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Abstract

The bytecode verification is a key point of the security chain of the Java Platform. This feature is
optional in many embedded devices since the memory requirements of the verification process are
too high. In this paper we propose a verification algorithm that remarkably reduces the use of the
memory by performing the verification during multiple specialized passes. The algorithm reduces
the type encoding space by operating on different abstractions of the domain of types. The results
of the experiments show that this bytecode verification can be performed directly on small memory
systems.
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1 Introduction

The Java programming language was born in the early 90s in order to meet
flexible and highly reliable smart electronic device programming requirements.
It is used in a growing number of fields and lately also in the embedded sys-
tem world. Among the embedded devices, Java Cards represent an interesting
research challenge since they have limited resources but require high security
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features. Actually, a Java Card is a Smart Card running a Java Virtual Ma-
chine (VM), the Java Card Virtual Machine (JCVM), and it is going to become
a secure token in various fields, such as banking and public administration.

The JCVM is the core of the Java Card: it is a software CPU with a stack-
based architecture that creates an execution environment between the device
and the programs (Java Card Applets). The JCVM guarantees hardware-
independence and enforces the security constraints of the sandbox model. In
particular, the Java bytecode Verifier is one of the key components of the
sandbox model: the Java Card Applets are compiled in a standardized com-
pact code called Java Card bytecode and the Verifier checks the correctness
of the code before it is executed on the JCVM.

The Java bytecode Verifier performs a data-flow analysis on the bytecode
in order to ensure the type-correctness of the code. For example, it ensures
that the program does not forge pointers, e.g. by using integers as object
references.

Bytecode verification enables post issuance download of Java Card Applets,
even if they are not taken from the card vendor but from different sources.
Bytecode verification can be performed off-card or on-card. However, because
of the strong memory constraints of the Java Cards, the bytecode verification
is unfeasible directly on-card in its standard form.

To perform verification on-card, many approaches have been proposed in
the literature: they modify the standard verification process so that its imple-
mentation becomes suitable for memory constrained devices. These proposals
are reviewed in Section 3.1.

In this paper, we propose and evaluate an alternative approach that is
based on checking if the bytecode is correct by means of a progressive analysis
that requires much less memory than the standard one.

2 Standard bytecode verification

The result of the compilation of a Java program is a set of class files: a class
file is generated by the Java Compiler for each class defined in the program.
A Java Card applet is obtained by transforming the class files into cap files
in order to perform name resolution and initial address linking [3]. Hereafter,
we will refer to the class files only, since cap files and class files conceptually
contain the same information.

A class file is composed by the declaration of the class and by the JVM
Language (JVML) bytecode for each class method. The JVML instructions
are typed: for example, iload loads an integer onto the stack, while aload
loads a reference.
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The Verifier performs a data-flow analysis of the code by executing ab-
stractly the instructions over types instead of over actual values. A Java
bytecode verification algorithm is presented in [8]: almost all existing byte-
code Verifiers implement that algorithm. The verification process is performed
method per method: when verifying a method, the other methods are assumed
to be correct. Figure 1 shows the JVML instructions. We assume that sub-
routines have a unique return address. The following notation is used for the

types:

BasicType = {int, float, . . .};

Reference Type = ReferenceObject | ReferenceArray;
AddressType = Reference Type | ReturnAddress;

(3 € BasicType;

7 € {reference} U Basic Type;

7 € {Object} U BasicType;

[T € ReferenceArray;

C € ClassType.

The types form a domain, where T is the top element and L is the bottom
element. In this domain T represents either an undefined type or an incorrect
type.

Class types C' are related as specified by the class hierarchy. Figure 2
shows an example of class hierarchy: E, F and G are user defined classes, with
F and G extending E. Not all types are shown.

Each method is indicated by an expression of the form C.m(7, ..., 7,) : 7,
where C' is the class which method m belongs to, 7, ..., 7, are the argument
types and 7, is the type of the return value. Each method is compiled into a
(finite) sequence of bytecode instructions B. We use BJi] to indicate the i-th
instruction in the sequence, with B[0] as the entry point.

Figure 3 shows the rules of the standard verification algorithm. Each rule
has a precondition, which contains a set of constraints, and a postcondition,
which contains the transition from the before to the after state of an instruc-
tion. For example, an iload x instruction requires a non-full stack and the
int type to be associated to register x; its effect is to push int onto the stack.
We have used A to indicate the empty stack and, to simplify, the rules show
only the constraints on the types.

The goal of the verification is to assign to each instruction i a mapping
M from the registers to the types, and a mapping s° from the elements in the
stack to the types. These mappings represent the state St' = (M?, s*) in which
the instruction 4 is executed. A state St is computed as the least upper bound
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Bop: [ Takes two operands of type [ from the stack, and pushes the result
(of type 3') onto the stack.

[const d Loads a constant d of type 3 onto the stack.

Tload x Loads the value of type 7 from register = to the stack.

Tstore x Takes a value of type 7 from the stack and stores it into register x.

ifcond L Takes a value of type int from the stack, and jumps to L if the value
satisfies cond

goto L Jumps to L.

new C Creates an instance of class C' and adds a reference to the created

instance on top of the stack.

Creates an instance of an array of class 7 and adds a reference to the
instance on top of the stack.

Takes an array reference and an integer index from the stack. The
array reference is of type /3. Loads on the stack the reference of type
0 saved on the index position in the referenced array.

Takes an array reference, an integer index and a reference from the
stack. The array reference is of type /3, the reference of type 3. The
reference is saved in the referenced array on the index position.

Takes an array reference and an integer index from the stack. The
array reference is of type [C. Loads on the stack the reference of
type C saved on the index position in the referenced array.

Takes an array reference, an integer index and a reference from the
stack. The array reference is of type [C, the reference of type C.
The reference is saved in the referenced array on the index position.

Takes an object reference of class C' from the stack; fetches field f
(of type 7) of the object and loads the field on top of the stack.

Takes a value of type 7 and an object reference of class C' from the
stack; saves the value in field f of the object.

7Tn):7—r

Takes the values vy, ..., v, (of types 71,...,7,) and an object refer-
ence of class C from the stack. Invokes method C.m of the object
with actual parameters vy, ...,v,; places the method return value
(of type ) on top of the stack.

Treturn Takes the value of type 7 from the stack and terminates the method.
jsr L Places the address of the successor on the stack and jumps to L.
ret x Jumps to the address specified in register z.

Fig. 1. Instruction set

of all the interpreter states Q° = (i, M, s) obtained while applying the rules.
The rules are applied within a standard fixpoint iteration which uses a worklist
algorithm. Until the worklist is not empty, an instruction B[i] is taken from
the worklist and the states of the successor program points are computed. If
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Fig. 2. Some types and the subtyping relation. Not all types are shown.

the computed state for a successor program point j changes (either the state
at j has not been computed yet or the state already computed differs), B[j]
is added to the worklist. The fixpoint is reached when the worklist is empty.
Initially, the worklist contains only the first instruction of the bytecode. The
initial types on the stack and registers represent the state at the method
entrance: the stack is empty and the type of the registers are set as specified by
the method signature (the registers not associated with the method arguments
hold the undefined type T).

As a consequence of the algorithm, the state at a program point of the
instructions that represent a merge point between control paths (i.e. having
more than one predecessor in the control flow graph) is the least upper bound
of the after state of all the predecessors. If, for example, register x has type
int on a path and type T on another path, the type of x at the merge point
is T. The least upper bound of stacks and memories is done pointwise. The
pointwise least upper bound between stacks requires stacks of the same height
(otherwise there is a type error).

3 On-card bytecode verification

The verification algorithm is expensive for both computation time and memory
space since a data-flow analysis of the code is performed. The before state of
each instruction must be recorded during the analysis. As an optimization,
Sun’s bytecode Verifier maintains the state of each program point that is either
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Bli| = Bop: /', mnC B, v, Cp

op
(i, M, vivgs) — (1 + 1, M, 3's)
Bli] = Tconst d
const
(i, M, s) — (i +1, M, 7s)
Bli| = tload x, M(z)C 7
load
</L.7 M7 S> - <Z+ 17 MJ M(l‘)$>
Bli| = Tstorez, vC T
store
(i, M, vs) — (i+1, M[z/v], s)
Bli] = taload, v; = ', ' C 7, vy C int
aload
(i, M, vijvas)y — (i + 1, M, v's)
Bli| = Tastore, v; = ', v C 7, v C int, v3 C 7
astore
<i7 M> 2)12)21}35> - <Z +1, Mv S>
Bli] = ifcond L, v C int
if"
(i, M, vs) — (L, M, s)
Bli]| = ifcond L, v C int
it/

(i, M, vs) — (i+ 1, M, s)

Fig. 3. The rules of the standard verifier.

the target of a branch or the entry point of an exception handler [7]. The set
of states saved during the data-flow analysis is called dictionary.

The on-card bytecode verification is identical to a standard verification,
however special optimizations must be used since cards have limited resources.
Commercial 2004 Java Cards typically provide 1-4KB of RAM, 32-64KB of
persistent writable memory and 128-256KB of ROM. Only the RAM should
be used to store temporary data structures because the persistent memory is
too slow and allows a limited number of writing cycles.
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Bl[i] = goto L

goto <27 M7 $> I <L7 M7 S>
B[i] = new C

new <7'a M7 8>—><Z+17 M7 C‘S>

Bl[i] = newarray 7, v C int
newarray (i, M, vs) — (i+ 1, M, [rs)

B[i] = getfield C.f:7, vC C

getfield (i, M, vs) — (i + 1, M, 7s)
B[i]| = putfield C.f:7, m C 71, 12 CC
putfield (i, M, vivas) — (i + 1, M, s)
B[i] = invoke C.m(71,...,7n):Tr, v; C7;(1<j<mn), vCC
invoke (i, M, v1 - vn0s) — (i + 1, M, )
Bli]=71returnv Cr, v C 7
return <Z7 Ma 1)> - <_17 M7 )‘>
Bli] =jsr L
= (i, M, s) — (L, M, 145)
Bli] = ret z, M(z) C ReturnAddress
ret <7'7 M7 S) - <T¢l7 M7 S)

Fig. 4. The rules of the standard verifier (continued).

8.1 Related work

Many approaches have been presented to develop an on-card Verifier.

Rose and Rose [11] propose a solution based on a certification system
(inspired by the PCC, ‘Proof Carrying Code’ work by Necula [10]). The
verification process is split in two phases: lightweight bytecode certification
(LBC) and lightweight bytecode verification (LBV). LBC is performed off-
card and produces a certificate that must be distributed with the bytecode.
LBV is performed on-card, and it is a linear verification process that uses the
certificate to assure that the bytecode is safe. LBV is currently used in the
KVM of Sun’s Java 2 Micro Edition.

Leroy, in [6], proposes to reduce memory requirements with an off-card
code transformation, also known as ‘code normalization’. The transformed
code complies with the following constraints: every register contains the same
type for all method instructions and the stack is empty at the merge points.
The verification of a ‘normalized’ code is not expensive: only one global state
is required since the type of the registers never change.

Deville and Grimaud [4] propose to use the persistent memory for storing
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the data structures needed for the verification process. Their strategy holds
all data structures in RAM as long as possible, and swaps them in persistent
memory when RAM space is missing. A special type of encoding is proposed
since persistent memory cells have a limited number of writing cycles.

A verification algorithm that reduces the size of the dictionary by allocating
dynamically its entries has been presented in [2]. The algorithm assigns a life-
time to the dictionary entries, splits the method code into control regions [5]
and analyzes the regions one-by-one. Each region is analyzed by applying
the standard verification algorithm: the size of the dictionary is reduced since
unnecessary entries are never kept in the memory.

4 Our approach

In this paper we present a space-aware bytecode verification algorithm that
reduces the size of the dictionary by performing a progressive analysis on
different abstractions of the domain of types.

4.1 The multipass concept

The multipass verification algorithm is the standard algorithm performed in
many specialized passes. Each pass is dedicated to a type. The dictionary size
is reduced since, during each pass, the abstract interpreter needs to know only
if the type (saved in a register or in a stack location) is compatible with the pass
or not. The compatibility of the type is given by the type hierarchy. Actually,
only one bit is needed to specify the type of the data saved in registers and
stack locations.

The analysis is performed on the whole bytecode for every pass. The
number of passes depends on the instructions contained in the method: one
pass is needed for each type used by the instructions. Additional passes are
also needed to check the initialization of objects (this concept is explained in
Section 4.4).

The multipass verification is possible since the bytecode instructions are
typed and the number of types is limited: basic types (int, byte, ...), reference
types (the ones listed in the constant pool) and return address type.

An example of data-flow analysis (dfa) performed with the standard ap-
proach and with the multipass approach is shown in Figure 5. We can notice
the different encoding strategies for the two approaches: during the standard
dfa the types are fully specified. On the other hand, during each multipass
dfa pass, a one bit encoding of the types is used.
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static int debit (int aC) STANDARD DFA MULTIPASS DFA
array of int int

(registers) (stack) (registers)  (stack) (registers)  (stack)
0: iload_0 {intT} O {00} 0 {10} 0
1: getstatic AA.h | {intT} (int) {00} (0) {10} (1)
4: if_icmpne 13 {intT} (intint) {00} (00) {10} (11)
7: getstatic AA.c [l {intT} 0) {00} 0 {10} 0)
10: iconst_0 {intT} ([int) {00} (1) {10} (0)
11: iaload {intT} (int[int) {00} (01) {10} (10)
12: istore_1 {intT} (int) {00} (0) {10} (1)
13: getstatic AA.c [l {intT} 0) {00} 0) {10} 0)
16: iconst_1 {intT} ([int) {00} (1) {10} (0)
17: iaload {intT} (int[int) {00} (01) {10} (10)
18: istore_1 {intT} (int) {00} (0) {10} (1)
19:iconst_1 {intint} 0) {00} @] {11} 0
20: ireturn {intint} (int) {00} (0) {11} (1)

Fig. 5. An example of standard data-flow and multipass data-flow.

4.2 The rules

First we formulate the operations performed by the standard Verifier and then
we give a formal description of the multipass algorithm.

Definition 4.1 [transition system]| A transition system L is a triple (Q, —
,Q%), where Q is a set of states, Q° € Q is the initial state, and —C Q x Q
is the transition relation.

We say that there is a transition from Q to Q" if (Q,Q') €—, and we
write Q — @'. We denote with — the reflexive and transitive closure of
—. We say that a state @) € Q is a final state of the transition system if and
only if no @' exists so that Q — Q' (we write Q) /—).

Let D be the set of types, V the set of registers, A the set of bytecode
addresses, Z the set of bytecode instructions, M : V — D the set of memories
(M associates a type to every register) and S the set of finite sequences of
elements of D (S associates a type to every element in the stack locations).
An interpreter state is defined as a triple (i, M, s), where i € A, M € M and
s € §. Given a method m, we define B,, : A — T as the instruction sequence
of the method. We assume that a lattice £ = (D, C) of types is defined (it is
shown in Figure 2). The C relation is extended pointwise to the sets M, S.

4.2.1 Standard rules

The rules shown in Figure 3 define a —C Q x Q relation.
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Given a method C.m(ry,...,7,): 7., which contains a bytecode sequence
B, we define the initial memory M° € M such that M°(0) = C, M°(i) = 7,
if 1 <i<nand M°i) = T otherwise (M assigns types to the registers
according to the method parameters). We define with (Q,—, (0, M°, \))
the transition system defined by the rules in Figure 3, starting from the initial
state (0, MO, \).

This transition system is an abstract interpretation of the execution of the
bytecode. The Verifier implicitly uses this abstract interpretation to associate
a state with each instruction of the bytecode. During the data-flow analysis,
the state associated to the instruction at offset ¢ is St' = (M' s'), where
(M, s") is the least upper bound of memories and stacks of all the interpreter
states (i, M, s) that appear in the transition system.

The standard Verifier gives an error if, starting from state (0, M°, \), it
produces a (i, M, s) state where no further transition can be made and i # —1.
Formally, we write: (0, M°, \)—/

4.2.2  Multipass rules

We are now going to give a formal description of the multipass algorithm.
For each pass type p € D, we define a lattice £, = (D,, C,), where D, =
{T,,L,} and L, C, T,. We define also function o, : D — D, as:
1,iftCp
ap(t) = ]
T, otherwise
which means that the abstraction of a type tis _L,, if and only if ¢ is assignment
compatible with type p of the pass.
For example, if ¢ € C, the abstraction function for class type E (refer to
the lattice in Figure 2) is the following:

1g if t € {F,G, null}
ag(l) = _
Tg otherwise

The o, function is extended pointwise to the sets M and S. We define
a (Qp, —p, (0, Mg, A)) transition system for each p € D type, where @), =
(i, My, sp) € Qp, M, e M, :V —=D,, s, €S,.

Each transition relation —, of the multipass is obtained by the corre-
sponding standard transition relation (defined in Figure 3) simply by applying
the «, function to the types and by changing each C into ,. The multipass
rules are shown in Figure 6. Some rules are explained hereafter.

Let us take into consideration a Sop: 3’ instruction: iadd. In this case § =
int and ' = int. The constraints to be checked are v; C, a,(int) and vy C,
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Bli] = Bop: ', v1 Ep p(B), a2 B, ay(B)

o
Pr (i, M, v1v98) —p (i + 1, M, oy, (0')s)
Bli] = Tconst d
const
P (i, M, s) —, (i+1, M, a,(7)s)
Bli] = 1load z, M(x) C, a,(T)
load
g <Z7 M7 $> —p <Z+1a Ma M(:U)S>
Bli] = Tstore , v L, a,(7)
store
: <i7 M, US> —p <i+17 M[x/v]73>
Bli] = Taload, v1 T, a,([T), v2 T, a,(int)
aload
’ (i, M, vivas) — (i + 1, M, ap(7)s)
Bli| = rastore, v1 &, a,,(/7), v2a &, a,,(int), v3 T, a,(7
. p Ap p Op p Op
astore
P (1, M, vyvauss) —, (i + 1, M, s)
Bli] = ifcond L, v T, ay(int)
if 1
! <Z> M7 U3> —p <L7 M7 8>
Bli] = ifcond L, v C, ay(int)
if 7

(i, M, vs) —, (i + 1, M, s)
Fig. 6. The rules of the multipass verifier.

a,(int). Notice that the constraints may fail only during the int pass, since
ap(int) = Ly if and only if p = int. If the top and next-to-top positions of the
stack contain valid types (i.e. L) then the rule is successfully applied and
the transition is performed: (i, M, LingLingS) —ine (1+1, Ming, Lings). For
the iadd instruction, if the pass is different from int, the «,, function returns
Tint, thus the constraints are always satisfied and therefore the transition
is performed. Also notice that when pass p is different from int, the iadd
instruction always places T, on the stack, since ,,(int) = T, if p # int. Now
let us suppose that there is a type error in the bytecode. The iadd instruction,
for example, may have found a type that is different from int on the stack top:
the before state would have been (i, M., TinsLines). The multipass rule finds
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Bli] = goto L
g0t0p <Z7 ]\47 3> —p <L7 M7 $>
B[i] = new C
new, (i, M, s) —p (i +1, M, ap(C)s)
Bli] = newarray 7, v Cp ap(int)
newarray, (i, M, vs) —p (i + 1, M, ap([T)s)
BJi] = getfield C.f:7, v, ap(C)
getfield, (i, M, vs) —p (i +1, M, ap(7)s)
Bli] = putfield C.f:7, v1 Cp ap(7), w2 Cp ap(0)
putfield, (i, M, v1vas) —p (i + 1, M, s)
Bl[i] = invoke C.m(71,...,7n):Tr, v; Cp ap(m5) (1 <j<n), v, ap(C)
invoke, (i, M, vy - vnvs) —p (i + 1, M, ap(7))
Bli] = treturn, v £, ap(7), v C, ap(r)
return, (i, M, v) —p (=1, M, X\)
Bli]=jsr L
jstp (i, M, 5) —p (L, M, ap(M(2))s)
Bli] = ret x, M(z) C ap(ReturnAddress)
ret, (i, M, s) —p (ra, M, s)

Fig. 7. The rules of the multipass verifier (continued).

the type error in pass p = int, since constraint vy T, a,(int) is not satisfied.

Let us take in consideration a 7load z instruction: aload. In this case
T = ReferenceType. As a consequence, the constraint in the rule is M(x) C,
a,(ReferenceType). The constraint may fail only during the ReferenceType
pass, since o, (ReferenceType) = L, if and only if ReferenceType C p. If the
constraint fails then the abstraction of the type found in register x was not
compatible with a reference type.

Notice that the aload and the astore instructions have asymmetric behav-
iors since the aload does not work on the ReturnAddress type (different pre-
fixes have been used in the rules for these two instructions). The Bop, Tconst,
ifcond, newarray, Tload and Tstore instructions are always checked during
one pass. The other instructions may require operands of different types, thus
their constraints are possibly checked in more than one pass.

4.2.8 The aaload instruction

The aaload instruction needs some additional explanation. The instruction
loads the elements contained in array of references on the stack: it takes an
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index and an array reference from the stack and pushes a reference to the
array element on the stack. For instance, if during the verification process the
type of the array reference is [A, then the type placed on the stack by the
aaload is A.

During the standard verification, the return type is inferred by examining
the type of the array reference on the stack; on the other hand, during the
multipass verification the type is inferred by the pass type. Since the type
returned by the aaload is different from the one of the operands, the multi-
pass Verifier checks the type returned in a different pass. In particular, the
aaload type returned can be checked only during the ReferenceType pass since
the type is computed by inspecting only the instruction prefix: the aaload
instruction embeds no detailed class information of the array of references it
is going to work with.

The rule of the standard Verifier places a value of type C' on the stack,
the multipass interpreter places «,(ReferenceType). The standard interpreter
can compute class C' since the array reference on the stack is of type [C.
The correct type in the multipass should have been a,(C'), but it cannot be
computed with the types stored in the stack of the multipass.

Some type-correct bytecodes may not be accepted because of the loss of
precision, nevertheless, we can notice that arrays of references are actually
never used in Java Card applets. The loss of precision can be solved, for
example, by specializing the analysis for each array of the reference type, and
by using a two bits type encoding in order to analyze the array references and
the array elements in the same pass.

4.3  The correctness

Now we are going to prove that bytecodes rejected by the standard Verifier are
also rejected by the multipass Verifier. The following definitions and lemmas
are used.

Definition 4.2 [safety] Given p € D, we define a binary relation safe, €
Q x Q, as:
Q safe, Qp iff a,(Q) C, @y
which means that () is safely approximated by @, if and only if a,(Q) C,
Qp (ie. ap(M) E, M, and ay(s) E, s,). We naturally extend the safe,

relation to transition systems.
The following Lemma states that Vp, ,, is an homomorphism:

Lemma 4.3 (homomorphism) Given a state Q = (i, M, s), if Q@ — Q'
then Vp € D, 3Q,, such that a,(Q) —, @), and a,(Q') E, Q,,
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Proof (Sketch) By cases on the rules of Figure 3 O
Notice that the abstraction loses precision when a,(Q") C, @, [12].

Lemma 4.4 (monotonicity) Givenp € D and two states Q, = (i, M, s;)

and Q2 = (i, My, s7) such that Q) C Q2 if (Q, —, Q;’ and Q2 — le)
then QY C Q.

Proof (Sketch) By cases on the rules of Figure 6 O

The homomorphism and the monotonicity properties guarantee that the
standard transition system is safely approximated by the multipass transition
system obtained with the a, function [12].

Lemma 4.5 Vp € D, (Q, —, (i, M°, X)) safe, (Qp, —, (i, oy, (M), ).

Proof. By Lemma 4.3 and Lemma 4.4 O
The following Lemma defines a property of the o, function.

Lemma 4.6 Given v1,v5 € D, if vi L va = 3p ra,(v1) Ly, ayp(v2).

Proof. Choose p = vy. It is au,(v1) Z o, (vs) by definition of «,, since, if
vy £ g, then ay, (v1) = Ty Ly Loy = y(v2) O

The following theorem states that if the standard Verifier gives an error,
then dp such that —, gets stuck.

Theorem 4.7 (0, M°, \) /> = Ip: (0, a,(M°), \) £,

Proof (Sketch) Given that (0, M° \) %, there exists a final state Q =
(1, M, s), with ¢ # —1; from Lemma 4.5, we know that, for each p, Q, =
(i, My, sp) exists so that @ safe,@,. Then, for each possible final state @,
we have to show that there exists p such that @), is also final. The proof
proceeds by cases: Bl[i] must be one of the instructions enumerated in the
rules of Figure 3. Only one rule (two if the instruction is an if) could be
applied to make a transition from (). Since @ is final, the corresponding rule
cannot be applied: this means that either the preconditions are not met, or
the form of the before state in the transition does not match with . The
following reasoning must be repeated for each rule. It is easy to show that, if
() does not match the before state of the transition, the form of @), does not
match in the corresponding multipass rule, so @), is final (for every p). If a
precondition is not met, we note that all the preconditions, in Figure 3, are
of form v [Z v/, with v taken from the before state (in a register or on the
stack) and v’ fixed by the instruction. The corresponding constraint in Figure
6 becomes v [Z, a,(?'), where v is taken from the corresponding position in
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the (abstract) before state. From the definition of the safe, relation, we know
that, for each p, a,(v) Z, v and, by Lemma 4.6, we know that 3p such that
v Z v = az(v) Ly ap(v’). Thus, we must have v Z; a;(v"). This implies that
state ()5 does not meet a precondition in the (only) rule that could be used
to make a transition, so it is a final state. O

4.4 Checking object initialization

The creation of a new object is a single statement in the Java programming lan-
guage: the statement provides object allocation and initialization. However,
in the bytecode the object initialization must be checked since the objects are
created during two distinct phases. The first phase is allocation of the space
in the heap, the second is object initialization. In particular, the new instruc-
tion allocates the space and the call to the appropriate constructor <init>
performs the object initialization. The Verifier checks that the objects are not
initialized twice and that they are not used before they have been initialized
[9].

Notice that references to multiple not-yet-initialized objects may be present
in the stack locations and in the registers: when the constructor in called, it
must know which reference points to which object in order to initialize them
correctly. The standard verification algorithm uses a special type to keep trace
of the uninitialized objects [9]. The special type contains the bytecode position
of the new instruction that creates the object instance.

The multipass analysis requires an additional pass for each class type:
uninitialized objects of a given class are traced within a pass. A data struc-
ture that holds information about the instance of uninitialized objects is also
needed. It should be noted that uninitialized objects must not be present in
the stack locations and in the registers when a backwards branch is taken [9].
This last constraint simplifies structure of the data needed during the multi-
pass: its size is constant and the object initialization can be resolved with the
FIFO strategy.

5 Experimental Results

A prototype tool has been developed by using the open-source BCEL /Justlce
package [1]. BCEL (ByteCode Engineering Library) is a set of APIs that pro-
vides an object-oriented view of the binary class files. Justlce is a bytecode
Verifier. The prototype is a modified version of Justlce: the main modifi-
cations have been made to specialize the data-flow engine for the multipass
process. It is available at http://www.ing.unipi.it/~01833499.

The prototype has been tested with many methods. Hereafter we are
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package method targets dictionary size

(standard | multipass)
com.aelitis.azureus.core.peermanager.utils.PeerIDByteDecoder | PeerlDByteDecoder 64 4.3 KB 0.18 KB
jasper.Jasper recurseClasses 54 1.3 KB 0.05 KB
jasper.Code_Collection <init > 108 2.4 KB 0.10 KB
com.gemplus.purse.Purse applnitDebit 15 0.97 KB 0.04 KB
com.sun.javacard.impl.AppletMgr createApplet 18 1.21 KB 0.05 KB
com.sun.javacard.jcasm.ParserTokenManager jiMoveStringLiteral 82 7.92 KB 0.33 KB
org.jgraph.graph.DefaultEdge$DefaultRouting route 14 0.99 KB 0.04 KB

Fig. 8. Dictionary size of some methods.

presenting the statistics relevant to five applications: 1) Azureus, an open-
source peer-to-peer application: it contains a large number of network and
identification methods; 2) JGraphT, an open-source mathematical library; 3)
Jasper, a class file disassembler; 4) the Java Card Runtime Environment; 5)
the Pacap prototype, an Electronic Purse application.

The statistics include the number of targets and size of the dictionary for
the standard and multipass verification. As expected, the size of the multipass
verification dictionary is more than ten times smaller than the size of the
standard verification dictionary. All the space gained is due to the encoding
of the types: 1 bit for the multipass, 3 bytes for the standard.

Figure 8 reports the size of the dictionary during the verification process
of methods belonging to the examined packages (the space overhead for the
dictionary indexing is not taken into account). The dictionary size is computed
as T'x (H + N) x E, where T is the number of targets, H and N are the
maximum stack height and the maximum register number, F is the number of
bytes needed to encode the types. The standard verification of some methods
requires more than 2KB of RAM and, for complex methods, 4KB of RAM are
not sufficient. On the other hand, the multipass verification comfortably fits
in 1IKB of RAM for all the examined methods. Moreover, it should be noted
that the dictionary usually contains many duplicated states when the number
of targets is very high: the one bit encoding of the types reduces the number
of possible states thus, in some cases, the dictionary size can be optimized by
avoiding state duplication [2].

Some considerations on the time needed to perform a complete multipass
verification can be made. We analyzed the number of passes needed for each
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method in order to perform a complete multipass verification: it depends on
the instructions contained in the method and, in many cases, it is less than
what we expected simply by analyzing the constant pool. For the methods
we have tested, the total number of types (types in the constant pool and
basic types) was 26.7 in average, while the number of types actually used
in the methods was only 5.8 (22%), in average. We should also consider
that each pass of the multipass Verifier is much simpler than the standard
one: in particular, the multipass verification always compares bits, while the
standard one usually needs to traverse the class hierarchy in order to compute
the results.

6 Further work and conclusions

In this paper we presented an approach for bytecode verification that optimizes
the use of the system memory and we have proved that it is correct in relation
to the standard data-flow analysis. The approach reduces the space for the
type encoding by executing multiple passes and by verifying a single type at
each pass. It should be noted that, by increasing the number of bits used
to encode the types, the multipass analysis can be performed on more than
one type during each step. In particular, the multipass analysis can be fine-
tuned on the card characteristics. The multipass approach is general and
potentially applicable to different optimizations and application areas. For
example it can be used to improve the time performances of data-flow analysis
on multi-processor systems. In a multipass strategy, each processor could
analyze the whole code for a different abstraction and the analysis could be
fully parallelized.
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