v)
a
−→ (l′,v′) if a ∈ Σ and l

a,g,r
−−→ l′ and v satisfies g and v′ = [r 7→ 0]v and v′

satisfies I(l′).

Single timed automata models can be composed to create networks of Timed I/O
Automata (defined below). This is useful to build complex models using simpler mod-
els as building blocks. In this work, this approach is used to develop the full pacemaker
model.

Definition 8 (Network of Timed I/O Automata). A network of timed automata is a

finite set {A1, . . . ,An} of timed automata. A location vector is a set l = {l1, . . . , ln},

where li ∈ Li, i = 1, . . . ,n. The initial location vector l0 is the set {l01, . . . , l0n} of initial

locations. We let l[l′i/li] denote the location vector where the i-th element li of l has

been substituted with l′i . The network actions are the set A =
⋃n

i=1 Σi. The network
clocks are the set C =

⋃n
i=1 Ci. The network invariants are the set I(l) =

⋃n
i=1 Ii(Li).

We let VC denote the set of all valuations over C.

14

Definition 9 (Complementary actions). For any i, j ∈ [1,n], i 6= j, two actions of the

same name a? ∈ Σ
i
in and a! ∈ Σ

j
out are said to be complementary, or matching.

In a network of timed I/O automata, the complementary actions become the net-

work internal action, denoted by τ.

Definition 10 (External actions). For any i ∈ [1,n], an action a ∈ Σ
i
in (a ∈ Σ

i
out) with-

out a complementary action belongs to the set X ⊆ Σ of external actions. Set X is

partitioned into the disjoint sets of input (Xin) and output (Xout) external actions.

In this paper, external actions are used to model the sensing activity (signals Abeat
and Vbeat) and the actuation actions (signals AP and VP) performed by the pacemaker.

Definition 11 (Semantics of a network of timed I/O automata). The semantics of a net-

work of timed automata N = {A1, . . . ,An} is a transition system (S,s0,A
′,→), where:

• S = L1 ×·· ·Ln ×VC is the set of network states;

• s0 = (l0,v0) is the network initial state, where v0 ∈ VC is the network initial
valuation; and

• A′ = A∪ τ;

• →⊆ S× (A′∪R>0)×S is the network transition relation.

The network transition relation is defined by the following rules:

1. (l,v)
d
−→ (l,v+d) if d ∈ R>0, v satisfies I(l), and (v+d) satisfies I(l).

2. (l,v)
τ
−→ (l[l′i/li],v

′) if li
τ,g,r
−−→ l′i , v satisfies g, v′ = [r 7→ 0]v, and v′ satisfies

I(l[l′i/li]).

3. (l,v)
τ
−→ (l[l′i/li][l

′
j/l j],v

′) if ∃ i 6= j such that

• li
a?,gi,ri−−−−→ l′i , l j

a!,g j ,r j
−−−−→ l′j,

• v satisfies gi ∧g j,

• v′ = [ri ∪ r j 7→ 0]v and v′ satisfies I(l[l′i/li][l
′
j/l j]).

4. (l,v)
a?
−→ (l[l′i/li],v

′) if a? ∈ Xin, li
a?,g,r
−−−→ l′i , v satisfies g, v′ = [r 7→ 0]v, and v′

satisfies I(l[l′i/li]).

5. (l,v)
a!
−→ (l[l′i/li],v

′) if a! ∈ Xout, li
a!,g,r
−−−→ l′i , v satisfies g, v′ = [r 7→ 0]v, and v′

satisfies I(l[l′i/li]).

In the above definition, rule 1 describes state changes due to the passing of time,
and rules 2 and 3 describe changes due to internal actions of single automata or, respec-
tively, input/output synchronizations within pairs of automata. Rules 4 and 5 describe
synchronization between an automaton and the external environment, i.e., inputs (out-
puts) to (from) the network.

Additional definitions will be explained in the rest of this paper when necessary.

15

7 PVS Patterns for Networks of Timed Automata

Following previous work by other authors [36, 37, 17, 18], in this paper a dual-chamber
pacemaker is modeled as a network of timed automata. This section introduces the
basic notions on networks of timed automata and the modeling patterns we adopt to
represent the timed automata in the PVS language.

7.1 The Pacemaker Network

AP? t:=0

AVI

Idle

WtURI {clk =< TURI}

[clk >= TURI] VP!

[t >= TAVI & clk >= TURI] VP!

{t =< TAVI}

[t >= TAVI & clk < TURI]

VS?

AVI

AS? t:=0

VS?
C

Idle

Vbeat?

VP? t:=0

[t >= TVRP]

inter

VS! t:=0{t =< TVRP}

VRP

VRP

VS? clk := 0

URI

VP? clk := 0

URI

{t =< TLRI − TAVI}
LRI

AS? VP? t:=0

VP? t:=0

VS? t:=0

ASed

LRI

VS? t:=0

[t >= TLRI−TAVI] AP! t:= 0 CC

VS? t:=0

PVARP PVAB

[t >= TPVAB]

AS!

inter

Idle

PVARP

[t >= TPVARP]
VP? t:=0

inter1

{t =< TPVAB}

Abeat?

{t =< TPVARP}
Abeat?

Figure 2: TA network for the pacemaker. Each automaton implements the constraints
defined by the respective timing parameter (e.g., TAVI in the AVI automaton). Square
brackets enclose guards and curly brackets enclose state invariants. Two concentric
circles denote the initial location. Letter C denotes committed locations (Sec. 7.3).

Fig. 2 (adapted from [38]) shows the network for the pacemaker. Each automaton
enforces some constraint on the intervals between pairs of events, using clocks named
t (this name is local to each automaton) or clk (this clock is accessed both by the URI
and the AVI automata). For example, the LRI automaton keeps the heart rate above a
minimum value, defined by the Lower Rate Interval (TLRI). The automaton starts in
the LRI location. Upon a ventricular event (VP? or VS?), clock t is reset. Upon an
atrial sense event (AS?), the automaton waits in location ASed until a ventricular event
occurs, which causes the automaton to return to the LRI location, resetting t. Since
an atrial event must occur within TLRI−TAVI seconds after the last ventricular event,
an atrial pulse (AP!) must occur if the automaton remains in LRI for a longer interval.
This is specified by the invariant {t 6 TLRI−TAVI} on location LRI and by the edge
labeled with the guard [t > TLRI−TAVI], the action AP!, and the reset of t. This
models the issue of an atrial pacing pulse by the pacemaker.

7.2 PVS Specification of a Timed Automaton

The concepts of TA can be expressed in the higher-order logic language of the PVS. In
particular, the pacemaker model discussed above has been translated into a set of PVS
theories. These theories are divided in two layers: the set of theories defining each
single automaton, and a coordinating theory defining their interaction in a network.

Let us consider first how the single automata are defined:

16

• The state of an automaton is defined by a record type with one field representing
the current location, plus one real-valued variable for each clock.

• For each action a defined for the automaton, an enabling predicate checks the
enabling conditions for a. These conditions depend on the current location and
on guards and invariants.

• For each action a defined for the automaton, a transition function returns the next
state as specified by the edges labeled with a.

• A time-checking predicate checks the enabling conditions for the internal actions
τ.

• A timing function returns the next state as specified by the edges labeled with τ.

The following PVS fragment shows part of the PVS model for the LRI timed automaton
of Fig. 2. In the PVS code, suffixes in and out represent the ? and ! annotations of TA
actions.

LRI: THEORY BEGIN

IMPORTING constants

Mode: TYPE = { LRI, ASed }

state: TYPE = [# time: real, loc: Mode #]

init_LRI: state = (# time := 0, loc := LRI #)

% enabling predicates for AP!, AS?, VP?, VS?

en_APout(st: state): boolean =

loc(st) = LRI AND time(st) >= TLRI-TAVI

en_ASin(st: state): boolean = loc(st) = LRI

en_VPin(st: state): boolean = true

en_VSin(st: state): boolean = true

% transition functions for AP!, AS?, VP?, VS?

APout(st:(en_APout)):state = (# time := 0, loc := LRI #)

ASin(st: (en_ASin)): state = st WITH [loc := ASed]

VPin(st: (en_VPin)): state = (# time := 0, loc := LRI #)

VSin(st: (en_VSin)): state = (# time := 0, loc := LRI #)

% time-checking predicate

en_tau(st: state): boolean = false

% timing function

tau(st: state): state = st

END LRI

The first two declarations define the set of locations and the structure of the state record,
containing the loc and t fields.

Functions en_APout and APout are the enabling predicate and the transition func-
tion, respectively, for action AP!. Similar pairs of enabling predicate and transition
functions are declared for the other actions affecting the automaton.

Function APout is the output action of the automaton, and functions ASin, VPin,
and VSin are input actions. Note that each function definition uses subtyping to restrict
the function domain to the set of states where the action is enabled. This is denoted
by specifying the type of the function argument as a predicate adorned with round
brackets. For example, action APout is enabled only when predicate en_APout is true,
and the type of the function argument is therefore (en_APout).

17

Predicate en_tau is the time-checking predicate and tau is the timing function,
which in this case is a no-operation since there are no internal actions. This pair of
predicate and function, however, is declared in all automata in order to achieve a more
uniform treatment of automata synchronization, as discussed in Section 7.3 below.

7.3 Specification of the Network of Timed Automata

A network of timed automata is a set of timed automata synchronized through commu-

nication events (or simply events), i.e., coincident executions of one output action and
one or more complementary input actions. Consider, for example, the VRP automaton
in Fig. 2. The automaton has input actions VP? and Vbeat?, and the output action VS!.
All the other automata have an input action VS?. When transitions in the network la-
beled with VS! or VS? are enabled, they are executed simultaneously. Similarly, event
VP occurs when action VP! is enabled in the AVI automaton and action VP? is enabled
in other automata.

The Vbeat? action has a special role. We may notice that no automaton in the
pacemaker model has a Vbeat! or an Abeat! output action. These output actions are
assumed to be executed by an external system, namely the heart model. The VRP
automaton, besides modeling the ventricular events affected by constraints on the re-
fractory period, interfaces the pacemaker model to the heart model by immediately
executing the VS! action upon the occurrence of the Vbeat event. The location symbol
adorned with a C is a committed location, meant to model an immediate and atomic
response. The Abeat event is handled similarly by the PVARP automaton (see Fig. 2).

The following PVS fragment shows part of the PVS model for the VRP automaton.

VRP: THEORY BEGIN

IMPORTING constants

Mode: TYPE = { Idle, inter, VRP }

state: TYPE = [# time: real, loc: Mode #]

init_VRP: state = (# time := 0, loc := Idle #)

en_Vbeatin(st: state): boolean = loc(st) = Idle

en_VSout(st: state): boolean = loc(st) = inter

Vbeatin(st: (en_Vbeatin)): state = st WITH [loc := inter]

VSout(st: (en_VSout)): state = st WITH [time := 0, loc := VRP]

...

END VRP

The network behavior is modeled by a coordinating theory, pacemaker. In the
considered pacemaker model, each output action occurs in only one TA, called the
originating automaton in the following. The theory is structured as follows:

• The network state is defined by a record type composed of the states of all TA
(grouped in the dev field) plus four fields representing signals exchanged with
the heart model.

• For each output action a!, an event enabling predicate checks the enabling con-
ditions for the synchronized occurrence of a! and its complementary actions.
These conditions, in turn, depend on the enabling conditions for the actions in
the single TA.

18

• For each output action a!, an event transition function returns the next network
state, resulting from the next states computed by the transition functions in the
single TA.

• For each automaton A, a network time-checking predicate checks the enabling
conditions for the internal actions of the originating automaton.

• For each automaton A, a network timing function returns the next network state,
resulting from the next state computed by the timing function in the originating
automaton.

• An advance-time function increases the values of all clocks by one time unit.

• A network transition function computes the next value of the dev field of the
network state by computing the next states of the TA.

• An interface function provides an external interface to the network. Its first pa-
rameter encodes the Abeat! and Vbeat! actions. With this information the func-
tion can compute the successor of a network state st. The interface function
drives the discrete-time simulation, synchronizing the ground evaluator on the
pacemaker side with the fixed-step solver on the heart side.

The following fragment shows the definition of the network state record, State:

pacemaker: THEORY

BEGIN

IMPORTING LRI, AVI, PVARP, URI, VRP

devState: TYPE = [# avi: AVI.state, lri: LRI.state,

pvarp: PVARP.state, uri: URI.state, vrp: VRP.state #]

State: TYPE = [#

dev: devState,

%-- pacemaker inputs

Abeat: nat, Vbeat: nat,

%-- pacemaker outputs

AP: nat, VP: nat #]

The event enabling and event transition functions take on different forms depend-
ing on the type of event: An event can be an input boundary event, an output boundary

event, or a non-boundary event. An input boundary event models the reception of a sig-
nal from an external system and is characterized by an input action, such as Abeat? and
Vbeat? in our example, without its complementary action. An output boundary event
models the issue of a signal towards an external system and its output action, such as
AP! and VP!, may have its complementary action or not. A non-boundary event mod-
els an exchange of signals within the network with matched pairs of complementary
actions.

Let us consider an example of non-boundary event first:

en_VSevent(st: State): bool =

en_VSout(vrp(dev(st))) AND

(en_VSin(lri(dev(st))) OR en_VSin(avi(dev(st))) OR

en_VSin(pvarp(dev(st))) OR en_VSin(uri(dev(st))))

19

VSevent(st: (en_VSevent)): State =

st WITH [

dev := dev(st) WITH [

vrp := VSout(vrp(dev(st))),

lri := IF (en_VSin(lri(dev(st))))

THEN VSin(lri(dev(st))) ELSE lri(dev(st))

ENDIF,

pvarp := IF (en_VSin(pvarp(dev(st))))

THEN VSin(pvarp(dev(st))) ELSE pvarp(dev(st))

ENDIF,

uri := IF (en_VSin(uri(dev(st))))

THEN VSin(uri(dev(st))) ELSE uri(dev(st))

ENDIF,

avi := IF (en_VSin(avi(dev(st))))

THEN VSin(avi(dev(st))) ELSE avi(dev(st))

ENDIF

]

]

The event enabling predicate checks if the VS! action is enabled in the VRP au-
tomaton and the VS? action is enabled in the other automata. The event transition
function returns the new network state resulting from the composition of the new states
of the automata involved in the event.

An example of input boundary event is the Vbeat event:

en_Vbeatevent(st: State): bool =

Vbeat(st) = 1 AND

en_Vbeatin(vrp(dev(st))) AND

(en_VSin(lri(dev(st))) OR en_VSin(avi(dev(st))) OR

en_VSin(pvarp(dev(st))) OR en_VSin(uri(dev(st))))

Vbeatevent(st: State): State =

st WITH [

dev := dev(st) WITH [

vrp := VSout(Vbeatin(vrp(dev(st)))),

lri := IF (en_VSin(lri(dev(st))))

THEN VSin(lri(dev(st))) ELSE lri(dev(st))

ENDIF,

avi := IF (en_VSin(avi(dev(st))))

THEN VSin(avi(dev(st))) ELSE avi(dev(st))

ENDIF,

pvarp := IF (en_VSin(pvarp(dev(st))))

THEN VSin(pvarp(dev(st))) ELSE pvarp(dev(st))

ENDIF,

uri := IF (en_VSin(uri(dev(st))))

THEN VSin(uri(dev(st))) ELSE uri(dev(st))

ENDIF

]

]

The event enabling predicate checks if (i) the Vbeat field in the state record is
asserted, representing a Vbeat! output action executed by the heart model; (ii) the
Vbeat? action is enabled in the VRP automaton; and (iii) the VS? action is enabled

20

in the other automata. As shown in Fig. 2, the Vbeat? action triggers a transition to a
committed state, from where a mandatory transition executes the VS! action.

The transition function for output boundary events is more complex because the
heart model requires the AP! and VP! signals to be rectangular pulses. In order to sim-
ulate these pulses, fields to control their duration have been added to the network state
record. The following fragment shows the enabling predicate and transition function
for the AP event:

en_APevent(st: State): bool =

en_APout(lri(dev(st))) AND en_APin(avi(dev(st)))

APevent(st: (en_APevent)): State =

LET st =

st WITH [

dev := dev(st) WITH [

lri := APout(lri(dev(st))), avi := APin(avi(dev(st)))

]

],

st =

st WITH [

apon :=

IF (aptime(st) < APWIDTH) THEN true ELSE false ENDIF

]

IN st

The event transition function computes the new LRI and AVI states and the new
value of the apon variable. This variable is true if and only if the AP signal has been on
for a time aptime less than the pulse duration APWIDTH. The apon variable is used in
the network transition function to set the value of AP and in the time-advance function
to increase or reset the value of aptime.

The network time-check predicate and timing function of each automaton use the
automaton’s time-check predicate and timing function.

The time-advance function simulates the passing of time, by increasing the values
of all clocks, including those that control the generation of rectangular pulses:

advance_time(st: State): State =

st WITH [

dev := dev(st) WITH [

lri := lri(dev(st)) WITH [time := time(lri(dev(st))) + 1],

avi := avi(dev(st)) WITH [time := time(avi(dev(st))) + 1],

pvarp := pvarp(dev(st)) WITH [time := time(pvarp(dev(st))) + 1],

vrp := vrp(dev(st)) WITH [time := time(vrp(dev(st))) + 1],

uri := uri(dev(st)) WITH [clk := clk(uri(dev(st))) + 1]

],

aptime := IF (apon(st) AND aptime(st) < APWIDTH)

THEN aptime(st) + 1 ELSE 0 ENDIF,

apon := apon(st) AND aptime(st) < APWIDTH,

vptime := IF (vpon(st) AND vptime(st) < VPWIDTH)

THEN vptime(st) + 1 ELSE 0 ENDIF,

vpon := vpon(st) AND vptime(st) < VPWIDTH

]

21

7.4 Simulation of Timed Automata

The network transition function exec returns the next network state by computing the
output variables, handling shared clocks, and evaluating the transition function for an
enabled event. Since the pacemaker model is deterministic, at most one event may be
enabled.

exec(st: State): State =

LET st = st WITH [

AP := IF (apon(st)) THEN 1 ELSE 0 ENDIF,

VP := IF (vpon(st)) THEN 1 ELSE 0 ENDIF

],

st = st WITH [dev := dev(st) WITH [

avi := avi(dev(st)) WITH [clk := clk(uri(dev(st)))]

]

]

IN

IF en_Abeatevent(st) THEN Abeatevent(st)

ELSIF en_Vbeatevent(st) THEN Vbeatevent(st)

ELSIF en_APevent(st) THEN APevent(st)

ELSIF en_VPevent(st) THEN VPevent(st)

ELSIF en_LRItau(st) THEN LRItau(st)

ELSIF en_AVItau(st) THEN AVItau(st)

ELSIF en_PVARPtau(st) THEN PVARPtau(st)

ELSIF en_VRPtau(st) THEN VRPtau(st)

ELSE st

ENDIF

The interface function, pacemaker_tick, provides the external interface to the net-
work. Its first parameter, ia, encodes the external Abeat! and Vbeat! actions as two real
numbers, different from zero if the corresponding action occurs. With this information
the function computes the successor of the network state st, and in particular it checks
if the AP and VP events (atrial and ventricular pacing) occur.

InputActions: TYPE = [# Abeat: nat, Vbeat: nat #]

pacemaker_tick(ia: InputActions)(st: State): State =

LET st = st WITH [Abeat := ia‘Abeat, Vbeat := ia‘Vbeat],

st = exec(st),

st = advance_time(st)

IN st

At the PVSio interactive prompt, a user could type an application of pacemaker_tick

providing ground arguments, and the ground evaluator would print out the resulting
next state, as shown in the following example, where init_input and init are constants
defined in the pacemaker theory.

<PVSio> pacemaker_tick(init_input)(init);

==>

(# Abeat := 0,

AP := 0,

device :=

(# avi := (# clk := 0, loc := Idle, time := 1 #),

lri := (# loc := LRI, time := 1 #),

22

pvarp := (# loc := Idle, time := 1 #),

uri := (# clk := 1 #),

vrp := (# loc := Idle, time := 1 #) #),

Vbeat := 0,

VP := 0 #)

Section 8 explains how the pacemaker model interacts with the heart model.

8 PVS-Simulink Model Co-Simulation

Connecting two or more models based on different formalisms and implemented on
different development tools poses three main issues: (i) matching the semantics of the
data used in the models; (ii) matching the syntax of the same data; and (iii) synchro-
nizing the simulation of the models. The rest of this section reports how these issues
have been dealt with in the specific case discussed in this paper.

8.1 Matching the Semantics

In principle, the semantics of the two models are quite different, one being based on a
network of timed automata and one on a large and complex hybrid automaton. How-
ever, in this case the interface between the two models is very simple: the heart model
produces a one value on its Abeat or Vbeat signals when an atrial or ventricular con-
traction is simulated, and the pacemaker model produces a short rectangular waveform
on AP or VP when a pulse must be delivered to either chamber. Therefore, the problem
of matching the two data semantics reduces to a simple exchange of events, encoded
as single values for the Abeat and Vbeat signals, and sequences of constant values for
the AP and VP signals.

Whilst in our specific case PVS and Simulink exchange binary values that can be
easily encoded in text and converted between the two tools, it is important to discuss
the validity of this solution in the general case, where integer or real numbers need
to be exchanged between the tools. With this respect, it is important to notice that
communication between PVS and Simulink is carried out only during co-simulation
runs. Therefore, the PVS component involved in the communication is PVSio, and not

the PVS theorem prover.
In PVSio, an implementation of mathematical integers and reals is used. By default,

numerical reals are evaluated in double precision (when semantic attachments are used)
and then transformed into exact rationals and printed in the form n/d, where n is the
numerator, and d is the denominator of the rational. PVSio uses a Lisp execution
environment, and in Lisp there are no limits to the precision of rational numbers (other
than computer memory). If a guaranteed decimal approximation is needed, a NASA
library (fast_approx) can be used by the developers. The library provides a function
set_precision for setting the desired decimal precision, and a function rat2decstr

for printing real values in decimal format and according to the set decimal precision.
In Simulink, the precision and range of values exchanged with PVSio is defined

at compile time, based on the type definitions and the compilation parameters used in
the S-Function block responsible for managing communication of events and data with
PVSio.

To ensure correct treatment and encoding of values, therefore, developers need to
correctly set up the two simulation environments and the models, so as to make sure

23

that the arithmetic precision used for integers and reals in the PVS model is congruent
to the range of values exchanged with the Simulink model.

The other important aspect of model semantics, i.e., time, is discussed in the section
on synchronization (Sec. 8.3).

8.2 Matching the Syntax

_
z

1

_
z

1

Signal From

normal_beat
sasignal

Unit Delay

Unit Delay

Vbeat

Abeat

AP

VP

sasignal

AP

VP Vbeat
Oscilloscope

Heart Model

Workspace

Abeat

Interface module

Figure 3: Simulink diagram of the extended heart model.

The syntax matching issue arises from the different user interaction styles of the ap-
plications implementing the two models. PVSio has a command-line interface, where
the user types in a function expression and the PVSio solver prints out the result.
Simulink computes the evolution of the system’s variables, samples their values at
user-specified simulated intervals, then displays the sampled values of selected vari-
ables graphically on simulated oscilloscope screens or numerically on simulated dis-
plays, or stores them in a file. It is then necessary, at each communication event, to
extract information from the originating model’s user interface, serialize it into a form
suitable for transmission, and convert it in to a form acceptable for the destination
model’s interface.

Since the inputs and outputs of the pacemaker model are text strings formatted ac-
cording to the PVS syntax, it is straightforward to encode and decode the data from
or towards the other model. The only problem is that PVSio expects inputs from the
operating system’s standard input (normally the keyboard) and writes outputs to the
standard output (normally an Emacs editor window or a command window). The oper-
ating system’s facilities for input and output redirection must then be used to connect
the PVSio process to the other model.

The heart model, in Simulink, has a graphical interface, and during simulation it
does not accept user interaction, aside from pausing and restarting simulation, and pos-
sibly changing model parameters during pauses. In order to let the model communicate
with other processes, a custom interface block has been added to the heart model (see
Fig. 3), using a Simulink S-Function block. This block extracts the AP and VP sig-
nals from text data received from the pacemaker model and feeds them to the heart
block. It also reads the Abeat and Vbeat signals from the heart block, converts them

24

into text form, and sends them to the pacemaker model. At each simulation step, the
heart block reads the current value of the sinoatrial signal from a sequence of values
(normal_beat in the figure) stored in the Matlab workspace, and the AP and VP values
from the interface block.

8.3 Synchronization

In the heart model, the time increment at each simulation step (which is actually an
ODE integration step) depends on the ODE solver’s algorithm. Simulink provides both
variable- and fixed-step solvers. The latter are used for the heart model, with a solver
step of 4 ms. This step duration is the common time unit used as reference in the
co-simulation.

In the pacemaker model, the progress of time is modeled by incrementing the clock
variables by one time unit at each simulation step, i.e., each time the interface function
pacemaker_tick is evaluated.

In order to synchronize the two models, the simulated time of the heart model
is taken as the global reference. At each sampling time, the interface block is exe-
cuted and its S-function sends the pacemaker model a request to evaluate the interface
function, so that the two models execute in lockstep with a blocking communications
pattern.

It is important to remark that the simulation speed depends on the processing ca-
pabilities of the machine running the simulation. Therefore, 1 ms in the simulated
execution run can last longer than 1 ms in the real world. This is however not an issue
in our case, as the PVSio and Simulink execution environments do not have real-time
constraints, and they correctly handle simulation runs where simulated time deviates
from real-world wall-clock time.

8.4 Co-Simulation in the PVSio-web Framework

The main components of the co-simulation environment are: (i) the PVSio-web plat-
form, (ii) the PVSio solver, (iii) the co-simulation engine, (iv) the heart model interface
block, and (v) the heart model.

Pacemaker
Heart model

Interface block

PVSio solver

PVSio−web

Cosimulation

Websockets Websockets Matlab

Websocket protocol

«PVS» «simulink model»

«s-function»

«process»

«environment»

«javascript»

«library» «library» «environment»

Figure 4: Components of the co-simulation architecture.

PVSio-web offers two co-simulation engines: an internal engine based on a Web-
Socket protocol and an external engine [48] based on the communication and co-
ordination middleware SAPERE [76]. In the present work, the internal co-simulation
engine is used, as it is sufficient to support co-simulation of the considered pacemaker-

25

heart example. In this section, the details of the internal engine and of the heart model
interface block are presented.

The internal co-simulation engine uses the APIs provided by PVSio-web to create
a web server that encapsulates an instance of PVSio animating the PVS model. The
component is implemented in JavaScript, and includes three main functions:

• Connect: this function creates a WebSocket connection channel with the co-
simulation component managing Simulink simulation runs. The function is in-
voked at the beginning of the co-simulation run.

• OnMessageReceived: this function listens for simulation events and data sent by
the heart model interface block over a WebSocket connection on a pre-defined
port. Events and data are encoded using a tool-neutral JSON format. The func-
tion translates simulation events and data into PVS expressions that can be eval-
uated in PVSio. The format of the PVS expressions is based on the structure of
the PVS record type used to encode the state of the network of timed automata.

• SendMessage: this function listens for evaluation results returned by PVSio, and
translates these results into JSON objects that can be sent to the Simulink heart
model’s interface block.

The heart model interface block is implemented as a Simulink System Function
(S-Function) block. The block implements a communication bridge for exchanging
commands and data with the pacemaker model using JSON objects. A standard com-
munication library, libwebsockets1, is used as a basis for the implementation. The
block has two output buses for injecting simulation events (AP, VP) received from the
pacemaker into the heart model. Similarly, two input buses are used for intercepting
relevant state variables of the heart model (Abeat and Vbeat) that need to be transmitted
to the pacemaker.

Fig. 4 shows the components of the co-simulation architectures with their depen-
dencies, using the UML component notation, with stereotypes to show different kinds
of components, such as, e.g., PVS or JavaScript code.

The Emucharts editor of the PVSio-web platform is used to represent graphically
the single TA. Fig. 5 shows the PVSio-web interface, where the Emucharts editor can-
vas is in the lower part. The PVS Theory item in the Code Generators menu produces
the corresponding PVS theory. The LRI automaton in Fig. 5 is reproduced for clarity in
Fig. 6. Notably, the latest release of the Emucharts editor can import UPPAAL models.

The coordinating theory pacemaker is currently not generated automatically by
PVSio-web, and developers need to write the theory directly in the PVS language using
the patterns defined in Section 7.3.

8.5 Interaction Details

When the PVSio-web platform is started, it creates a WebSocket server and opens
a web browser on the PVSio-web start page. The user types the URL of the direc-
tory containing the pacemaker model files, and the co-simulation HTML page opens.
This page loads the co-simulation engine, a JavaScript file that sends the WebSocket
server a command to start the PVSio solver, loading the pacemaker model theory. The
solver is instantiated through another script of the PVSio-web platform, which redi-
rects the solver’s input and output to the web sockets server. The user can then start

1https://libwebsockets.org/

26

Figure 5: User interface of the PVSio-web environment. This web page shows the
Prototype Builder interface in the top left frame and the Emucharts Editor in the bottom
left frame. In the latter, the user has selected the PVS generator.

the heart simulation in the Simulink environment. The simulation engine executes the
interface block for the first time, the block’s S-function establishes a connection with
the local WebSocket server, and the port for that connection is shown in a numerical
display block of the heart model’s graphical interface. The user can now turn to the co-
simulation web page (see Fig. 7), insert the hostname of the machine where Simulink
is running, and click on a “connect” button, thus establishing communication between
the two models and the co-simulation engine. Two display windows show debugging
information.

Fig. 8 shows the exchange of messages after the connections have been established.
In the figure, the PVSio-web lifeline represents the PVSio-web platform including the
PVSio solver, and the Heart model represents the Simulink model including the heart
model block and the interface block.

Figure 6: Emucharts diagram of the LRI automaton.

More in detail, the co-simulation engine, upon being loaded in the web browser,
creates a WebSocket and registers a few listener functions that will be called on the oc-

27

Figure 7: Co-simulation web page. The pacemaker field shows the IP number of the
remote machine hosting the Simulink environment. The Connect button connects the
co-simulation module to the Heart Model, and the other two fields trace the exchanged
messages.

currence of such events as connection opening or closing, and connects to PVSio-web.
The listener for the connection opened event sends messages to PVSio-web causing it
to start the PVSio solver, then it associates the connect button on the web page with a
function that establishes a connection to Simulink and starts the process orchestrating
the exchange of messages. First, a timer is programmed to send Simulink a sense com-
mand at regular intervals. When Simulink replies, the values of Abeat and Vbeat are
inserted in a string representing a pacemaker_tick invocation, together with the current
pacemaker state. The string is sent to PVSio-web and the co-simulation engine waits
for the control signals AP and VP from the PVSio solver, that are then sent to Simulink.

On the Simulink side, the interface block is implemented as an S-function with
the values of Abeat and Vbeat as inputs and AP and VP as output arguments. The
simulation engine executes the interface block every sampling time. The first time the
interface block is executed, its S-function tries to open a WebSocket on a predefined
port number. If the attempt fails, other ports are tried. The selected port number is
then shown on a display block (not shown in Fig. 3). At each subsequent invocation,
the S-function waits for an incoming message. If the message is a sense command, the
values of Abeat and Vbeat are converted to strings and inserted in the response, which
is sent to the co-simulation engine. If the message is a pacing command, the values
of AP and VP are extracted from the command and returned to the simulation engine.
The simulation proceeds then to the next sampling time.

The co-simulation engine sends another sense command to the heart model, and
the cycle repeats until the heart model simulation terminates.

8.6 Validation of the Pacemaker-Heart Model

The co-simulation structure described above can be used to validate the pacemaker
specification under different pathological conditions. As mentioned in Sec. 5.1, the
signal from the SA node determines the heartbeat rate. In the model shown in Fig. 3,
the SA signal is generated by a signal from workspace block, representing a sequence

28

WebsocketWebsocket Heart model

2 sense

3 Abeat, Vbeat

Cosimulation
module serverserver

1 sense

4 Abeat, Vbeat

PVSio−web

5 Abeat, Vbeat, prev. state

6 AP, VP, new state

7 AP, VP

8 AP, VP

9 sense

pacemaker side heart side

Figure 8: Message flow during co-simulation.

of values stored in the Matlab workspace. Different patient conditions are simulated
by changing the SA signal.

Fig. 9 shows the results of simulating a bradycardic episode, lasting about sixteen
seconds. The four traces show, from top to bottom, a bradycardic SA signal, the re-
sulting bradycardic Vbeat signal in absence of external pacing, the VP signal from the
pacemaker, and the resulting paced Vbeat signal from the heart. It may be observed
how the pacemaker correctly issues pacing signals at the rate of approximately one beat
per second, doubling the rate of the Vbeat signal.

9 Verification

Whereas this work is focused on simulation, it should be remembered that the PVS is
first and foremost an interactive environment to prove logical statements by manipu-
lating them with commands implementing inference rules. For example, the following
statement can be proved with the single PVS command grind, which iteratively applies
instantiations and simplifications:

lri_ap: LEMMA

FORALL (s0, s1: State):

en_APout(lri(s0)) AND s1 = APout(s0)

IMPLIES

loc(lri(s1)) = LRI AND time(lri(s1)) = 0

The above lemma means: “It is always the case that module lri is in mode LRI and

its clock is reset when transition AP is executed.” Lemmas like this allow developers
to perform essential sanity checks for the model, and verify that the model definition
correctly incorporates hypotheses about the behavior of the system. In our case, an
attempt to prove this lemma on an early version of the model failed, leading us to the
discovery of an error in another part of the specification.

More interesting properties require more complex proofs. To prove, for example,
that the pacemaker network is deterministic, one may prove that all events are mutually
exclusive, i.e, when one event is enabled, all others are disabled. The following is a
fragment of a theory for the verification of the pacemaker network:

29

pacemaker_verif: THEORY

BEGIN

IMPORTING pacemaker

pvarp1: AXIOM

forall (st: State): loc(pvarp(dev(st))) = inter => Abeat(st) = 1

vrp1: AXIOM

forall (st: State): loc(vrp(dev(st))) = inter => Vbeat(st) = 1

vrp2: AXIOM

forall (st: State): not en_Vbeatevent(st) => not en_VSout(vrp(dev(st)))

ap_en_pvarptau: LEMMA

forall (st: State): en_APevent(st) IMPLIES not en_PVARPtau(st)

...

END pacemaker_verif

The axioms shown above express the semantics of committed locations in au-
tomata PVARP and VRP. Other axioms, not shown, represent location invariants and
other properties immediately deducible from the theory of timed automata. Lemma
ap_en_pvarptau states that the internal actions of PVARP are not enabled when event
AP is enabled. The proof tree of this lemma is shown in Fig. 10. The diagram, gen-
erated by the PVS, shows the initial sequent at the root, the commands issued by the
user, and the resulting sequents, represented by the entailment symbols. The sequents
can be made visible in the PVS theorem prover by clicking on the respective symbols,
besides being typed out in the prover interface.

The first command, skosimp∗, eliminates the universal quantifier by instantiating
the sequent with fresh variables, expand replaces function names by their definitions,
and lemma introduces axioms or already proved lemmas. The inst command eliminates
a quantifier using ground expressions (constants in this case), split and flatten restruc-
ture a sequent, and assert applies various inference rules, which in this case lead to
proving the sequents.

A few steps of the proof are shown in the following fragment, where the dashed
line represents the entailment symbol separating antecedents (above) and consequents
(below). The lemma to be proved is the first sequent, and it has no antecedents:

ap_en_pvarptau :

|-------

{1} FORALL (st: State): en_APevent(st) IMPLIES NOT en_PVARPtau(st)

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

ap_en_pvarptau :

{-1} en_APevent(st!1)

{-2} en_PVARPtau(st!1)

|-------

Rule? (expand "en_PVARPtau")

Expanding the definition of en_PVARPtau,

ap_en_pvarptau :

30

[-1] en_APevent(st!1)

{-2} en_tau(pvarp(dev(st!1)))

|-------

...

Rule? (lemma "invar_pvab")

Applying invar_pvab

ap_en_pvarptau.1 :

{-1} FORALL (st: State):

loc(pvarp(dev(st))) = PVAB

=> time(pvarp(dev(st))) < TPVAB

[-2] loc(pvarp(dev(st!1))) = PVAB

[-3] time(pvarp(dev(st!1))) >= TPVAB

[-4] en_APevent(st!1)

|-------

Rule? (inst -1 "st!1")

Instantiating the top quantifier in -1 with the terms:

st!1,

ap_en_pvarptau.1 :

{-1} loc(pvarp(dev(st!1))) = PVAB

=> time(pvarp(dev(st!1))) < TPVAB

[-2] loc(pvarp(dev(st!1))) = PVAB

[-3] time(pvarp(dev(st!1))) >= TPVAB

[-4] en_APevent(st!1)

|-------

...

Rule? (assert)

Simplifying, rewriting, and recording

with decision procedures,

This completes the proof of ap_en_pvarptau.1.1.

...

Q.E.D.

After proving similar lemmas, it is immediate to prove that no other event is enabled
when AP is enabled:

deterministic_AP: LEMMA

forall (st: State):

en_APevent(st)

IMPLIES

not en_LRItau(st) and not en_VPevent(st) and not en_AVItau(st)

and not en_ASevent(st) and not en_PVARPtau(st)

and not en_VSevent(st) and not en_VRPtau(st)

and not en_Abeatevent(st) and not en_Vbeatevent(st)

It may be observed that a PVS proof includes the automatic verification performed
by PVS to check the well-formedness of the specification: type correctness, coverage

31

Figure 9: Simulation output for bradycardia. The bradycardic Vbeat signal shows eight
pulses in approximately sixteen seconds. The pacemaker issues VP pulses to stimulate
the ventricle to contract sixteen times (corrected Vbeat) in the same timespan.

of conditions, disjointness of conditions. All these checks, called typecheck conditions

(TCC), are automatically and quickly verified by the prover.

10 Discussion and Conclusion

The construction of a formal model of a medical device and the use of formal verifica-
tion technologies can help system designers to gain confidence that the device performs
the required functions under all the stated conditions, thus enhancing patient safety.

In the present work we have described a framework that facilitates modeling and
simulation of cyber-physical systems. Software functionalities are modeled in the PVS
theorem proving system. The characteristics of the plant are modeled in Simulink.
Simulation of the overall cyber-physical system is obtained through co-simulation of
the two models. The integrated simulation facilitates validation of the models, lightweight
formal analysis based on simulation and testing, and full formal analysis of the software
based on assume-guarantee reasoning [33, 19] techniques.

The capabilities of the framework were demonstrated with an example based on a
pacemaker-heart system. A timed automata specification of the pacemaker software
is developed in PVS according to identified modeling patterns. The framework en-
ables integrated simulation of the PVS pacemaker model with a Simulink heart model
built on medical domain-specific knowledge. Integrated simulation allows software
engineers to demonstrate the functionalities of the pacemaker software, and discuss
hypotheses about its behavior for different physiological parameters of the patient. On
the other hand, the correctness of the pacemaker design can be analyzed using PVS.
This includes: well-formedness of the design (coverage of conditions, disjointness of
conditions, type correctness), and analysis of design requirements.

32

(skosimp∗)

(expand“en PVARPtau”)

(expand“en tau”)

(split)

(flatten)

(lemma“invar pvab”)

(inst −1“st!1”)

(split)

(assert)

(flatten)

(lemma“invar pvarp”)

(inst −1“st!1”)

(split)

(assert)

Figure 10: Proof tree of Lemma ap_en_pvarptau. The ⊢ symbols represent (sub)goals,
each followed by a PVS rule.

An important aspect related to the generality of the framework is how easy is
to extend the framework to support modeling and analysis tools other than PVS and
Simulink. The question boils down to discussing the generality of the PVSio-web ar-
chitecture used as a basis to build the co-simulation platform. The backbone of the ar-
chitecture uses a standard WebSocket protocol for communication of simulation events
and data. In fact, the PVSio environment of PVS is wrapped within a web-server re-
sponsible for converting the native read-eval-print loop of PVSio into a tool-neutral
event-based service. To do this conversion, the PVSio wrapper implements four main
functions: start, which spawns a process running a PVSio instance; sendCommand,
which translates simulation events encoded in JSON format into PVS expressions that
can be evaluated in PVSio; processData, which translates the results returned by PV-
Sio into tool-neutral JSON objects; and kill, which terminates the created process. If
developers want to connect another tool providing an interactive read-eval-print loop
to the PVSio-web infrastructure, they need only to re-implement these four interface
functions of the wrapper.

Two important lessons were learned from this work, one related to the utility of co-
simulation, and another related to challenges in the implementation of co-simulation
engines.

33

• Co-simulation proved an effective technology for the analysis of extensive mod-
els. The heart model considered in our case study was developed and validated
by others in [18]. It included over 200 functional blocks. Translating such a
large model in PVS or any another formal methods language would have been
impossible in a reasonable amount of time with the available resources. Using
co-simulation, we were able to use the heart model as-is, to validate the PVS
model of the pacemaker and perform lightweight formal verification of system-
level properties of the overall pacemaker-heart system.

• The co-simulation engine implemented in our framework uses ad-hoc APIs, and
each co-simulated model needs to be instrumented with those APIs. This is not
an ideal situation, as developers need to re-instrument the models if a different
co-simulation engine is to be used. Moving towards a standard API such as that
defined in the Functional Mock-up Interface (FMI) would bring clear benefits
under this perspective. We are currently extending the PVSio-web co-simulation
engine in this direction.

Being focused on co-simulation, we could dedicate only limited space to demon-
strating how to carry out formal verification of safety requirements for the pacemaker
model in PVS. Given that the heart model is not developed in PVS but in Simulink,
an assume-guarantee reasoning is necessary to perform verification of system-level
properties. An example such property is: “For any bradycardic episode, the pace-

maker ensures that cardiac cycles occur at the correct rate.” With assume-guarantee,
the verification effort allows developers to prove that the pacemaker model guarantees

the desired behavior of the pacemaker-heart system under suitable assumptions on the
heart model. Formalizing these assumptions will be the object of further work.

An interesting research strand that is worth exploring as future work relates to the
use of co-simulation and formal verification technologies for the analysis of cyber-
threats and security-related properties. The specific case study considered in this paper
is particularly relevant to such research strand, as pacemakers can be configured and
re-programmed using low-range wireless technologies, and various pacemaker manu-
facturers have discovered latent vulnerabilities in their pacemakers after the pacemaker
was placed in the market. Device recalls have been carried out by manufacturers be-
cause these vulnerabilities, if exploited, could lead to permanent impairment or life-
threatening injury for the patients (see [62]).

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-

puter Science, 126(2):183–235, 1994.

[2] Myla Archer. TAME: Using PVS strategies for special-purpose theorem proving.
Annals of Mathematics and Artificial Intelligence, 29(1):139–181, 2000.

[3] Ralph-Johan J. Back, Abo Akademi, and J. Von Wright. Refinement Calculus:

A Systematic Introduction. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1st edition, 1998.

[4] G. Behrmann, A. David, K.G. Larsen, J. Hakansson, P. Petterson, Wang Yi, and
M. Hendriks. UPPAAL 4.0. In Third International Conference on Quantitative

Evaluation of Systems (QEST 2006), pages 125–126, Sept 2006.

34

[5] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on UPPAAL.
In M. Bernardo and F. Corradini, editors, International School on Formal Meth-

ods for the Design of Computer, Communication, and Software Systems, SFM-

RT 2004. Revised Lectures, volume 3185 of Lecture Notes in Computer Science,
pages 200–237. Springer Verlag, 2004.

[6] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Lectures on concurrency and Petri nets, pages 87–124. Springer, 2004.

[7] Cinzia Bernardeschi and Andrea Domenici. Verifying safety properties of a non-
linear control by interactive theorem proving with the Prototype Verification Sys-
tem. Information Processing Letters, 116(6):409–415, 2016.

[8] Cinzia Bernardeschi, Andrea Domenici, and Paolo Masci. Integrated simulation
of implantable cardiac pacemaker software and heart models. In CARDIOTECH-

NIX 2014, 2d International Congress on Cardiovascular Technology, pages 55–
59. SCITEPRESS, 2014.

[9] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The

Meta-Language, London, UK, 1978. Springer-Verlag.

[10] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A. Jung-
hanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz,
and S. Wolf. The Functional Mockup Interface for Tool independent Exchange of
Simulation Models. In Proc. of the 8th International Modelica Conference, pages
105–114. Linköping University Electronic Press, 2011.

[11] Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold, Christoph
Clauss, Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauss,
Dietmar Neumerkel, Hans Olsson, and Antoine Viel. Functional Mockup Inter-
face 2.0: The Standard for Tool independent Exchange of Simulation Models. In
Proceedings of the 9th International Modelica Conference, pages 173–184. The
Modelica Association, 2012.

[12] Pontus Boström. Formal Methods and Software Engineering: 13th International

Conference on Formal Engineering Methods, ICFEM 2011, Durham, UK, Octo-

ber 26-28, 2011. Proceedings, chapter Contract-Based Verification of Simulink
Models, pages 291–306. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[13] J. F. Broenink. Modelling, simulation and analysis with 20-sim. Journal A,
38(3):22 –25, September 1997.

[14] Victor Carreño and César Muñoz. Aircraft trajectory modeling and alerting algo-
rithm verification. In Mark Aagaard and John Harrison, editors, Theorem Prov-

ing in Higher Order Logics, volume 1869 of Lecture Notes in Computer Science,
pages 90–105. Springer Berlin Heidelberg, 2000.

[15] Kalou Cabrera Castillos, Frédéric Dadeau, Jacques Julliand, Bilal Kanso, and
Safouan Taha. A Compositional Automata-Based Semantics for Property Pat-

terns, pages 316–330. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[16] Chunqing Chen, Jin Song Dong, and Jun Sun. Formal Methods and Software

Engineering: 9th International Conference on Formal Engineering Methods,

35

ICFEM 2007, Boca Raton, FL, USA, November 14-15, 2007. Proceedings, chap-
ter Machine-Assisted Proof Support for Validation Beyond Simulink, pages 96–
115. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[17] Taolue Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantitative ver-
ification of implantable cardiac pacemakers. In 33rd IEEE Real-Time Systems

Symposium (RTSS), 2012, pages 263–272, Dec 2012.

[18] Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre.
Quantitative verification of implantable cardiac pacemakers over hybrid heart
models. Information and Computation, 236(0):87–101, 2014. Special Issue on
Hybrid Systems and Biology.

[19] Alexandre David, Kim G Larsen, Axel Legay, Mikael H Møller, Ulrik Nyman,
Anders P Ravn, Arne Skou, and Andrzej Wąsowski. Compositional verification
of real-time systems using ECDAR. International Journal on Software Tools for

Technology Transfer, 14(6):703–720, 2012.

[20] Alexandre David, Kim G Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wa-
sowski. Timed I/O automata: a complete specification theory for real-time sys-
tems. In Proceedings of the 13th ACM international conference on Hybrid sys-

tems: computation and control, pages 91–100. ACM, 2010.

[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Con-

ference on Tools and Algorithms for the Construction and Analysis of Sys-

tems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[22] Rocco De Nicola and Frits Vaandrager. Semantics of Systems of Concurrent Pro-

cesses: LITP Spring School on Theoretical Computer Science La Roche Posay,

France, April 23–27, 1990 Proceedings, chapter Action versus state based logics
for transition systems, pages 407–419. Springer, Berlin, Heidelberg, 1990.

[23] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specifica-
tion patterns for finite-state verification. In Proceedings of the Second Workshop

on Formal Methods in Software Practice, FMSP ’98, pages 7–15, New York, NY,
USA, 1998. ACM.

[24] Camille Fayollas, Célia Martinie, Philippe Palanque, Paolo Masci, Michael D.
Harrison, José C. Campos, and Saulo R. e Silva. Evaluation of formal IDEs for
human-machine interface design and analysis: the case of CIRCUS and PVSio-
web. In 3rd Workshop on Formal Integrated Development Environment (F-IDE),

satellite workshop of Formal Methods 2016. Electronic Proceedings in Theoreti-
cal Computer Science (EPTCS), 2016.

[25] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455, RFC Editor,
December 2011. http://www.rfc-editor.org/rfc/rfc6455.txt.

[26] Colin J. Fidge, Ian J. Hayes, A. P. Martin, and Axel Wabenhorst. A set-theoretic
model for real-time specification and reasoning. In Proceedings of the Mathemat-

ics of Program Construction, MPC ’98, pages 188–206, London, UK, UK, 1998.
Springer-Verlag.

36

[27] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, Marcel Verhoef, and Sune Wolff.
Integrated Formal Methods: 8th International Conference, IFM 2010, Nancy,

France, October 11-14, 2010. Proceedings, chapter Collaborative Modelling and
Co-simulation in the Development of Dependable Embedded Systems, pages 12–
26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[28] John S. Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef. Vienna Development

Method. John Wiley & Sons, Inc., 2007.

[29] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André
Platzer. KeYmaera X: An axiomatic tactical theorem prover for hybrid systems.
In International Conference on Automated Deduction, pages 527–538. Springer,
2015.

[30] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans
Vangheluwe. Co-simulation: State of the art. ACM Computing Surveys, 2017, to
appear.

[31] G. Hamon and J. Rushby. An operational semantics for Stateflow. In Fundamen-

tal Approaches to Software Engineering (FASE), volume 2984 of Lecture Notes

in Computer Science, pages 229–243. Springer Berlin Heidelberg, 2004.

[32] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th

Annual IEEE Symposium on Logic in Computer Science, LICS ’96, pages 278–
292, Washington, DC, USA, 1996. IEEE Computer Society.

[33] Thomas A. Henzinger, Marius Minea, and Vinayak S. Prabhu. Assume-guarantee
reasoning for hierarchical hybrid systems. In Maria Domenica Di Benedetto
and Alberto L. Sangiovanni-Vincentelli, editors, HSCC, volume 2034 of Lecture

Notes in Computer Science, pages 275–290. Springer, 2001.

[34] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Sym-
bolic model checking for real-time systems. Information and computation,
111(2):193–244, 1994.

[35] Leila Jalali, Sharad Mehrotra, and Nalini Venkatasubramanian. Simulation inte-
gration: Using multidatabase systems concepts. Simulation, 90(11):1268–1289,
November 2014.

[36] Zhihao Jiang, Miroslav Pajic, Allison Connolly, Sanjay Dixit, and Rahul Mang-
haram. Real-time heart model for implantable cardiac device validation and ver-
ification. In Real-Time Systems (ECRTS), 2010 22nd Euromicro Conference on,
pages 239–248. IEEE, 2010.

[37] Zhihao Jiang, Miroslav Pajic, and Rahul Mangharam. Cyber–physical modeling
of implantable cardiac medical devices. Proceedings of the IEEE, 100(1):122–
137, 2012.

[38] Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam.
Modeling and verification of a dual chamber implantable pacemaker. In Cormac
Flanagan and Barbara König, editors, Tools and Algorithms for the Construction

and Analysis of Systems, volume 7214 of Lecture Notes in Computer Science,
pages 188–203. Springer Berlin Heidelberg, 2012.

37

[39] Dean Karnopp and Ronald Rosenberg. Analysis and simulation of multiport sys-

tems; the bond graph approach to physical system dynamics. M.I.T. Press, Cam-
bridge, MA, USA, 1968.

[40] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Computer aided verification, pages 585–
591. Springer, 2011.

[41] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Laus-
dahl, and Marcel Verhoef. The Overture Initiative Integrating Tools for VDM.
SIGSOFT Softw. Eng. Notes, 35(1):1–6, January 2010.

[42] Peter Gorm Larsen, Carl Gamble, Kenneth Pierce, Augusto Ribeiro, and Kenneth
Lausdahl. Support for Co-modelling and Co-simulation: The Crescendo Tool,
pages 97–114. Springer, 2014.

[43] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the

IEEE, 75(9):1235–1245, Sept 1987.

[44] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models
of computation. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 17(12):1217–1229, Dec 1998.

[45] K. Rustan M. Leino. This is Boogie 2. Technical Report MSR-TR-2008-194,
Microsoft Research, June 2008.

[46] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2:219–246, 1989.

[47] Paolo Masci, Anaheed Ayoub, Paul Curzon, Michael D Harrison, Insup Lee, and
Harold Thimbleby. Verification of interactive software for medical devices: PCA
infusion pumps and FDA regulation as an example. In Proceedings of the 5th

ACM SIGCHI symposium on Engineering interactive computing systems, pages
81–90. ACM, 2013.

[48] Paolo Masci, Piergiuseppe Mallozzi, FL De Angelis, G Di Marzo Serugendo,
and P Curzon. Using PVSio-web and SAPERE for rapid prototyping of user
interfaces in Integrated Clinical Environments. In in Verisure2015, Workshop on

Verification and Assurance, co-located with CAV, 2015.

[49] Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon, and Harold
Thimbleby. PVSio-web 2.0: Joining PVS to HCI. In Daniel Kroening and S. Co-
rina Păsăreanu, editors, Computer Aided Verification: 27th International Con-

ference, CAV 2015, Proceedings, Part I, pages 470–478. Springer International
Publishing, 2015. Tool available at http://www.pvsioweb.org.

[50] Paolo Masci, Yi Zhang, Paul Jones, Paul Curzon, and Harold Thimbleby. Formal
verification of medical device user interfaces using PVS. In International Con-

ference on Fundamental Approaches to Software Engineering, pages 200–214.
Springer, 2014.

[51] Paolo Masci, Yi Zhang, Paul Jones, Patrick Oladimeji, Enrico D’Urso, Cinzia
Bernardeschi, Paul Curzon, and Harold Thimbleby. Combining PVSio with state-
flow. In Proceedings of the 6th NASA Formal Methods Symposium (NFM2014),
Berlin, Heidelberg, April-May 2014. Springer-Verlag.

38

[52] The MathWorks, Inc. Stateflow Reference.

[53] C. Muñoz. Rapid prototyping in PVS. Technical Report NIA 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, Hampton, VA, USA,
2003.

[54] César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron
Dutle, and María Consiglio. DAIDALUS: Detect and Avoid Alerting Logic for
Unmanned Systems. In Proceedings of the 34th Digital Avionics Systems Confer-

ence (DASC 2015), Prague, Czech Republic, September 2015.

[55] S. H. Attarzadeh Niaki and I. Sander. Co-simulation of embedded systems in a
heterogeneous MoC-based modeling framework. In 2011 6th IEEE International

Symposium on Industrial and Embedded Systems, pages 238–247, June 2011.

[56] Patrick Oladimeji, Paolo Masci, Paul Curzon, and Harold Thimbleby. PVSio-
web: a tool for rapid prototyping device user interfaces in PVS. In FMIS2013,

5th International Workshop on Formal Methods for Interactive Systems, London,

UK, June 24, 2013, 2013.

[57] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: combining spec-
ification, proof checking, and model checking. In R. Alur and T.A. Henzinger,
editors, Computer-Aided Verification, CAV ’96, number 1102 in LNCS, pages
411–414. Springer-Verlag, 1996.

[58] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for
hybrid systems (system description). In International Joint Conference on Auto-

mated Reasoning, pages 171–178. Springer, 2008.

[59] Ragunathan Raj Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-
physical systems: the next computing revolution. In Proceedings of the 47th

Design Automation Conference, pages 731–736. ACM, 2010.

[60] Robert Reicherdt and Sabine Glesner. Software Engineering and Formal Meth-

ods: 12th International Conference, SEFM 2014, Grenoble, France, Septem-

ber 1-5, 2014. Proceedings, chapter Formal Verification of Discrete-Time MAT-
LAB/Simulink Models Using Boogie, pages 190–204. Springer International
Publishing, Cham, 2014.

[61] Kristin Yvonne Rozier. Specification: The biggest bottleneck in formal methods
and autonomy. In Verified Software. Theories, Tools, and Experiments - 8th In-

ternational Conference, VSTTE 2016, Toronto, ON, Canada, July 17-18, 2016,

Revised Selected Papers, pages 8–26, 2016.

[62] Johannes Sametinger, Jerzy Rozenblit, Roman Lysecky, and Peter Ott. Security
challenges for medical devices. Communications of the ACM, 58(4):74–82, 2015.

[63] I. Sander and A. Jantsch. System modeling and transformational design refine-
ment in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 23(1):17–32, Jan 2004.

[64] SCADE suite R© web site.

[65] Scicoslab web site.

39

[66] Lijun Shan, Susanne Graf, and Sophie Quinton. RTLib: A Library of Timed Au-

tomata for Modeling Real-Time Systems. PhD thesis, Grenoble 1 UGA-Université
Grenoble Alpe; INRIA Grenoble-Rhone-Alpes, 2016.

[67] Mary Sheeran and Gunnar Stålmarck. Formal Methods in Computer-Aided De-

sign: Second International Conference, FMCAD’ 98 Palo Alto, CA, USA, Novem-

ber 4–6, 1998 Proceedings, chapter A Tutorial on Stålmarck’s Proof Procedure
for Propositional Logic, pages 82–99. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1998.

[68] B. Silva, K. Richeson, B. Krogh, and A. Chutinan. Modeling and verifying hy-
brid dynamic systems using CheckMate. In Proc. Conf. on Automation of Mixed

Processes: Hybrid Dynamic Systems, pages 323–328, 2000.

[69] Simulink R© web site.

[70] Simulink Design Verifier R© web site.

[71] Raymond Merrill Smullyan. First-order logic. Dover publications, New York,
1995.

[72] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic. Translating
Discrete-time Simulink to Lustre. ACM Trans. Embed. Comput. Syst., 4(4):779–
818, November 2005.

[73] Valentín Valero, Gregorio Díaz, and María-Emilia Cambronero. Timed automata
modeling and verification for publish-subscribe structures using distributed re-
sources. IEEE Transactions on Software Engineering, 43(1):76–99, 2017.

[74] B. Wang and J. S. Baras. Hybridsim: A modeling and co-simulation toolchain for
cyber-physical systems. In Distributed Simulation and Real Time Applications

(DS-RT), 2013 IEEE/ACM 17th International Symposium on, pages 33–40, Oct
2013.

[75] Pei Ye, Emilia Entcheva, and Scott A. Smolka. Efficient modeling of excitable
cells using hybrid automata. In Computational Methods in System Biology, pages
216–227, 2005.

[76] Franco Zambonelli, Andrea Omicini, Bernhard Anzengruber, Gabriella Castelli,
Francesco L De Angelis, Giovanna Di Marzo Serugendo, Simon Dobson,
Jose Luis Fernandez-Marquez, Alois Ferscha, Marco Mamei, et al. Develop-
ing pervasive multi-agent systems with nature-inspired coordination. Pervasive

and Mobile Computing, 17:236–252, 2015.

40

