Source coupled MOSFET pair (differential MOSFET pair)

Function

- The input current I_{0} is split into $I_{D 1}$ and $I_{D 2}$, according to fractions x and (1-x)
- x depends on $V_{D}\left(x=0.5\right.$ for $\left.V_{D}=0\right)$

Inputs: V_{1}, V_{2} (effective input signal: $V_{D}=V_{1}-V_{2}$) I_{0} ("Tail current")

Outputs: $I_{D 1}, I_{D 2}\left(I_{D 1}-I_{D 2}\right)$

Analysis of the source coupled MOSFET pair (differential MOSFET pair)

Target: obtain the relationship between the ratio x and the input differential voltage V_{D}

$$
I_{D 1}=x I_{0} \quad I_{D 2}=(1-x) I_{0} \quad \square x \triangleq \frac{I_{D 1}}{I_{0}}
$$

Hypotheses

- M1 and M2 work in saturation and the effect of $V_{D S}$ can be neglected
- Strong inversion equation can be applied
- I_{0} does not depend on V_{1}, V_{2}
I_{0} has been represented as an ideal current source placed between M1, M2 sources and V_{SS} : this is just an example.

$$
I_{D}=\frac{\beta}{2}\left(V_{G S}-V_{t}\right)^{2} \Rightarrow V_{G S}=V_{t}+\sqrt{\frac{2 I_{D}}{\beta}}
$$

P. Bruschi - Microelectronic System Design

Analysis of the source coupled MOSFET pair (differential MOSFET pair)

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{1}=V_{S 1}+V_{G S 1} \\
V_{2}=V_{S 2}+V_{G S 2}
\end{array} \quad V_{S 1}=V_{S 2} \triangleq V_{S}\right. \\
& V_{D}=V_{1}-V_{2}=V_{G S 1}-V_{G S 2} \\
& V_{D}=V_{t 1}+\sqrt{\frac{2 I_{D 1}}{\beta_{1}}}-\left(V_{t 2}+\sqrt{\frac{2 I_{D 2}}{\beta_{2}}}\right)
\end{aligned}
$$

Nominal conditions: $\mathrm{M} 1=\mathrm{M} 2: \beta_{1}=\beta_{2}=\beta$ and $V_{t 1}=V_{t 2} \quad\left(V_{B S 1}=V_{B S 2}\right)$.

$$
V_{D}=\sqrt{\frac{2 I_{D 1}}{\beta}}-\sqrt{\frac{2 I_{D 2}}{\beta}}=\sqrt{\frac{2}{\beta}} \cdot\left(\sqrt{I_{D 1}}-\sqrt{I_{D 2}}\right)
$$

Analysis of the source coupled MOSFET pair (differential MOSFET pair)

Analysis of the source coupled MOSFET pair (differential MOSFET pair)

Analysis of the source coupled MOSFET pair (differential MOSFET pair)

P. Bruschi - Microelectronic System Design

Analysis of the source coupled MOSFET pair (differential MOSFET pair)

Analysis of the source coupled MOSFET pair (differential MOSFET pair)

$$
\begin{aligned}
x= & \frac{1}{2} \pm \frac{1}{2} \sqrt{2\left(\frac{V_{D}}{V_{D M A X}}\right)^{2}-\left(\frac{V_{D}}{V_{D M A X}}\right)^{4}}=\frac{1}{2} \pm \frac{1}{2}\left(\frac{V_{D}}{V_{D M A X}}\right) \sqrt{2-\left(\frac{V_{D}}{V_{D M A X}}\right)^{2}} \\
& \text { condition } 1 \quad V_{D}>0 \Rightarrow x>\frac{1}{2}
\end{aligned}
$$

$$
\left\{\begin{array} { l }
{ x = \frac { I _ { D 1 } } { I _ { 0 } } = \frac { 1 } { 2 } + \frac { 1 } { 2 } (\frac { V _ { D } } { V _ { D M A X } }) \sqrt { 2 - (\frac { V _ { D } } { V _ { D M A X } }) ^ { 2 } } } \\
{ 1 - x = \frac { I _ { D 2 } } { I _ { 0 } } = \frac { 1 } { 2 } - \frac { 1 } { 2 } (\frac { V _ { D } } { V _ { D M A X } }) \sqrt { 2 - (\frac { V _ { D } } { V _ { D M A X } }) ^ { 2 } } }
\end{array} \Rightarrow \left\{\begin{array}{l}
I_{D 1}=\frac{I_{0}}{2}+\frac{I_{0}}{2}\left(\frac{V_{D}}{V_{D M A X}}\right) \sqrt{2-\left(\frac{V_{D}}{V_{D M A X}}\right)^{2}} \\
I_{D 2}=\frac{I_{0}}{2}-\frac{I_{0}}{2}\left(\frac{V_{D}}{V_{D M A X}}\right) \sqrt{2-\left(\frac{V_{D}}{V_{D M A X}}\right)^{2}}
\end{array}\right.\right.
$$

$$
\left(\frac{V_{D}}{V_{D M A X}}\right)^{2}-1 \leq 0
$$

condition 2
The analysis is applicable only between $-\mathrm{V}_{\mathrm{DMAX}}$ and $+\mathrm{V}_{\mathrm{DMAX}}$

$$
\begin{aligned}
& I_{D 1}=\frac{I_{0}}{2}+\frac{I_{0}}{2}\left(\frac{V_{D}}{V_{D M A X}}\right) \sqrt{2-\left(\frac{V_{D}}{V_{D M A X}}\right)^{2}} \\
& I_{D 2}=\frac{I_{0}}{2}-\frac{I_{0}}{2}\left(\frac{V_{D}}{V_{D M A X}}\right) \sqrt{2-\left(\frac{V_{D}}{V_{D M A X}}\right)^{2}}
\end{aligned}
$$

$$
V_{D}=-V_{D M A X} \Rightarrow I_{D 1}=0
$$

$$
V_{D}=0 \Rightarrow I_{D 1}=\frac{I_{0}}{2}
$$

Derivative of the differential pair input-output curves (optional)

$$
\begin{gathered}
I_{D 1}=\frac{I_{0}}{2}+\frac{I_{0}}{2}\left(\frac{V_{D}}{V_{D M A X}}\right) \sqrt{2-\left(\frac{V_{D}}{V_{D M A X}}\right)^{2}}=\frac{I_{0}}{2}\left[1+z \sqrt{2-z^{2}}\right] \text { with } z=\left(\frac{V_{D}}{V_{D M A X}}\right) \\
\frac{d I_{D 1}}{d V_{D}}=\frac{I_{0}}{2 V_{D M A X}}\left[\sqrt{2-z^{2}}-\frac{2 z^{2}}{2 \sqrt{2-z^{2}}}\right]=\frac{I_{0}}{2 V_{D M A X}} \frac{2-z^{2}-z^{2}}{\sqrt{2-z^{2}}}=\frac{I_{0}}{V_{D M A X}} \frac{1-z^{2}}{\sqrt{2-z^{2}}} \\
\hdashline V_{D}=0 \Rightarrow \frac{d I_{D 1}}{d V_{D}}=\frac{I_{0}}{\sqrt{2} V_{D M A X}}=\sqrt{\frac{I_{0}^{2} \beta}{4 I_{0}}}=\frac{1}{2} \sqrt{\beta I_{0}}
\end{gathered}
$$

Extrapolation outside the $-\mathrm{V}_{\mathrm{DMAX}} \leq \mathrm{V}_{\mathrm{D}} \leq \mathrm{V}_{\text {DMAX }}$ region

$$
V_{D}=V_{G S 1}-V_{G S 2} \Rightarrow V_{G S 2}=V_{G S 1}-V_{D}
$$

$$
\begin{aligned}
& \text { Considering the boundary: } \\
& V_{D}=V_{D M A X} \quad I_{D 1}=I_{0} \Rightarrow V_{G S 1}=V_{t}+\sqrt{\frac{2 I_{0}}{\beta}}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
V_{G S 1}=V_{t}+V_{D M A X} \\
V_{G S 2}=V_{G S 1}-V_{D}=V_{t}
\end{array} \quad \text { If } \mathrm{V}_{\mathrm{D}} \text { increases over } \mathrm{V}_{\mathrm{DMAX}}:\right.
$$

$$
\mathrm{V}_{\text {GS1 }} \text { cannot increase because }
$$

$$
I_{D 1} \text { would become }>I_{0} \text {, which is }
$$ impossible.

Then $\mathrm{V}_{\mathrm{GS2}}$ gets smaller than V_{t}
$I_{D 2}$ keeps being $=0$
$I_{D 1}$ keeps being $=I_{0}$
The opposite occurs when V_{D} decreases below $V_{D M A X}$:
P. Bruschi - Microelectronic System Design

Mosfet differential pair: parameters

For $V_{D}=0$ (typical operating point): $\quad I_{D 1}=I_{D 2} \triangleq I_{D Q}=\frac{I_{0}}{2}$
$V_{D M A X}=\sqrt{\frac{2 \cdot 2 I_{D Q}}{\beta}}=\sqrt{2} \sqrt{\frac{2 I_{D Q}}{\beta}}=\underline{\underline{\sqrt{2}\left(V_{G S}-V_{t}\right)_{Q}}}$
$\left.\frac{d I_{D 1}}{d V_{D}}\right|_{V_{D}=0}=\frac{1}{2} \sqrt{2 \beta I_{D Q}}=\frac{g_{m}}{2}$

Small signal behavior

For small variations $\left(v_{d}\right)$ of V_{D} around 0 :

P. Bruschi - Microelectronic System Design

Large-signal dependence of the source voltage on V_{D}

P. Bruschi - Microelectronic System Design

Differential output current

Mosfet differential pair: real curves (calculated) and linearity

P. Bruschi - Microelectronic System Design

BJT differential pair

BJT differential pair

BJT differential pair - small signal currents

MOSFET and BJT differential pairs compared

In the mosfet pair, $\mathrm{V}_{\mathrm{DMAX}}$ can be varied by modifying β and I_{0}

Paremeter g_{m} depends on

$$
\begin{aligned}
& \text { both } I_{0} \text { and } \beta \text { : } \\
& g_{m}=\sqrt{\beta I_{0}} \quad V_{D M A X}=\sqrt{\frac{2 I_{0}}{\beta}}
\end{aligned}
$$

Note: a mosfet pair in subthreshold region behaves like a BJT pair with the substitution:

$$
m V_{T} \rightarrow V_{T}
$$

In the BJT pair, $\mathrm{V}_{\text {DMAX }}$ is fixed to around $4 \mathrm{~V}_{\mathrm{T}}$

Paremeter g_{m} depends only on I_{0}

$$
g_{m}=\frac{I_{C Q}}{V_{T}}=\frac{I_{0}}{2 V_{T}}
$$

How to increase the $V_{D M A X}$ of a BJT pair

P. Bruschi - Microelectronic System Design

