
Planar n-MOSFET cross-section and layout

P. Bruschi – Microelectronic System Design 1

The designer introduces ideal 

geometrical values (L,W ..), 

while the electrical properties 

are determined by "effective" 

values:
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Simplified layout and cross-section ("designer view")
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MOSFET models
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• Models for accurate electrical simulations: BSIM models (Berkeley 

Short-channel IGFET Model), EKV (Enz, Krummenacher, Vittoz) ...

• Models for "hand calculations": square law (strong inversion)

exponential laws (weak inversion)

• It is of primary importance to be able to manually perform first order 

device sizing and first order performance estimation. 

• Only very simple and intuitive model enable the designer to create 

cells that need only a final refinement and verification in the 

simulation phase

• The simulator is useless if we do not know how to produce a circuit 

on scrap-paper.   The simulator obeys to the law: 

garbage in – garbage out



MOSFET models: The n-MOSFET
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• From this point on, we will consider the behavior of the 

n-MOSFET, unless otherwise specified. In the end, we will 

suggest a simple way to transfer all the considerations made 

for the n-MOSFET to the p-MOSFET

• In integrated circuits, the MOSFET is a four terminal devices: 

Drain, Source, Gate and Body. In discrete MOSFETs, the 

body is generally connected to the source internally. 
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Large signal MOSFET model (n-MOSFET)
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In DC, we will always assume:



Source and Drain Symmetry (1)
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• The planar MOSFET is symmetric so that drain and source can be 

swapped with no consequences in the electrical characteristics.

• Equations that use the source as a reference terminal for all relevant 

voltages can be applied only after finding which terminal is actually 

playing the role of the source.

• In an n-MOSFET, the effective source is the terminal that has the 

lower voltage; the other one of the two, is the actual drain 

• In a p-MOSFET, the effective source is the terminal that has the 

higher voltage; the other one of the two, is the actual drain 



Source and Drain Symmetry (2)
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• With this definition, it is clear that in transient situations, the effective 

drain and source can swap, depending on the voltage assumed by 

the terminals. 

• In a schematic editor it is necessary to indicate which terminal is the 

drain and the source. These "conventional" terminals are used to 

mark all voltages for printing and plotting purposes. This choice do 

not affect the circuit behavior during the simulations. 

Example



Source and Drain Symmetry (3)
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• If the circuit has a clear static operating point (like most analog 

circuits), it is convenient to mark as source the terminal that in the 

operating point is actually working as the source. This will facilitate 

reading device voltages  produced as textual or graphical outputs by 

the simulator. 

• Models like the EKV use the body as the reference for all voltages. 

In this way drain and sources are perfectly symmetrical also in the 

equations and there is no need to decide which one is actually 

working as the source. 

• Maintaining the distinction between source and drain is more 

intuitive and most models oriented to hand calculations are actually 

based on this choice. 



The IDS model: control voltages
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VGS, VBS and "overdrive voltage"
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The voltage that really affects the current is the "useful" part of the VGS,

often called "overdrive voltage". 
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V VV V= −=

( )sBSstt VVV φ−−φγ+= 0

Body effect
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More on body effect: example
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IDS :  operating zones on the basis of VDS
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VDSAT

triode saturation

VDSAT is a function 

of VGS-Vt

Triode: IDS is strongly 

dependent on VDS

Saturation: IDS shows 

a weak and almost 

linear dependence 

on VDS



Operating zones on the basis of VGS-Vt
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VDS>VDSAT

off on

VGS<Vt
VGS>Vt

A rough picture: 



A more gradual picture: same characteristic with logarithmic y-axis
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weak inversion
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IDS: operating zones
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VGS-Vt>4VT Strong inversion: IDS equations
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IDS simplified model in weak inversion
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Temperature effects on MOSFET characteristics
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MOSFET Small Signal model
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effect of vbs

cgs, cgd, cgb, cbd, cbs : small signal capacitances

Let's start from 

the dc model 

(capacitances are 

removed)



MOSFET small signal model: dc limit
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Body transconductance: gmb
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Body transconductance: gmb
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gm, gd in strong inversion
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gm, gd in strong inversion
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gm, gd in strong inversion

m n DSg Vβ=

( )d n GS t DSg V V Vβ= − −  



P. Bruschi – Microelectronic System Design 26

gm, gd in strong inversion
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Important parameter

for MOSFETs:



Transconductance models in saturation
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gm,gd in weak inversion
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gm,gd in weak inversion
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gm, gd everywhere: simulations
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Unified model for transconductance in saturation
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Effective Thermal Voltage: VTE
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The smaller the VTE, the higher the gm that can be obtained with a given ID



MOSFET Capacitance Model: gate related capacitances
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Estrinsic Capacitances
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Intrinsic capacitances: The Meyer Model
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Off (VGS << Vt) Triode Saturation
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Charge oriented models (Dutton and Ward model)
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Limits of the Meyer Model: 

• Does not guarantee charge conservation

• Capacitances are reciprocal 

Important errors in circuits

using MOSFETs as 

switches. 
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Array of 9 capacitances

Cij are < 0 for i≠j (trans-capacitances)

Cij are > 0 for i=j (self capacitances)

Generally: Cij ≠ Cji

Dutt and Ward model



Junction capacitances
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Other non-idealities of the MOSFET behaviour
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Gate-bias dependent mobility µCox depends on VGS (decreases at high VGS)

(all devices)

Carrier velocity saturation ID dependence on VGS in strong inversion 

tends to become linear (instead of quadratic)

(Short channel devices).  Again, appears as 

a reduction of the µCox at high VGS

Gate current May be due to tunneling (all devices)

or hot electrons - hot holes (Short channel devices)



BJTs in integrated circuits: Vertical NPN
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BiCMOS:  CMOS + p-base and buried-layer  

The n-pocket can be an n-well
The buried-layer a buried-well of a triple-well CMOS

Same as (b) but with the

Metal 1 removed

A diode between collector and 

substrate is present        capacitance

p-base

p-base buried-L

buried-L



The lateral PNP
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Slower than vertical devices due to

large base series resistance (rbb')

and base-to substrate capacitance 

Lower early voltage (VA), due to 

non-optimal collector doping. 

Larger than vertical devices for the same

current capability



The substrate PNP: compatible with standard  CMOS n-well processes
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Limitation: The collector is 

committed to the substrate, 

(forced to VSS)



BJT output characteristics
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Saturation Forward Active Region

0.2 V
CESAT

V ≅

VBE, VCE : control

voltages

IC, IB: dependent 

currents



BJT model in the forward active zone 

P. Bruschi – Microelectronic System Design 43









+=

A

CBV

V

SC
V

V
eII T

BE

1
CB CE BE

V V V= −

1

BE

T

V

V CE

C S

A

V
I I e

V

 
≅ + 

 

Sometimes this expression is used

in order to refer to VBE and VCE as

control voltages:

C

B

F

I
I

β
=

For calculation of IC and IB in all operating zones (saturation, cut-off, 

forward active, reverse active) the Ebers-Moll model should be used. 



BJT: small signal model
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Small signal dc model
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BJT capacitances in forward active region (vertical npn)

P. Bruschi – Microelectronic System Design 45

jcm

JC
bc

C
c









+

=

JC

CB

V

V
1

jsm

JS
cs

C
c









+

=

JS

CS

V

V
1

BE

JE

V
1

V

je

JE

be dem

C
c C= +

 
− 

 

mFde gc τ= 1

2
T

F

f
πτ

≅

Transition frequency



BJTs in Integrated Circuit: instance parameters
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minimum size BJT

("elemental" BJT)

parameter "area"

(dimensionless)

area

area

area=2  (,3, 4 ….)

area = integer

area=1.5

area may not be an

integer (not all PDKs 

allow this) 



BJT sizing: Effect of the area parameter on the electrical parameters
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Electrical effects of area parameter: 

IS
VA

β
CJE

…..

area × IS
VA

β
area × CJE

…..

elemental BJT elemental BJT with area 

specified as an instance parameter



BJT sizing: Gummel plot and beta plot
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This refers to the 

elemental BJT (area=1) 

My BJT has to carry this current 
(200 mA). The elemental BJT would

be damaged

Using a BJT with area=100 would be 
equivalent to make the elemental BJT

work with a current 100 times smaller.
This corresponds to the operating point 
given by the blue line
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