
Received 3 December 2023, accepted 13 December 2023, date of publication 25 December 2023,
date of current version 4 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3347494

Design and Validation of Cyber-Physical Systems
Through Co-Simulation: The Voronoi
Tessellation Use Case
CINZIA BERNARDESCHI 1, (Member, IEEE), ANDREA DOMENICI1,
ADRIANO FAGIOLINI 2, (Member, IEEE), AND MAURIZIO PALMIERI 1
1Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
2Department of Engineering, MIRPALab.it, University of Palermo, 90128 Palermo, Italy

Corresponding author: Cinzia Bernardeschi (cinzia.bernardeschi@unipi.it)

This work was partially supported by the Italian Ministry of Education and Research (MIUR) in the framework of the FoReLab project
(Departments of Excellence), by the Italian Ministry of Education and Research (MIUR) in the framework of the CrossLab project
(Departments of Excellence) and by the European Union through the Next Generation EU project ECS00000017 ‘Ecosistema
dell’Innovazione’ Tuscany Health Ecosystem (THE), Piano Nazionale di Ripresa e Resilienza (PNRR), Spoke 3: Advanced technologies,
methods and materials for human health and well-being.

ABSTRACT This paper reports on the use of co-simulation techniques to build prototypes of co-operative
autonomous robotic cyber-physical systems. Designing such systems involves a mission-specific planner
algorithm, a control algorithm to drive an agent performing its task; and the plant model to simulate the
agent dynamics. An application aimed at positioning a swarm of unmanned aerial vehicles (drones) in a
bounded area, exploiting a Voronoi tessellation algorithm developed in this work, is taken as a case study.
The paper shows how co-simulation allows testing the complex system at the design phase using models
created with different languages and tools. The paper then reports on how the adopted co-simulation platform
enables control parameters calibration, by exploiting design space exploration technology. The INTO-CPS
co-simulation platform, compliant with the Functional Mock-up Interface standard to exchange dynamic
simulation models using various languages, was used in this work. The different software modules were
written in Modelica, C, and Python. In particular, the latter was used to implement an original variant of the
Voronoi algorithm to tesselate a convex polygonal region, by means of dummy points added at appropriate
positions outside the bounding polygon. A key contribution of this case study is that it demonstrates how
an accurate simulation of a cooperative drone swarm requires modeling the physical plant together with the
high-level coordination algorithm. The coupling of co-simulation and design space exploration has been
demonstrated to support control parameter calibration to optimize energy consumption and convergence
time to the target positions of the drone swarm. From a practical point of view, this makes it possible to test
the ability of the swarm to self-deploy in space in order to achieve optimal detection coverage and allow
unmanned aerial vehicles in a swarm to coordinate with each other.

INDEX TERMS Cyber-physical systems, co-simulation, unmanned aerial vehicles, space coverage, Voronoi
tessellation, control parameter calibration.

I. INTRODUCTION
Cyber-Physical Systems (CPS) are a large class of systems
characterized by a complex interplay of hardware and soft-
ware components, often operating in a largely unpredictable
environment. CPSs are usually designed with model-based
development (MBD) techniques [1]: design begins with a

The associate editor coordinating the review of this manuscript and

approving it for publication was Nasim Ullah .

high-level model of the system, which is validated, corrected,
and refined in several cycles, until a model is obtained that
developers judge fit to be taken as a production blueprint.

System validation is used to check the compliance of each
system element and of the overall system with its purpose
and functions. Validation activities are planned and carried
out throughout the development process.

Validating CPS models is complex, as they must reflect
the interactions of several subsystems and different aspects

1064

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-1604-4465
https://orcid.org/0000-0001-9943-1975
https://orcid.org/0000-0002-6177-0928
https://orcid.org/0000-0001-7208-6374

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

of each subsystem: For example, the physical aspects
of an actuator include mechanics and electromagnetism,
mechanics in turn require modeling such concepts as torque,
inertia, viscosity, and so on. Such complexity makes it
desirable, and often necessary, to rely on several modeling
languages and tools. Actually, most tools offer a large set
of specialized libraries that span a wide range of application
fields, nevertheless it is often the case that more specific
tools are preferred. Also, CPSs may be developed in parallel
by various teams, possibly belonging to different organiza-
tions, which may have expertise with different modelling
tools.

In cyber-physical systems, a co-simulation approach can
be adopted, which allows different system elements to be
simulated each by dedicated simulators, with a co-simulation
master orchestrating their execution. The Functional Mock-
up Interface [2] is a public-domain standard that defines a
container and an interface to exchange dynamic simulation
models using various languages. FMI is supported by more
than one hundred modelling tools [3].
In this work, co-simulation is used to study the behaviour

of a swarm of unmanned aerial vehicles (UAV) (or drones)
that must cover uniformly a given area, which is often
useful in many applications, such as search and rescue
or environmental monitoring. Due to their maneuvrability,
UAVs are convenient tools for monitoring areas difficult to
reach for land vehicles [4], [5]. In particular, among different
types of UAV’s, quadcopters have become the most popular
for their flexibility, due to very low moments of inertia,
greater stability, hovering capability, as well as lower take-
off requirements [6], [7].
Designing a swarm of drones involves three levels of

control: (i) a high-level, mission specific planner algorithm
defining the final position of each drone; (ii) an intermediate-
level control algorithm to drive each drone along its
prescribed trajectory; and (iii) a low-level plant model to
simulate the drone dynamics.

In this schema, the crucial part is the design of the
intermediate-level algorithm. In fact, in a space-coverage
task the final position of the drones is entirely determined
by the geometry of the area to be covered and by the
number of drones, so that designing the high-level control
reduces to choosing an appropriate geometric algorithm.
In turn, simulating the individual drones relies on standard
dynamics models whose parameters depend on the physical
characteristics of the drone.

The intermediate-level control, instead, has a more com-
plex task, involving the optimization of various contrasting
figures of merit (e.g,, speed and fuel consumption), whose
relative weight depends on the particular application with its
operational constraints.

This paper discusses how co-simulation and design
space exploration support the development of this kind of
systems. In particular, the approach based on centroidal
Voronoi tessellation has been used for the high-level
control.

Its Python implementation was validated with a pro-
totype simulation based on a simplified physical model.
The validated implementation was then integrated in a
full-scale co-simulation, along with the two other control
algorithms. Co-simulation was performed on the INTO-CPS
framework [8].
The Voronoi algorithm was first verified using typical

values for controller parameters. Then the INTO-CPS design
space exploration tool was used to calibrate the nonlinear
controller parameters to optimize power consumption and
responsiveness.

The main contribution of the paper consists in (i) demon-
strating the application of co-simulation to the problem of
quadcopter control for space coverage; (ii) showing how
design-space exploration coupled to co-simulation supports
control parameter calibration to optimize energy consump-
tion and convergence time. A technique to extend the
tessellation algorithm to a bounded area is also introduced.

This paper is organized as follows: Section II reports
related work on cyber-physical systems design, including
modeling/simulation tools and co-simulation. Section III
introduces background notions (quadcopters, Voronoi tes-
sellation, and co-simulation), for the selected case study.
Section IV presents the technique developed for centroidal
tessellation of a bounded area. Section V reports the co-
simulation architecture, the simulation scenario, and the
preliminary results from co-simulation. Section VI shows and
discusses the calibration of controller parameters for energy
consumption and convergence time. Finally, Section VII
concludes the paper and reports on future work.

II. RELATED WORK
System models are typically built with block-based lan-
guages, which describe a system as an assembly of functional
blocks, each representing a possibly complex mathematical
operation, interconnected by data flows. For example,
MATLAB/Simulink [9], [10] is a commercial environment
for the model-based development of cyber-physical systems.
It provides a graphical model editor and functions to generate
demonstrative prototypes and to analyse relevant model
properties.

Some works define ad-hoc solutions for the integration of
different simulators, dedicated to different system compo-
nents, e.g., the hardware and the software parts. For example,
in [11] Simulink and a simulator of logic specifications (the
pvsio interpreter of the Prototype Verification System [12])
have been integrated to simulate and formally verify proper-
ties of a pacemaker.

Farhat et al. [13], instead, use Matlab and Simpack to
compare the performance of mechatronically-driven railway
vehicles’ guidance and steering to that of a conventional
vehicle. A non-linear Simpack vehicle model with the
specific mechatronic actuation and sensing, and a simplified
linear control model in Matlab/Simulink are co-simulated.

Reinhart and Weissenberger [14] address multibody
simulation in the context of numerical control machines.

VOLUME 12, 2024 1065

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

The multibody model considers flexible machine structural
components, guideways, feed drive dynamics and axis con-
trollers together with the motion trajectory generation of the
control.

In [7], Simulink/Gazebo tools are used for the validation of
an approach to quadcopter control where wind disturbance is
modeled by unknown exogenous inputs, exploiting the Robot
Operating System (ROS) middleware in the simulations.
In [15], the architecture ROS/Gazebo has been extended with
the possibility of simulation of co-operative UAVs.

Co-simulation is a technique in which simulators of
heterogeneous models are executed simultaneously while
exchanging data during run-time. The FMI (functional
mockup interface) [2] is a standardized interface for model
exchange and co-simulation of dynamic models across
different modeling and simulation tools.

Co-simulation has been applied extensively in different
application fields. In [16], a co-simulation approach is used
for a brushless motor, with the electrical and mechanichal
parts modeled in Simulink and the feedback linearization
control modeled with a function written in C.

In [17], a co-simulation open source software for operation
and planning studies of distributed energy resources has
been presented. The software allows users to perform large-
scale high-fidelity simulations for bulk power system (BPS)
planning and operation.

Papers [18] and [19] show howhuman performancemodels
can be incorporated into models of CPSs. In [18], a train
driver model is coupled to models of the rolling stock and of
the movement authority; in [19] human-machine interfaces of
an integrated clinical environment are considered.

In [20], co-simulation was applied to analyse Model
Predictive Control systems for autonomous driving. This
requires an accurate analysis of the interplay among
three main components: the plant, the model predictive
control algorithm, and the processor where the algorithm
is executed. Co-simulation of the three components was
used to determine if the controller running on the chosen
hardware meets the time requirements determined by the
response time of the plant. Satisfactory tradeoffs between
algorithm complexity and processor performance could be
studied.

In [21], the co-simulation-based framework Vico for
marine crane onboard operations is presented. Simulation and
analysis of sub-systems is performed with different software
tools and the framework enables the digitalization of marine
operations.

In [22], co-simulation is applied to co-operative mobile
robots. Simulations for multi-robot systems are executed
by independent tools, such as Gazebo for physics and
mobility, ROS2 for software development, and ns-3 for
communications and the networking infrastructure [23]. The
framework integrates such simulators and allows running
experiments that combine all the involved robotic systems
keeping the synchronization time between the simulators
consistent.

In [24], an approach to the formal verification of a variant
of a well-known consensus protocol of UAVs is presented,
using a co-simulation framework for system validation. The
present paper builds on [24], discussing control parameter
calibration by design space exploration, using a more
complex case study.

In [25], Cho et al. present an advanced co-simulation
platform that concurrently performs UAV simulation and
wireless network simulation. This platform is taylored to the
simulation of centrally controlled UAV swarms, whereas the
approach of the present paper can be applied to distributed
control applications, although only a central control case
study is discussed. Also, the implementation reported by
Cho et al. does not rely on the FMI standard.

An extensive survey on co-simulation has been published
byGomes et al. [26], providing definitions of the fundamental
concepts and a taxonomy of the literature based on the
discrete events and continuous time computational models.

A paper by Fitzgerald et al. [27] introduces foundational
and process management issues for the design of CPSs and
cites several methods, languages, and tools, using a two-
wheel self-balanced personal transporter as an example.

An approach to CPS design extending the software-defined
networking (SDN) concept is the software-defined cyber-
physical systems (SD-CPS) framework [28], wherein a work-
flow of microservices (web services), coordinated by an SDN
controller, realises the support for CPS operation. An SD-
CPS federated controller deployment is proposed, which
comprises several controllers from different domains or orga-
nizations at the edge, in a case study with embedded mobile
systems in connected cars, edge cloud nodes and servers.
Another approach inspired by SDN and service-oriented
architecture is Cyber Physical System as a Software-defined
Service (CPSS) [29], wherein the CPS control platform
is divided into the Infrastructure-as-a-Service, Network-as-
a-Service, and Aplication-as-a-Service layers. CPS design
methods as exemplified by the above references can be
smoothly integrated with co-simulation approaches such as
the one discussed in the present paper, due to their reliance
on a distributed software architecture.

III. BACKGROUND
This section introduces notions used in the rest of the paper:
quadcopter unmanned vehicles, Voronoi tessellation and the
INTO-CPS framework for co-simulation.

A. QUADCOPTERS
Quadcopters have become very popular UAVs for their
flexibility. However, combined control of rotational and
translational motions is required to obtain accurate path
tracking and autonomous flight capacity, which results in
highly nonlinear modeling [30].

The dynamics of a quadcopter can be described with
reference to Fig. 1, where the craft is modeled as a cross-
shaped rigid frame supporting four rotors, each turning at
speed ωi(i = 1, . . . , 4), whose thrust and torque determine

1066 VOLUME 12, 2024

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

the velocity and attitude of the craft. A moving reference
frame F′ has its origin at the center of mass, with the arms
lying on axes x ′ and y′, whereas F, with axes x, y, and z, is a
fixed reference frame.

FIGURE 1. Schematic representation of a quadcopter.

The attitude of the craft is defined by its Euler angles ψ ,
φ, and θ (yaw, roll, and pitch), which describe the rotation
that brings the axes of F′ to coincide with those of F after an
appropriate translation.

Equations (1) and (2) below express the dynamics for
position and attitude, respectively, as functions of the
rotational speeds of each rotor:ẍÿ

z̈

 =

 g(φ sinψd + θ cosψd)
−g(φ cosψd + θ sinψd)
Cz(ω1 + ω2 + ω3 + ω4)

 (1)

φ̈θ̈
ψ̈

 =

 Cφ(ω2 − ω4)
Cθ (ω3 − ω1)

Cψ (ω1 − ω2 + ω3 − ω4)

 , (2)

where g is the gravity acceleration, ψd is the desired yaw
angle, Cφ , Cθ , Cψ , and Cz are physical parameters.

The quadcopter controller must compute the rotor speeds
that will drive it to the desired position (xd, yd, zd) with the
desired yaw ψd. This can be achieved with the design shown
in Fig. 2, where the position controller commands the attitude
controller, which computes the rotor speeds. The latter are
fed to each rotor’s low-level controller, included in the plant
block, that translates the desired rotor speeds into current
levels for the motors.

FIGURE 2. Cascaded position-attitude control model.

It may be shown [30] that a position controller can
be defined by an equation of the following form, where
ex = x − xd, ey = y − yd and ez = z − zd are the tracking
errors; moreover, sd = (sinψd)/g and cd = (cosψd)/g:φc

θc
ωz

=

 −sd(2λPẋ + λ2Pex) + cd(2λPẏ+ λ2Pey)
−cd(2λPẋ + λ2Pex) − sd(2λPẏ+ λ2Pey)

−
2λP
Cz
ż+

λ2P
Cz
ez

 (3)

An attitude controller can be defined by equations of the
following form:

 ωφ
ωθ
ωψ

 =


−

2λA
Cφ
φ̇ −

λ2A
Cφ

(φ − φc))

−
2λA
Cθ
θ̇ −

λ2A
Cθ

(θ − θc))

−
2λA
Cψ
ψ̇ −

λ2A
Cψ

(ψ − ψd))

 (4)


ω1
ω2
ω3
ω4

 =
1
4


ωz − 2ωθ + ωψ
ωz + 2ωφ − ωψ
ωz + 2ωθ + ωψ
ωz − 2ωφ − ωψ

 . (5)

In the above equations, λP and λA are the controller gain
parameters, which affect the responsiveness of the controller
to tracking errors. Specifically, λA is related to the desired
responsiveness of attitude stabilization, while λP is related
to that of position control. Since the attitude control loop is
internal to the position control one, the frequencies of the
eigenvalues associated with the attitude dynamics should be
higher than those of the position dynamics. As a rule of
thumb, the two gain parameters should ideally satisfy the
condition λA/λP > 10. In this work, the physical parameters
of Erle-copters (Fig. 3) are used in the simulations [7].

FIGURE 3. An Erle-copter.

B. VORONOI DIAGRAMS
Given a set S of k points in a plane5, a Voronoi diagram [31]
is a partition of 5 into k Voronoi regions (or cells) Vi, each
associated with a distinct point (seed or generator) si ∈ S,
and consisting of all the points in the plane closer to si than
to any other point sj, with j ̸= i, in S, i.e. [32]:

∀i ∈ [1..n] :

Vi = {p ∈ 5 | ∀j ̸= i : ∀sj ∈ S : |si−p| ≤ |sj−p|} . (6)

In general, the Voronoi region Vi of a point si ∈

S = {s1, . . . , sk} can be constructed as follows: (i) the

VOLUME 12, 2024 1067

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

perpendicular bisectors lij of the segments between si and
the other points of S are drawn; (ii) if 5ij is the half plane
bounded by lij and containing si, Vi is the intersection of the
5ij’s. Figure 4 shows the construction of the cell for seed s1
in a set of six seeds. The Voronoi diagram for set S is then
the union of the Voronoi regions, as shown in Figure 5. Each
region is bounded by a finite number of segments or half lines,
called ridges. In the figure, dashed lines represent infinite
ridges delimiting unbounded regions. The points where two
or more ridges meet are called vertices.

FIGURE 4. Construction of the Voronoi region for seed s1.

FIGURE 5. Voronoi diagram for the six points of Fig. 4.

1) AN IMPLEMENTATION OF THE VORONOI TESSELLATION
ALGORITHM
The implementation of the Voronoi algorithm used in this
work relies on the Python class SciPy.Spatial.Voronoi [33].
In order to show how a Voronoi diagram is represented in the
Python code, we use the simple example of Figures 4 and 5.
The Voronoi class is initialized with an array containing the
tessellation seeds, as shown in Listing 1.
The class constructor computes the tessellation ver-

tices and ridges, stored in class attributes, as shown in

LISTING 1. Set of seeds.

LISTING 2. Data structures for example of Fig. 5.

Listing 2. Each vertex is identified by its index in the array
vor.vertices, ranging from 0 to 5 in the example. The
vertex indices are used in the list vor.ridge_vertices
to define the ridges. Each ridge is identified by its
extremes: if an extreme is a vertex it is referred to by
its index in the vor.vertices array, while an extreme
at infinite distance is represented by −1. For example,
the pair [−1, 0] represents a half line originating from
vertex 0, i.e., point [8.98840764, 4.78471338], whereas [0, 1]
represents the ridge between vertices 0 and 1, i.e., points
[8.98840764, 4.78471338] and [3.36882475, 5.11037441].
The above data can be compared with Figure 5, produced

by the program. The blue dots are the seeds, the solid lines are
the ridges of the only finite region, and dashed lines represent
(semi)infinite ridges.

2) CENTROID COMPUTATION
In many applications of drone swarms, it is convenient to
place each drone in the geometric center, or centroid of
the respective cell. A Voronoi tessellation whose generating
points are the centroids of each cell is called a centroidal
Voronoi tessellation [31]. A centroidal Voronoi tessellation
can be obtained by Lloyd’s method [34]:
Given an initial set of k seeds {s0,i}ki=1;

1) construct the initial Voronoi tessellation {V0,i}ki=1 for
the seeds {s0,i}ki=1;

2) at each step n+1, compute the centroids of the Voronoi
regions {Vn,i}ki=1 found at step n; these centroids
become the new set of seeds {sn+1,i}

k
i=1;

3) If this new set of seeds meets some convergence
criterion, terminate; otherwise, return to step 2.

Step 2 above is performed by computing the centroid
coordinates (Cx ,Cy) with the formulae for a polygon with n

1068 VOLUME 12, 2024

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

vertices [35], [36]:

A =
1
2
6n−1
i=0 (xiyi+1 − xi+1yi)

Cx =
1
6A
6n−1
i=0 (xi + xi+1)(xiyi+1 − xi+1yi)

Cy =
1
6A
6n−1
i=0 (yi + yi+1)(xiyi+1 − xi+1yi) .

This method produces a set of drone placements that
optimize the average distance of each drone from the points
of its assigned region (centroid property) and the spacing
between drones (Voronoi tessellation property).

C. CO-SIMULATION
Co-simulation techniques allow a complex and heteroge-
neous simulated system to be split into simple sub-systems.
The simulation of each sub-system can be executed by a
dedicated simulator, possibly supporting a different modeling
language.

The Functional Mockup Interface (FMI) [37] is a stan-
dard for co-simulation. Each sub-system is exported as a
Functional Mockup Unit (FMU) and a co-simulation is the
execution of a set of FMUs that exchange data and signals
under the co-ordination of a master program. Figure 8 in
Section V shows an example of co-simulation architecture,
where the Co-simulation Orchestration Engine (COE) is the
master program. Various frameworks for FMI-compliant co-
simulation have been developed, including INTO-CPS [8],
[38] and CoSim20 [39]. In particular, the INTO-CPS
framework is used in this work.

The INTO-CPS toolchain includes the Design Space
Exploration (DSE) tool [40], used to find optimal com-
binations of parameter values within specified ranges or
discrete sets searched by a DSE engine that executes the co-
simulations for each combination. In particular, the Pareto
method is applied to ranking the results of the DSE. The
set of combinations with the highest rank (rank 1) represents
the best compromises of a pair of objective functions. The
set contains all combinations of parameter values where it is
not possible to find other combinations which improve both
objective functions.

IV. CENTROIDAL TESSELLATION OF A BOUNDED REGION
The Python implementation of the Voronoi algorithm
described in Section III-B1 was taken as a starting point
for the simulation of a drone swarm. That implementation
computes a tessellation over an unbounded plane, while the
envisioned application involves covering a bounded region.
A workaround was found to tessellate a convex polygonal
region: dummy points at appropriate positions outside the
bounding polygon are added to the original set of seeds,
then the Python implementation is applied to the extended
set to tessellate the infinite plane containing the polygon.
More precisely, for each seed one dummy point is placed
symmetrically to the seed with respect to each side of the

polygon. so that, for each seed, as many symmetric points
as the number of sides of the polygon are created.

As an example, Figure 6 shows the generation of the
tessellation of a square with four seeds, with sides parallel
to the cartesian axes. Figure 6(a) shows the seeds and
the dummy points corresponding to the leftmost seed
and Figure 6(b) shows the tessellation computed by the
Voronoi algorithm. The tessellation of the bounding square
is obviously obtained by deleting all cells outside the square,
as shown in Figure 6(c).

FIGURE 6. How to build a Voronoi diagram inside a polygon.

This modified algorithm was used to perform Step 1 of
Lloyd’smethod (Section III-B2). In this way, the behaviour of
a swarm of drones that must optimally cover an area bounded
by a polygon can be described as follows:

VOLUME 12, 2024 1069

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

1) The initial positions of the drones are the seeds of the
initial tessellation;

2) the (modified) Voronoi tessellation for the current seeds
is computed;

3) for each cell, the centroid is computed;
4) each drone is moved to the centroid of the respective

cell;
5) if the new position of all drones is within a given (small)

distance from the previous one, stop; otherwise, repeat
Step 2 with the new positions as current seeds.

This behavioral model was implemented in Python,
obtaining a high-level simulator of a space coverage strategy.
Figure 7 shows the initial, an intermediate, and the final
configurations of a ten-drone swarm deployed over a
hexagonal area. In the pictures, produced by the Python
simulation, the blue dots are the initial drone position at each
cycle of the algorithm, and the red ones are the corresponding
centroids.

The model abstracts from the physical model of the
drones, thus ignoring finite speeds, control-loop delays, and
communication delays. Amore accurate model, implemented
by co-simulation, is discussed in the next section.

V. CO-SIMULATION OF A UAV SWARM
Co-simulation was used to study the behavior of a drone
swarm with the task of reaching an optimal coverage of
a plane surface bounded by a polygon. To this purpose,
the planner algorithm, implemented in Python, uses the
centroidal Voronoi tessellation described above to assign,
at each simulation step, a destination point to each drone,
starting from arbitrary initial positions. The related FMU has
been generated using UniFMU [41]. The drone’s destination
is the command input to the intermediate-level drone
controller, implemented in C, that computes the rotor speeds
according to (3), (4), and (5) in Section III-A. A low-level
plant model, implemented in Modelica [42], simulates the
drone according to (1) and (2). More details on the control
FMU and plant FMUs are discussed in [24].
Figure 8 shows the architecture of the co-simulation of

a swarm of drones, where all the FMUs are connected to
the master algorithm of the co-simulation, the Co-simulation
Orchestration Engine (COE), while Figure 9 shows the
logical connections between the planner and one drone. The
logical connections can be explicitly provided to the COE
through a graphical user interface made available by the
INTO-CPS Association.

The co-simulation has two synchronization granularities:
the fixed co-simulation step T at which the plant and the
intermediate-level controller interact, and a step T ′ at which
the planner FMU is executed. Step T ′ is an integral multiple
of T , i.e., T ′

= τT , with τ a positive integer.

A. SIMULATION SCENARIO
In the simulated scenario, ten drones must be placed over
a hexagonal area of 1600 m2. The co-simulation step T

FIGURE 7. How to build a Voronoi diagram inside a polygon.

(0.05 s) was chosen to be of the same order as the period
between successive updates of the outputs computed by
actual controllers in drone systems.

Figure 10 shows the initial displacement of the drones
as shown by the graphical user interface created with the
technology discussed in [43] that allows users to track
the movement of the drones through the evolution of the
co-simulation and Figure 10b shows the final placement
achieved by the Voronoi tessellation.

In the co-simulation, the system evolves as follows:
1) the Voronoi tessellation is computed every τ co-

simulation steps;

1070 VOLUME 12, 2024

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

FIGURE 8. Co-simulation architecture of a swarm.

FIGURE 9. Logical communication between the FMUs.

FIGURE 10. Drone positions shown by the GUI.

2) each drone executes the control algorithm every
co-simulation step T, moving towards the centroid of its
region for τ co-simulation steps, then a new tessellation
is computed;

3) the simulation ends at time Ts, This value is chosen
large enough to let the drones reach the desired
final ‘‘honeycomb’’ formation. Informally, when the
drones reach such a configuration, they keep executing
the algorithm, which does not further change their
positions (a formal definition of convergence is given
in subsection VI).

B. PRELIMINARY TESTS FOR λA AND λP
A preliminary series of co-simulations was performed to find
starting points and ranges for the parameters to be optimised
by exploring the design space. The following results were
obtained using a trial and error approach. For example, with

T = 0.05 s, the co-simulation reveals divergent behaviors,
even for values of λA and λP that are close to satisfying the
ideal condition λA/λP > 10 (Section III-A). Specifically,
Figures 11 and 12 show that the coordinates x and y begin
to oscillate around the desired values and finally diverge.
In addition, it was found that the acceptable ranges of values
for controller parameters depend also on the controller update
rate T . Indeed, in the instances of Figures 13 and 14, the x
and y coordinates oscillate and diverge, even though the ideal
ratio between the two control gain parameters is satisfied.
In general, it was found that, for T = 0.05 s, the controller
parameters must satisfy the two constraints λA ≤ 9.0 and
λP ≤ 0.9. Figure 15 shows the result of a co-simulation
where these last constraints are met, and as expected the x
and y coordinates move towards the values of the assigned
centroid, without oscillations; the final position is reached in
approximately two minutes of simulated time.

FIGURE 11. Drone 1, T = 0.05 s, λA = 9.5, λP = 0.98.

FIGURE 12. Drone 1, T = 0.05 s, λA = 9, λP = 1.0.

VI. DESIGN SPACE EXPLORATION
The DSE tool was then used to find optimal values for
controller parameters λA and λP, according to the criteria of
minimizing (i) time tc to attain convergence, and (ii) energy
consumption.

Convergence was defined to be attained at the first instant
since when each drone remains within a circle of radius

VOLUME 12, 2024 1071

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

FIGURE 13. Drone 1, T = 0.05 s, λA = 9.5, λP = 0.9.

FIGURE 14. Drone 1, T = 0.05 s, λA = 10.1, λP = 1.0.

FIGURE 15. Drone 3, λA = 8.0, λP = 0.9.

R from its target position for a minimum interval of δ
seconds. The chosen values for R and δ were 0.01 m and 5 s.
Convergence times were computed off-line from simulation
traces.

Energy consumption for a motor is computed with the
following formula:

E =

tc/T∑
i=0

PiT (7)

where E is the total energy until tc, T is the simulation step,
and Pi is the motor power at step i:

Pi = Kfω
2
d (8)

FIGURE 16. Drone 3, λA = 8.0, λP = 0.9.

where Kf is a constant of the motor and ωd is the
difference between motor speed and the hovering speed
ωh, a characteristic of the drone. We observe that energy
consumption is affected by the update frequency of the
desired co-ordinates (τT).
Table 1 shows the parameter values defining the design

space considered in the co-simulations, with the constraint
λA ≥ 5λP, resulting in twenty-six combinations. The
simulation time Ts is 300 s for all simulation runs.

TABLE 1. Design space.

Results are shown ordered by convergence time in Tables 2
and 3, by energy consumption in Tables 4 and 5, and by Pareto
rank in Tables 6 and 7.

TABLE 2. Ordered by convergence time (τ = 6).

Tables 2 and 3 confirm that larger values of τ cause longer
convergence times. As an example, consider the case of λA =

7 and λP = 0.9. For τ = 6 (Table 2) the update frequency
of desired co-ordinates is 0, 3 s and the convergence time
is 155.25 s. For τ = 20, (Table 3) the update frequency
of desired co-ordinates is 1 s and the convergence time is
244, 85 s. In particular, for τ = 20 (Table 3), the values of tc
show that the maximun simulated time of 300 s was reached

1072 VOLUME 12, 2024

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

TABLE 3. Ordered by convergence time (τ=20).

before reaching convergence. Further, for a given value of τ ,
parameter λP determines the speed of convergence.

TABLE 4. Ordered by energy consumption (1).

TABLE 5. Ordered by energy consumption (2).

Tables 4 and 5 show that energy consumption increases
with higher values of λA and λP (with few exceptions). It may
be observed that the impact of λP on energy consumption
is greater than the impact of λA and that τ has a relatively
low impact on energy consumption. The ordered data series
is split into two tables for readability.

Finally, Tables 6 and 7 compare the optimality of the
various combinations of values for τ , λA and λP by respective
Pareto rank. Here, too, the ordered data series is split into two
tables.

In Figure 17, it is possible to observe the combinations with
the best rank (rank 1), shown with green points joined by a
green line. The combinations that provide the best tradeoff

TABLE 6. Ordered by ranking (1).

TABLE 7. Ordered by ranking (2).

FIGURE 17. Pareto ranking graph.

are the ones closest to the bottom left corner of the graph, i.e,
τ = 6, λP = 0.8, and λA = 7 or λA = 8.

The controller defined by (3) is nonlinear, which makes
the characterization of optimal combinations of parameter
values more difficult than in the case of linear systems. For
this reason, simulation-based design space exploration is an
effective tool to deal with this problem.

VII. CONCLUSION
This paper proposes an approach based on co-simulation to
design and validate co-operative robotic systems since the
early phases of the system design. In particular, this work
shows how design space exploration can be successfully

VOLUME 12, 2024 1073

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

applied to the expensive task of parameter calibration for
the control algorithms of a co-operative UAV-based cyber-
physical system.

One of the advantages of this approach is the easy inter-
action between multidisciplinary teams (e.g., information
engineers, automation engineers, etc), due to the support
for heterogeneous languages and simulation tools afforded
by co-simulation. For example, in the use case discussed in
this work, Python was used for the co-ordination algorithm,
C for the drone controller and Modelica for the drone
plant. Another advantage is found in model reuse, as models
already available can be imported as black boxes in the co-
simulation framework, provided that the original modeling
tools support the FMI standard. Moreover, this modularity
eases system design refinement. The model presented in this
paper, for example, could be refined by including network
communications and delays or extended by considering
alternative system architectures.

In general, this approach makes it possible to develop a
consistent set of models for a given system at different levels
of abstraction, enabling a wide spectrum of analyses to be
performed while minimizing development effort. It may be
added that the same approach can be used in more complex
applications. For example, instead of a swarm of drones of
the same type, the deployment of vehicles of different kinds,
possibly both air- and land-faring, could be considered.

As further work, it is planned to consider (i) different
system architectures for the co-ordination of vehicles; and
(ii) study UAVs equipped with further sensors, for example
cameras, for activities such as disaster management and
recovery.

REFERENCES
[1] B. Selic, ‘‘The pragmatics of model-driven development,’’ IEEE Softw.,

vol. 20, no. 5, pp. 19–25, Sep. 2003.
[2] T. Blockwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist, M.

Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A. Viel,
‘‘Functional mockup interface 2.0: The standard for tool independent
exchange of simulation models,’’ in Proc. Linköping Electron. Conf.,
Nov. 2012, pp. 173–184, doi: 10.3384/ecp12076173.

[3] FMI Standard. Accessed: Nov. 21, 2023. [Online]. Available: https://fmi-
standard.org/

[4] S. Saeedi, C. Thibault, M. Trentini, and H. Li, ‘‘3D mapping
for autonomous quadrotor aircraft,’’ Unmanned Syst., vol. 5, no. 3,
pp. 181–196, 2017.

[5] N. Michael, S. Shen, K. Mohta, V. Kumar, K. Nagatani, Y. Okada,
S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, and
S. Tadokoro, ‘‘Collaborative mapping of an earthquake damaged building
via ground and aerial robots,’’ in Field Service Robotics. Berlin, Germany:
Springer, 2014, pp. 33–47.

[6] K. Nonami, F. Kendoul, S. Suzuki, W. Wang, and D. Nakazawa,
Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial
Vehicles. Berlin, Germany: Springer, 2010.

[7] K. Kumar, S. I. Azid, A. Fagiolini, and M. Cirrincione, ‘‘Erle-copter simu-
lation using ROS and gazebo,’’ in Proc. IEEE 20th Medit. Electrotechnical
Conf. (MELECON), Jun. 2020, pp. 259–263.

[8] P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn,
T. Lecomte, M. Pfeil, O. Green, S. Basagiannis, and A. Sadovykh,
‘‘Integrated tool chain for model-based design of cyber-physical systems:
The INTO-CPS project,’’ in Proc. 2nd Int. Workshop Model., Anal.,
Control Complex CPS (CPS Data), Apr. 2016, pp. 1–6.

[9] Scicoslab Web Site. Accessed: Nov. 21, 2023. [Online]. Available:
http://www.scicoslab.org

[10] Simulink Web Site. Accessed: Nov. 21, 2023. [Online]. Available:
http://www.mathworks.com/products/simulink

[11] C. Bernardeschi, A. Domenici, and P. Masci, ‘‘A PVS-simulink integrated
environment for model-based analysis of cyber-physical systems,’’ IEEE
Trans. Softw. Eng., vol. 44, no. 6, pp. 512–533, Jun. 2018.

[12] S. Owre, J. Rushby, and N. Shankar, ‘‘PVS: A prototype verification
system,’’ in Automated Deduction—CADE (Lecture Notes in Computer
Science), vol. 607, D. Kapur, Ed. Berlin, Germany: Springer, 1992,
pp. 748–752.

[13] N. Farhat, C. P. Ward, R. M. Goodall, and R. Dixon, ‘‘The benefits of
mechatronically-guided railway vehicles: Amulti-body physics simulation
study,’’Mechatronics, vol. 51, pp. 115–126, May 2018.

[14] G. Reinhart and M. Weissenberger, ‘‘Multibody simulation of machine
tools as mechatronic systems for optimization of motion dynamics in the
design process,’’ in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics,
Sep. 1999, pp. 605–610.

[15] C. Bernardeschi, A. Fagiolini, M. Palmieri, G. Scrima, and F. Sofia,
‘‘ROS/gazebo based simulation of co-operative UAVs,’’ in Modelling and
Simulation for Autonomous Systems, J. Mazal, Ed. Cham, Switzerland:
Springer, 2019, pp. 321–334.

[16] C. Bernardeschi, P. Dini, A. Domenici, M. Palmieri, and S. Saponara,
‘‘Formal verification and co-simulation in the design of a synchronous
motor control algorithm,’’ Energies, vol. 13, no. 16, p. 4057, Aug. 2020.
[Online]. Available: https://www.mdpi.com/1996-1073/13/16/4057

[17] K. Balasubramaniam, S. Plathottam, S.-I. Yim, N. Kang, K. Jhala,
R. Bhattarai, and S. Zhao, ‘‘Co-simulation of transmission and distribution
systems—Frommodeling to software development,’’ IEEEAccess, vol. 10,
pp. 127061–127072, 2022.

[18] T. Hotzel Escardo, K. Pierce, D. Golightly, and R. Palacin, ‘‘Modelling
train driver behaviour in railway co-simulations,’’ in Software Engineering
and Formal Methods. SEFM 2020 Collocated Workshops, L. Cleophas and
M. Massink, Eds. Cham, Switzerland: Springer, 2021, pp. 249–262.

[19] M. Palmieri, C. Bernardeschi, and P. Masci, ‘‘A framework for FMI-based
co-simulation of human–machine interfaces,’’ Softw. Syst. Model., vol. 19,
no. 3, pp. 601–623, May 2020.

[20] C. Bernardeschi, P. Dini, A. Domenici, A. Mouhagir, M. Palmieri,
S. Saponara, T. Sassolas, and L. Zaourar, ‘‘Co-simulation of a model
predictive control system for automotive applications,’’ in Software
Engineering and Formal Methods. SEFM 2021 Collocated Workshops,
A. Cerone, M. Autili, A. Bucaioni, C. Gomes, P. Graziani, M. Palmieri,
M. Temperini, and G. Venture, Eds. Cham, Switzerland: Springer, 2022,
pp. 204–220.

[21] Z. Liu, Y. Chu, G. Li, and H. Zhang, ‘‘A co-simulation-based system using
Vico for marine operation,’’ in Software Engineering and Formal Methods.
SEFM 2022 CollocatedWorkshops, P. Masci, C. Bernardeschi, P. Graziani,
M. Koddenbrock, and M. Palmieri, Eds. Cham, Switzerland: Springer,
2023, pp. 228–241.

[22] M. Richart, F. Velázquez, F. Ciuffardi, J. Visca, and J. Baliosian,
‘‘CoCoSim: A tool for co-simulation of mobile cooperative robots,’’
in Software Engineering and Formal Methods. SEFM 2022 Collocated
Workshops, P. Masci, C. Bernardeschi, P. Graziani, M. Koddenbrock, and
M. Palmieri, Eds. Cham, Switzerland: Springer, 2023, pp. 258–268.

[23] G. F. Riley and T. R. Henderson, The NS-3 Network Simulator. Berlin,
Germany: Springer, 2010, pp. 15–34.

[24] C. Bernardeschi, A. Domenici, A. Fagiolini, and M. Palmieri, ‘‘Co-
simulation and formal verification of co-operative drone control with
logic-based specifications,’’ Comput. J., vol. 66, no. 2, pp. 295–317,
Feb. 2023, doi: 10.1093/comjnl/bxab161.

[25] W. J. Cho, S. Kim, Y. Kim, and Y. H. Moon, ‘‘Advanced co-
simulation platform for UAV simulations under virtual wireless network
environments,’’ IEEE Access, vol. 10, pp. 95498–95508, 2022.

[26] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, ‘‘Co-
simulation: A survey,’’ ACM Comput. Surv., vol. 51, no. 3, p. 49, 2018.

[27] J. Fitzgerald, C. Gamble, P. G. Larsen, K. Pierce, and J. Woodcock,
‘‘Cyber-physical systems design: Formal foundations, methods and
integrated tool chains,’’ in Proc. IEEE/ACM 3rd FME Workshop Formal
Methods Softw. Eng., May 2015, pp. 40–46.

[28] P. Kathiravelu and L. Veiga, ‘‘SD-CPS: Taming the challenges of cyber-
physical systems with a software-defined approach,’’ inProc. 4th Int. Conf.
Softw. Defined Syst. (SDS), May 2017, pp. 6–13.

[29] H. Yu, H. Qi, and K. Li, ‘‘CPSS: A study of cyber physical sys-
tem as a software-defined service,’’ Proc. Comput. Sci., vol. 147,
pp. 528–532, Jan. 2019.

1074 VOLUME 12, 2024

http://dx.doi.org/10.3384/ecp12076173
http://dx.doi.org/10.1093/comjnl/bxab161

C. Bernardeschi et al.: Design and Validation of CPS Through Co-Simulation

[30] R.Mahony, V. Kumar, and P. Corke, ‘‘Multirotor aerial vehicles:Modeling,
estimation, and control of quadrotor,’’ IEEE Robot. Autom. Mag., vol. 19,
no. 3, pp. 20–32, Sep. 2012.

[31] Q. Du, V. Faber, and M. Gunzburger, ‘‘Centroidal Voronoi tessellations:
Applications and algorithms,’’ SIAM Rev., vol. 41, no. 4, pp. 637–676,
Jan. 1999.

[32] F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction. Berlin, Germany: Springer-Verlag, 1985.

[33] Class Scipy Spatial Voronoi. Accessed: Nov. 21, 2023. [Online]. Available:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.
html#scipy-spatial-voronoi

[34] S. Lloyd, ‘‘Least squares quantization in PCM,’’ IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[35] P. Bourke. (1988). Calculating the Area and Centroid of a Polygon.
[Online]. Available: http://paulbourke.net/geometry/polygonmesh/

[36] R. Nurnberg. (1988). Calculating the Area and Centroid of a Polygon in
2D. [Online]. Available: http://nurnberg.maths.unitn.it/centroid.pdf

[37] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel,
H. Olsson, J.-V. Peetz, and S. Wolf, ‘‘The functional mockup inter-
face for tool independent exchange of simulation models,’’ in Proc.
Linköping Electron. Conf., Dresden, Germany, Jun. 2011, pp. 105–114,
doi: 10.3384/ecp11063105.

[38] (2019). INTO-CPS Online Documents. [Online]. Available: https://into-
cps-association.readthedocs.io/en/latest/

[39] G. Liboni and J. Deantoni, ‘‘CoSim20: An integrated development
environment for accurate and efficient distributed co-simulations,’’ inProc.
Int. Conf. Big Data Manage., New York, NY, USA, May 2020, pp. 76–83.

[40] C. Gamble, ‘‘DSE in the INTO-CPS platform,’’ INTO-CPS Deliverable,
Aarhus Univ., Denmark, Tech. Rep. D5.3e, 2017.

[41] C. Legaard, D. Tola, T. Schranz, H. Macedo, and P. Larsen, ‘‘A universal
mechanism for implementing functional mock-up units,’’ in Proc. 11th Int.
Conf. Simul. Model. Methodologies, Technol. Appl., 2021, pp. 121–129.

[42] P. Fritzson, Principles of Object Oriented Modeling and Simulation With
Modelica 2.1. Hoboken, NJ, USA: Wiley, 2004.

[43] M. Palmieri, C. Bernardeschi, and P. Masci, ‘‘A flexible framework
for FMI-based co-simulation of human-centred cyber-physical systems,’’
in Software Technologies: Applications and Foundations, M. Mazzara,
I. Ober, and G. Salaun, Eds. Berlin, Germany: Springer, 2018, pp. 21–33.

CINZIA BERNARDESCHI (Member, IEEE)
received the Laurea degree in computer science
and the Ph.D. degree in electronic, computer,
and telecommunications engineering from the
University of Pisa, Italy, in 1987 and 1996,
respectively. Currently, she is an Associate
Professor with the Department of Information
Engineering, University of Pisa. Her research
interests include software engineering, dependable
systems, the application of formal methods for

specification and verification of safety-critical systems, and reliability and
security issues of cyber-physical systems. Recently, she collaborated on the
following projects: ‘‘EPI: European Processor Initiative,’’ funded by the EU
under call H2020; ‘‘HiEfficient: Highly EFFICIENT and reliable electric
drivetrains based on modular, intelligent, and highly integrated wide band
gap power electronics modules,’’ funded by ECSELResearch and Innovation
Actions (RIA). She is a member of the ERCIM Working Group on Formal
Methods for Industrial Critical Systems (FMICS) and of the IEEE Systems,
Man, and Cybernetics Society (SMC) Technical Committee on Homeland
Security.

ANDREA DOMENICI received the Ph.D. degree
in information engineering from the University
of Pisa, Italy, in 1992, with a thesis on the
implementation of the Gödel logic programming
language. He has been an Assistant Professor
with the Sant’Anna School of University Studies
and Doctoral Research, Pisa, and the Department
of Information Engineering, University of Pisa,
where he taught software engineering and did
research in the fields of dependable systems

and application of formal methods in the development of safety and
mission-critical systems. He has previously worked on grid architectures,
in cooperation with CERN and the Italian National Institute of Nuclear
Physics. Since his retirement, in 2022, he has been under a Research Contract
with the Department of Information Engineering.

ADRIANO FAGIOLINI (Member, IEEE) received
the M.S. degree in computer science engineering
and the Ph.D. degree in robotics and automation
from the University of Pisa, in 2004 and 2009,
respectively. Hewas aVisiting Researcher with the
Department of Energy, IUT Longwy, Université de
Lorraine, France, in 2019, and the Department of
Mechanical Engineering, University of California
at Riverside, in 2015 and 2017. He enrolled at the
Summer Student Program, European Center for

Nuclear Research (CERN), Geneva, in 2002. He is currently an Associate
Professor with the University of Palermo, Italy. His research interests include
soft robotics, self-driving racecars, autonomous aircraft, and security and
distributed intrusion detection in cyber-physical systems. He is a member
of the IEEE Robotics and Automation Society, the IEEE Control System
Society, the IEEE Industry Application Society, and the I-RIM Italian
Institute for Intelligent Machines. In 2008, he led the team of the University
of Pisa during the first European Space Agency’s Lunar Robotics Challenge,
which resulted in a second-place prize for the team. He was one of the
recipients of the IEEE ICRA Best Manipulation Paper Award, in 2005.

MAURIZIO PALMIERI received the master’s
degree in computer engineering from the Univer-
sity of Pisa, in 2016, and the joint Ph.D. degree in
smart computing from the University of Florence,
the University of Pisa, Italy, and the University
of Siena, in 2020. Currently, he is a Research
Fellow of computer engineering with the Depart-
ment of Information Engineering, University of
Pisa. He is also working in collaboration with
the INTO-CPS Association, an association that

maintains a toolchain for cyber-physical systems modeling, simulation,
and verification. His research interests include the application of machine
learning approaches to the healthcare system and the application of the
prototype verification system theorem prover in co-simulation scenarios for
safety analysis.

VOLUME 12, 2024 1075

http://dx.doi.org/10.3384/ecp11063105

