Back to the sensor types

Hall sensors:

Advantages:

□ Wide linearity range, inexpensive, highly integrable.

Drawbacks:

 \Box Relatively large detection limit (not suitable for B < 1µT)

Magnetic sensors for low and ultra-low magnetic fields:

- Anisotropic Magneto-Resistance (AMR sensors)
- Giant Magneto-Resistance (GMR) Tunnel Magneto Resistance (TMR)
- Flux Gates

Anisotropic Magneto Resistance

A premise on magnetization: ferromagnetic materials

Anisotropic ferromagnetic materials

Materials that present this characteristic are, for example Iron-Nickel (Ni_xFe_y) alloys, properly deposited under a magnetic field The film shape (L >> W) enhance the anysotropy

M

 $-H_{c}$

M_{sat}

Н

 H_{c}

Anisotropic Magneto Resistance (AMR)

 B_M : permanent magnetization (saturated) B_E : proportional to the external field to be measured (H_E)

$$\beta = \arctan\left(\frac{B_E}{B_M}\right) \cong \frac{B_E}{B_M}$$
$$|B_E| << |B_M|$$

Resistance vs external magnetic field

The derivative is around zero in this region, meaning that the sensitivity to external fields is extremely small

"Barber Pole" approach:

Barber pole

A thin metal film of a ferromagnetic conductor is deposited and magnetized along the easy axis

A highly conductive layer (e.g. AI), is deposited on top and patterned in order to form a series of 45 - degrees oriented stripes

The fact that the AI layer is much more conductive than the underlying magnetic one, forces the current to cross the gaps between the AI stripes along the direction of minimum distance, which is perpendicular to the aluminum stripe edges. Then the current density in the ferroelectric materials between the conducting stripes form a 45° angle with permanent magnetization.

Magnetic field sensor based on AMR Ferromagnetic Aluminum material Rstripes (very low resistivity) (high resistivity) B B_M 45° 180° θ For $B_F=0 \theta=45^{\circ}$ $R = R_{\perp} + \Delta R \cos^2(\theta)$ $\theta = \frac{\pi}{4} + \beta$ Maximum slope 45° Variations produced by the $|\cong \frac{B_E}{B_N}$ $\beta \cong \arctan\left(\frac{B_E}{B_E}\right)$ dRexternal magnetic field H_F Maximum sensitivity oriented along the $R dH_{F}$ sensitive axis

Magnetic field sensor based on AMR

Effect of reversing the permanent magnetization

Wheatstone bridge of AMR resistors

Offset free read cycle

The offset is due to mismatch of the zerofield resistors (R₀) of the Wheatstone bridge

Inverting the magnetization of all AMR resistors change the sign of the output voltage but leaves the offset unchanged

Integrated AMR sensor with magnetization coil (set-reset coil)

Very sensitive magnetic sensors

- Giant Magneto-Resistance (GMR) sensors
- Tunnelling Magneto-Resistance (TMR) sensors

Applications.

- 1. Hard Disk Head
- 2. Solid-State magneto-resistive RAMs (MRAMs)
- 3. Detection of magnetically-labelled bio-markers

Giant Magneto Resistance (GMR) Sensors

Ferro Magnetic (FM) Layers (medium conductivity)

Non-FM, high conductivity layer (e.g. Cu)

Layer thickness: a few monolayers

With no external field, magnetization tends to be opposite in adjacent layers

High surface scattering

in the conductive layers.

Quantum Mechanics principle: Spin-dependent scattering

High resistance

Effect of an external field

Resistance variations can be much larger than in AMR sensors (up to 100 %), but this is not a linear effect (it is rather a threshold effect).

strength force all the layers to have parallel magnetization

> Low scattering Low resistance

TMR (Tunneling Magneto Resistance)

Flux-Gates Magnetometer : Principle

Н

 $H = H_{IM} + H_{ext}$

 H_{IM} : the excitation field, proportional to I_{M} H_{ext} : is the external field, that we want to sense

The fluxgate principle is effective also with soft magnetic materials. What is essential is the presence of saturation.

In the case of Hext=0, the sensed voltage V_{s} has the property of half-wave symmetry. Then it has no even harmonics

Flux-Gates Magnetometer : Principle

The external field H_{ext} , shifts the excitation field H (in the example H is shifted up). As a result, magnetic induction B spends more time in the positive saturation value (B_{MAX}) than in the negative one (.-B_{MAX}). This introduce an asymmetry that results in the presence of a second harmonic component.

The relationship between the magnitude of the second harmonics and H_{ext} is linear for small values of the field. The sign of H_{ext} is represented by the phase of the second harmonics that can be detected by means of a synchronous demodulator.