CMOS differential amplifier with resistive load: limitations

1. The S/E version has a poor CMRR (large A_{c}) and large input offset voltage
2. Both the S / E and fully-diff. versions reach low voltage gains at small supply voltage
Problem 1: Consider the output voltage in the fullydifferential case with no resistor mismatch:

$$
V_{O D}=R_{D}(\underbrace{I_{D 2}-I_{D 1}})\left(\text { for } R_{D 1}=R_{D 2}\right)
$$

The drain current difference appears:
This reduces A_{c} ($I_{D 1}$ and $I_{D 2}$ tend to be equal for only common mode applied) and the output voltage for $V_{D}=0$ is affected only by matching errors.
Solution for a S/E amplifier: produce the current difference ($\mathrm{I}_{\mathrm{D} 1}{ }^{-I_{\mathrm{D} 2}}$) and then put it into a single resistor. Problem 2: Do not use a passive component for the resistor

[^0]
CMOS differential amplifier with current mirror load

Specifications

- We need a S/E output port
- High CMRR (> 80 dB)
- High gain ($\sim 40 \mathrm{~dB}$) even at low supply voltages ($V_{d c}-V_{s s}$).

Subunits of the amplifier with mirror load

P. Bruschi - Microelectronic System Design

Operating point : $V_{i d}=0$

P. Bruschi - Microelectronic System Design

Demonstration of the exact symmetry of the electrical solution for $V_{i d}=0$

P. Bruschi - Microelectronic System Design

Demonstration of the exact symmetry of the electrical solution for $\mathrm{V}_{\mathrm{id}}=0$

P. Bruschi - Microelectronic System Design

Demonstration of the exact symmetry of the electrical solution for $\mathrm{V}_{\mathrm{id}}=0$

Differential mode gain

P. Bruschi - Microelectronic System Design

Differential mode gain: $R_{\text {out }}$ calculation.

P. Bruschi - Microelectronic System Design

Differential mode gain

$$
\begin{gathered}
R_{\text {out }}=r_{d 2} / / r_{d 4} \quad A_{d}=g_{m 1}\left(r_{d 2} / / r_{d 4}\right) \quad \begin{array}{l}
\text { order of } \frac{g_{m} r_{d}}{2} \\
\text { Independently from } \\
\text { the supply voltage }
\end{array} \\
A_{d}=g_{m 1}\left(\frac{1}{\frac{1}{r_{d 2}}+\frac{1}{r_{d 4}}}\right) \quad r_{d}=\frac{1}{\lambda I_{D}} \quad A_{d}=g_{m 1}\left(\frac{1}{\lambda_{2} I_{D 2}+\lambda_{4} I_{D 4}}\right) \\
A_{d}=\frac{g_{m 1}}{I_{D 1}}\left(\frac{1}{\lambda_{2}+\lambda_{4}}\right)
\end{gathered}
$$

The gain is of the

Differential mode gain

$$
A_{d}=\frac{1}{V_{T E 1}}\left(\frac{1}{\lambda_{2}+\lambda_{4}}\right)
$$

In order to obtain a large differentialmode gain it is necessary to:

- Set $V_{T E}$ to a small value
- Use long MOSFETs (small λ)

Common mode gain

As in the case of differential input voltage, we can try to use the Norton equivalent circuit of the output port.

$$
\begin{aligned}
& v_{\text {out }}=i_{\text {occ }} R_{\text {out }} \quad R_{\text {out }}=r_{d 2} / / r_{d 4} \\
& i_{o c c}=i_{d 1}-i_{d 2} \\
& \text { for } v_{d}=0 \quad i_{d 1}=i_{d 2}=\frac{v_{c}}{2 r_{o s}} \\
& i_{\text {occ }}=0 \\
& v_{\text {out }}=0 \Rightarrow A_{c}=0 \Rightarrow C M R R=\infty
\end{aligned}
$$

Is it possible??

Common mode gain

The problem occurs when we calculate $i_{o c c^{\prime}}$ Placing a short circuit across the output port, disrupts the symmetry:

$$
\begin{aligned}
& v_{d s 4}=0 \quad v_{d s 3}=-\frac{1}{g_{m 3}} i_{d 1} \neq 0 \\
& v_{d s 1}=-\frac{1}{g_{m 3}} i_{d 1}-v_{s 1} \quad v_{d s 2}=-v_{s 1} \neq v_{d s 1} \\
& i_{d 1} \neq i_{d 2} \\
& i \neq i
\end{aligned} \quad i_{o c c}=i_{d 4}-i_{d 2} \neq 0 .
$$

Common mode gain

It is possible to exactly calculate $i_{o c c}$, taking into account the actual $i_{d 1} i_{d 2}$ ratio and $i_{d 4} / i_{d 3}$ ratio
... but this is a very tedious approach There is a much simpler way:

Let us remove the short circuit and directly calculate $v_{\text {out }}$ Now, for $v_{\text {id }}=0$, the circuit is symmetric again and, in particular: $v_{k}=v_{\text {out }}$

$$
v_{\text {out }}=v_{k}=-\frac{1}{g_{m 3}} i_{d 1} \cong-\frac{v_{c}}{2 r_{o s} g_{m 3}}
$$

Common mode gain

Large-signal dc transfer function

P. Bruschi - Microelectronic System Design

Large-signal dc transfer function

$\mathrm{V}_{\text {out }}$ variations for small V_{D} variations around the origin

$$
\begin{aligned}
\Delta V_{\text {out }} & =R_{\text {out }} \Delta I_{\text {OCC }} \\
\Delta I_{O C C} & =\Delta V_{D}\left(\frac{d I_{\text {occ }}}{d V_{D}}\right)_{V_{D}=0}
\end{aligned}
$$

Moving away from the origin, step by step

Large-signal dc transfer function

$\Delta V_{\text {out }}=R_{\text {out }}\left(V_{D Q}\right) \Delta I_{O C C}$
$\Delta I_{O C C}=\Delta V_{D}\left(\frac{d I_{o c c}}{d V_{D}}\right)_{V_{D}=V_{D Q}}$

$$
\Delta V_{\text {out }}=\Delta V_{D} R_{\text {out }}\left(V_{D Q}\right)\left(\frac{d I_{o c c}}{d V_{D}}\right)_{V_{D}=V_{D Q}}
$$

Approximate dc transfer characteristic

P. Bruschi - Microelectronic System Design

P. Bruschi - Microelectronic System Design

Minimum output voltage

P. Bruschi - Microelectronic System Design

Minimum output voltage

$\min \left(V_{\text {out }}\right)=V_{C}-V_{G S 2}+V_{D S A T 2}$

Strong inversion

$$
V_{D S A T 2}=V_{G S 2}-V_{t n}
$$

$$
\min \left(V_{\text {out }}\right)=V_{C}-V_{\text {tn }}
$$

Weak inversion
$V_{\text {DSAT } 2} \cong 100 \mathrm{mV}$
$V_{G S 2} \cong V_{m}$ $\min \left(V_{\text {out }}\right)=V_{C}-V_{\text {tn }}+\underline{100 \mathrm{mV}}$
P. Bruschi - Microelectronic System Design

Complete dc transfer characteristic

P. Bruschi - Microelectronic System Design

Minimum supply voltage $V_{d d}-V_{s s}$

Input common mode range

Lower limit

As V_{C} is progressively decreased, also V_{S} decreases at the same pace and eventually the voltage across the current source I_{0} will get smaller than the minimum value $\mathrm{V}_{\text {MIN }}$. From that point on, I_{0} will rapidly decrease, turning off the stage.

$$
\min \left(V_{C}\right)=V_{S S}+V_{M I N}+V_{G S 1}
$$

Input common mode range

Upper limit

As V_{C} is progressively increased, also V_{S} increases at the same pace. Since $V_{\text {out }}=V_{K}=V_{D 2}$ $=V_{D 1}$ is fixed, eventually $V_{D S 1}$ and $V_{D S 2}$ will drop below the saturation voltage.

$$
\begin{aligned}
& V_{D S 1}=V_{K}-V_{S 1} \geq V_{D S A T 1} \\
& \overbrace{V_{d d}-\left|V_{G S 3}\right|}-\left(V_{C}-V_{G S 1}\right) \geq V_{D S A T 1} \\
& V_{d d}-\left|V_{G S 3}\right|+V_{G S 1}-V_{D S A T 1} \geq V_{C}
\end{aligned}
$$

Input common mode range

$$
\begin{aligned}
& V_{d d}-\left|V_{G S 3}\right|+V_{G S 1}-V_{D S A T 1} \geq V_{C} \\
& \left|V_{G S 3}\right|=\left|V_{t p 3}\right|+\left|V_{G S 3}-V_{t p 3}\right| \\
& V_{G S 1}=V_{t n 1}+\left(V_{G S 1}-V_{t n 1}\right) \quad \begin{array}{l}
\text { These overdrive voltages } \\
\text { can be made close to zero } \\
\text { by design }
\end{array} \\
& \quad \begin{array}{ll}
\max \left(V_{C}\right)= & \underbrace{\left|V_{t p 3}\right|+V_{t n 1}}-\left|V_{G S 3}-V_{t p 3}\right|+\left(V_{G S 1}-V_{t n 1}\right)
\end{array}-V_{D S A T 1}
\end{aligned}
$$

This difference can be >0 because: $V_{t n 1}>\left|V_{t p 3}\right|\left(V_{t 1}\right.$ is affected by body effect)
The input common mode voltage can get even slightly higher than $V_{d d}$

[^0]: P. Bruschi - Microelectronic System Design

