Hazards due to unwanted coupling with high voltage sources

Premise: *resistive current sensing* in power systems

Low-side current sensing

High-side current sensing

P. Bruschi – Sensor Systems

Risk for the sensor system

Voltage and current sensing in battery packs for e-vehicles

Goal: monitor the current through the battery and the voltage of individual cells for State-of-Charge estimation.

Hazards to humans

Case 1: AC powered biomedical apparatus, electrically connected to the patient.

Hazards to humans

Case 2: Sensing systems with possible continuity with a high voltage domain.

The sensor is isolated from conductors of the high voltage domain, but a leakage From the operator side, impedance may originate from dielectric the front panel control failure or an unwanted contact (Z_{leak1}) . may lose insulation due High voltage to wearing or presence doma of moisture / accidental liquid pouring L_{leak1} $\frac{V_L}{Z_{BE} + Z_{laak1} + Z_{laak2}}$ \dot{i}_{body} l_{body} Z_{RF}

P. Bruschi – Sensor Systems

Isolation approach 1: Isolation Amplifier

Techniques for analog signal insulation

Transformer coupling
Optical Coupling
Capacitive Coupling

Example of transformer coupling: the AD210

FUNCTIONAL BLOCK DIAGRAM

P. Bruschi – Sensor Systems

Principle of analog optical coupling

Example: Broadcom ACNT-H79A

An optical link is marked by strong nonlinearity. It can be used in an open-loop scheme only to transmit digital signals.

For analog signals, a feedback scheme can be used, as in the figure. The LED CR_1 is coupled in a symmetrical way to photodetectors CR_3 and CR_2 , thus:

$$\begin{split} I_1 &= I_2 \quad \text{(photocurrents)} \\ I_1 &= I_{IN} = \frac{V_{IN}}{R_G} \quad \text{virtual short circuit due to} \\ \text{optical feedback at } A_1. \end{split}$$
$$V_{OUT} &= I_2 R_K = V_{IN} \, \frac{R_K}{R_G} \end{split}$$

Isolation amplifier with capacitive coupling

DIN V VDE V 0884-11 (VDE V 0884-11): 2017-01⁽²⁾

VIORM	Maximum repetitive peak isolation voltage	At AC voltage	2121	V _{PK}
V _{IOWM}	Maximum-rated isolation working voltage	At AC voltage (sine wave); see Figure 4	1500	V _{RMS}
		At DC voltage	2121	V _{DC}

Isolation approach 2: Isolated Digital Link

(1) Optical (photocouplers) (2) Capacitive

Example of digital data isolator: I2C isolator

P. Bruschi – Sensor Systems

Example of isolated power supply

