Main building blocks in analog ICs

Current Mirrors: general definitions and properties

These characteristics are generally non feasible with simple elementary circuits. They can be obtained with complex architectures (current amplifiers) that cannot be considered current mirrors anymore.

Current mirrors: n-type and p-type mirrors

Conventions on voltage and current signs used to obtain positive values also for p-type mirrors

Convention for an n-type current mirror

Alternative convention for a p-type current mirror

With this convention all quantities are positive also for the p-type mirror

The mirror is drawn upside-down because the voltage of the Ref terminal is greater than the voltage of In and Out ones

Current reversing function of a current mirror

 V_{th}

Equivalent circuit seen from the mirror output terminal

This is a current **source** (the current exits from the generator)

n-type mirror is required (the input current enters the mirror)

1_{in}

 V_{in}

I_{out}

Ref

m

Out

Vout

The circuit connected to the output port must be able to provide a positive V_{out} The mirror is seen by the output circuit as a an equivalent current source. Note that now the current enters the source (**=sink**)

Current reversing function of a current mirror

An <u>n-type current mirror</u> transforms a current source (the current exit from the source) into a current sink (the current enter the source)

Parameters of merit for a current mirror

General conditions Ideal function: $I_{out} = k_M I_{in}$ $V_{out}, V_{in} > 0$ $I_{out}, I_{in} > 0$ V_{in} should be almost constant 1. and be as small as possible 2. The ideal function should be **V**in maintained down to very small Vout values. The smallest V_{out} V_{MIN} value is indicated with V_{MIN} 3. For $V_{out} > V_{MIN}$, the dependence of **R**_{out} I_{out} on V_{out} must be the smallest as possible. Γh

The typical I_{out} vs V_{out} characteristic of a current mirror

The mirror "Thevenin" voltage, V_{th}

The Thevenin equivalent voltage allows to compare current mirrors regardless of the current magnitude they are designed for. The higher the Thevenin voltage, the more ideal the current mirror.

Presence of systematic errors

Role of V_{in} , V_{MIN} : an example

Small signal equivalent circuit of a current mirror

MOSFET current mirrors: the simple mirror

Simple MOSFET current mirror

$$I_{D} = \beta f \left(V_{GS} - V_{t}, V_{DS} \right)$$

$$I_{out} = \beta_{2} f \left(V_{GS} - V_{t}, V_{DS2} \right) = \beta_{2} f \left(V_{GS} - V_{t}, V_{out} \right)$$

$$I_{in} = \beta_{1} f \left(V_{GS} - V_{t}, V_{DS1} \right) = \beta_{1} f \left(V_{GS} - V_{t}, V_{in} \right)$$
For $V_{out} = V_{in}$

$$\frac{I_{out}}{I_{in}} = \frac{\beta_{2}}{\beta_{1}} = k_{M}$$

$$V_{out-opt} = V_{in}$$

Parameters of the simple MOSFET current mirror

Increasing R_{out}: source degeneration

$$R_{out} = R_{S2} + r_{d2} \left(1 + g_{m2} R_{S2} \right)$$
$$R_{out} \cong r_{d2} \left(1 + g_{m2} R_{S2} \right)$$

The output resistance is increased by a factor $(1+g_{m2}R_{S2})$ with respect to the simple current mirror

In order to have a linear behavior, so that $I_{out} = k_M I_{in}$, we need that:

Notice:

$$V_{S2} = V_{S1} \Longrightarrow R_{S1}I_{in} = R_{S2}I_{out}$$

design rule
$$\frac{R_{S1}}{R_{S2}} = \frac{I_{out}}{I_{in}} = k_M$$

$$V_{GS1} = V_{GS2} \implies V_{S2} = V_{S1}$$

In this way, we can apply the same formulas of the simple mirror for I_{D1} and I_{D2} that give:

Increasing R_{out}: source degeneration

Unfortunately, V_{MIN} and V_{in} are larger in this mirror:

$$V_{out} = V_{DS2} + R_2 I_{out}$$

The mirror starts to fail at a V_{out} value that make M_2 enter triode region

when V_{out} reduces, lout is nearly constant, then this term is almost constant and it is V_{DS2} to dimmish.

$$V_{MIN} = V_{DSAT2} + R_2 I_{out}$$

To get a large output resistance boosting factor $(1+g_{m2}R_{D2})$, it is necessary to make $R_{D2}I_{out} >> V_{TE}$ In practice, $R_{D2}I_{out}$ (= $R_{D1}I_{in}$) cannot be too large to avoid increasing V_{in} and V_{MIN} too much