
P. Bruschi:  PSM lecture notes   Process Errors 

 

1 

 

1 Process errors 

1.1 General definitions 

 

Fabrication of an integrated circuit is subjected to errors that make the final product different from the 
designed device. This problem, which is clearly typical of all industrial processes, needs to be well 
characterized in order to estimate the actual deviation that can be expected to occur from the ideal case. 
Let us start from very common definitions. We will focus on a component (e.g. a resistor) integrated on 
a silicon chip. Of that component, will consider a particular quantity (e.g. its resistance) that we will 
generically indicate with “A”. The value of A assigned to the given component in the design phase is 
indicated as “nominal” value (AN). Due to process errors, components integrated in the fabricated chips 
will show a value of A that differs from the nominal value. In addition, different realizations of the same 
component will show different value of A. The best way to represent the variability of the fabricated 
values (also indicated as “process spread”) is using a histogram.  

To build a histogram, we need to consider a large number of different specimens of the same component. 
Let us indicate the number of different samples with “n”. Among this set, the quantity A assumes a 
minimum and maximum value. We divide the interval between the minimum and maximum into a series 
of uniformly sized sub-interval, called “bins”, of width A. For each bin, we count the number of samples 
whose quantity A falls into it. A graphical representation of a histogram is shown in Fig.1.1, where the 
quantity represented in the y-axis is the fractional number (n/n) of samples included in each bin.  

 

 

Fig.1.1. Example of histogram. 

 

If we imagine to progressively increase the number of samples and, at the same time, increase the number 
of bins (reducing the width of each bin), the histogram tends to the ideal distribution that characterize the 
errors for the given fabrication process. To be more precise, the distribution is obtained by dividing the 
height of each bar in Fig. 1.1 (n/n) by the width of the bins (A). Since A is a continuous variable, the 
distribution coincides with the probability density function.  
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The elements of the distribution that are of interest for the production process are illustrated in Fig. 1.2. 
These elements are summarized below: 

AN:  this is the nominal value, defined in the design phase.  

Ai: The value of quantity A for a generic i-th component. 

<A>:  the mean of the distribution.  

eS: The systematic error = <A>-AN 

eR: Random error for the i-th component = Ai-<A>. 

The mean of the process can be estimated by taking the mean of A over a large set of components. The 
actual values of A taken on different components tends to group around the mean value. Differences from 
the mean value constitute the random error. The difference of the mean with respect to the nominal value 
is the systematic error. In a correct design, the systematic error should be negligible with respect to 
random errors. The presence of a non-negligible systematic error can be due to design errors, inaccurate 
or faulty fabrication process or from inaccuracy of the models used to represent the component behavior. 
For example, an excess systematic error may derive from neglecting the contact resistance of integrated 
resistors. In this case, the resistance of the fabricated resistors will be on average larger than the value 
set by design (nominal value).  

 

 

 

Fig. 1.2. Elements of the distribution.  

 

The magnitude of random errors is well represented by the standard deviation (or standard error), which 
is the square root of the mean square value of the deviation from the mean. It is defined by: 

  
2

A A A       (1.1) 

If we have a finite set of data (finite sample N dada), the best estimate (unbiased estimate) of the standard 
deviation of the whole fabrication process is given by: 



P. Bruschi:  PSM lecture notes   Process Errors 

 

3 

 

 
 

2

,
1

1

N

i A N
i

A

A

N



 







  (1.2) 

where A,N is the mean calculated over the finite sample of N data. The square of the standard deviation 
is the variance.  

The knowledge of the standard deviation is particularly important when the type of distribution is given, 
since it allows determining the fraction of data that fall with a given interval around the mean. Note that 
in most cases of interest for a fabrication process, the distribution is Gaussian. This occurs because 
fabrication process involve a large number of phenomena that contribute to the total random error. 
Generally, these phenomena are independent, so that the final distribution tends to a Gaussian even if the 
single distributions are not Gaussian (central limit theorem). A Gaussian distribution is perfectly 
determined when its man and standard deviation are given. The fraction of data that falls within an 
interval centered around the mean is given in the table 1.1:  

Max deviation 
from the mean  

±  ± 2 ± 3 ± 4 

Fraction of data 
within the interval 

68.3 % 95.4 % 99.7 % 99.994 % 

Fraction of data 
outside the 
interval 

31.7 % 4.6 % 0.3 % 0.006 % 

Table 1.1: Fraction of data that fall inside or outside an interval around the mean for a Gaussian distribution as a function of 
the maximum deviation from the mean.  

 

1.2 Fabrication errors in a microelectronic process: global and local errors.  

Figure 1.3 depicts the different scales of an integrated circuit (IC) fabrication process. At the smallest 
level there is the chip. At this stage, if we place several identical copies of the same component 
(nominally identical components) the differences among them are very small. For example, if we design 
a chip with different copies (instances) of a 1000  resistor, we have good chances to get components 
that differ from each other by less than a few Ohms. At the second level of the fabrication process, there 
is the wafer, which collects hundreds or even thousands of dies (chips). The uniformity of process 
geometrical or physical parameters over a large wafer is much worse than over a single chip. Therefore, 
if we consider the set of components fabricated on the chip of the whole wafer, differences between these 
components begin to get significantly larger. Differences gets larger and larger as we consider the 
successive scale levels, that is the batch of wafers fabricated in a single run and, finally different runs. 
Differences between components fabricated in different runs can be very large, reaching even ± 20 %. If 
we consider again a resistor that is designed to have a resistance of 1000 , we can likely get resistors 
of 800  and 1200  in different runs.  

It is useful to introduce two new quantities: 
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<A>chip:  The mean performed on all components integrated on a given chip. This value will change 
from one chip to another. Even if we cannot place an infinite number of copies of the same component 
on the same chip, we can imagine being able to reproduce the fabrication of that chip perfectly just in 
terms of mean values of all parameters (doping levels, oxide thickness, etc.). By this expedient, it is 
possible to justify the introduction of a mean, which is a property of a hypothetical process that led to the 
fabrication of that particular chip, and then refer to an infinite number of components.  

<A>process  The mean performed over the totality of components fabricated by that process. Clearly, 
<A>process is also the mean of <A>chip calculated over all chips produced by that process.  

 

 

Fig. 1.3. Different scales of the fabrication process.  

 

We can now divide the random errors into two different contributions: 

-) Local errors, given by the difference between the value of the quantity of interest (A) assumed by a 
component with respect to the mean of the chip where it is located. Considering the discussion at the 
beginning of this paragraph, there is generally a good uniformity of parameters across a single chip, and 
then all components in that chip will exhibit values of A very close to <A>chip. In other word, local errors 
are generally very small. Symbolically, the local error for component i-th is given by: 

 local i chip
e A A    (1.3) 

where <A>chip refers to the chip where component i-th is placed .  
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-) Global errors: given by the difference of the mean of a given chip with respect to the mean of the 
process. This error can be very large, since process parameters can vary much depending on; (i) the 
position of the chip in the wafer, (ii) the position of the wafer in the batch and, most importantly, (iii) the 
run the batch belongs to. (see Fig. 1.3). Symbolically, the global error for a given chip is given by: 

 global chip process
e A A    (1.4) 

Figure 1.4 shows a graphical representation of the various error components. The random error is 
decomposed into a local and global error. The mean of single chips is distributed according to the global 
distribution shown at the bottom. The local distributions of two distinct chips (chip1 and chip2) are shown 
at the top of the figure. Decomposition of the random error is shown for a component belonging to chip1.  

 

Fig. 1.4. Local (top) and global (bottom) errors. The width of local error distribution is comparatively much smaller than 
swon in the figure, where it has been artificially enlarged for visibility purpose.  

Global and local errors are represented by distinct distributions, characterized by two distinct standard 
deviations, global and local, respectively. Different chips are characterized by different local means 
(<A>chip), but all chips have the same standard deviation. This mean that distribution from different chips 
are simply shifted along the A axis, as shown in Fig. 1.4, but maintain the same shape and width. For the 
considerations made about the magnitude of global and local errors, we have: 

 global local    (1.5) 

1.3 Matching errors. 

A matching error is defined as the difference assumed by quantity A between two nominally identical 
components. In microelectronics, matching errors are considered only between components that are 
placed on the same chip. Therefore, matching errors are the consequence of local errors. If consider two 
component, identical by design, and indicate with A1 and A2 the value assumed by A on component 1 
and component 2, respectively, then we can define the two quantities: 
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Where A is the matching error, while A  is the midpoint value. Equations (1.6) can be solved to express 
A1 and A2 as a function of the matching error and midpoint value: 
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There are two main causes of matching errors: 

 Local granularity 
 Gradients 

1.4 Local granularity: The Pelgrom Model 

Matching errors between identical components that are placed very close to each other into the same die 
are due to local non-uniformity (“granularity”) of the material properties. To understand this, let us 
consider doping: dopant atoms are randomly distributed over the substrate and the number of dopant 
atoms that are present inside a given component will obviously vary, depending on the component 
location.  

This phenomenon is clearly illustrated in Fig. 1.5, where the rectangle shows a portion of the chip area 
and the red crosses are dopant atoms. The yellow and green rectangles represent the area occupied by 
two nominally identical devices. Three possible placement for the two components are proposed. N is 
the total number of dopant atoms that fall inside the two components in a given location, while N is the 
difference between the number atoms inside the yellow component and the number inside the green one. 
Note that the fluctuation occurring from one location to another is very large, reaching 38 %.  

Repeating the experiment with larger components the relative fluctuation of the number of atoms is 
significantly reduced. This is due to the averaging effect that large areas operate on the local irregularity. 
Figure 1.6 represents a case in which the component width and height have been doubled, showing the 
considerable reduction of N/N. The same effect applies to other quantities, such as the gate oxide 
thickness, which exhibits local variations due to the unavoidable surface roughness.  

As the examples in Figs. 1.5 and 1.6 clearly show, on large area devices, these short-length variations 
tend to have a smaller relative impact, since the device will include areas with both minimum and 
maximum levels of the physical quantities of interest, producing a sort of compensation.  
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Fig.1.5. The red crosses represent dopant atoms, while the green and yellow rectangle represent the area occupied by two 
identical components. Different placements result in different atom distributions within the component areas.  

 

 

Fig.1.6: Same atom distribution as in Fig. 1.5, but with components of larger area. Note the relative fluctuation is much 
smaller than in the case of small components.  

For this mechanism, matching errors will be smaller in large area devices. This intuitive idea is well 
represented in a quantitative way by the Pelgrom model [1] that express the standard deviation of the 
MOSFETS parameters as a function of the device gate area (WL) in the following way: 
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where CVt and C are constant parameters that are typical of the fabrication process. These matching 
parameters can be found in the process DRM (Design Rule Manual). This model is generally valid also 
for other kind of devices, such as resistors, capacitors and bipolar transistors. For example, the standard 
deviation of the relative matching error of integrated resistors can be expressed by: 

 R
R

R

C

WL
     (1.9) 

where CR is constant that depends on the process and on the type of resistor (polysilicon, high-resistivity 
polysilicon, diffusion etc.). Constants C and CR are  expressed in mm, while CVt is typically in mVm, 
so that W and L should be expressed in m in expressions (1.8) and (1.9). 

1.5 Gradients 

Gradients indicate that important quantities that affect properties of devices are not uniformly distributed 
on a macroscopic scale. This means that these quantities gradually varies across the chip area.  

Quantities of interest can be, for example:  

-) Dopant density 

-) Oxide thickness 

-) Geometrical process biases (e.g. etching undercut) 

-) Temperature (e.g. due to power devices present on the chip) 

-) Mechanical stress (mainly due to the packaging process) 

 

The effect of the gradient of a given quantity “A” (can be one of the list above) on the matching of two 
components is shown in Fig. 1.7  

  

 

Fig. 1.7. Effect of gradients on device matching. Different colors represent different values of a given quantity “A”. In (a) 
the average of quantity A is larger for component 2, while in (b) the two components receive the same average of A.  
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The effect can be different depending on the gradient orientation with respect to the line that join the two 
component locations. If the gradient and the joining line are parallel, as in the case of Fig. 1.7(a), the 
mismatch will be maximum; if the gradient and the joining line are orthogonal, the gradient does not 
cause mismatch, as shown in Fig. Fig. 1.7(b). Unfortunately, generally  it is not possible to predict the 
gradient direction, since it will vary according to the position of the chip in the wafer, the wafer in the 
batch and so on. Only in the case of mechanical stress and temperature distribution, it is possible to have 
an idea of the gradients from the way the chip is mounted on the package and from the position on the 
chip of power devices, that can be important heat sources. However, even in these cases the prediction 
is fairly inaccurate, so that gradients are likely to produce mismatch.  

An effective solution is offered by the so-called common centroid configurations. The two devices that 
should match are split into different identical parts that are then placed in such a way that parts from 
object 1 are interleaved with parts from object 2. The requirement is that the centroids of the two devices 
coincides. This method is illustrated in Fig. 1.8: Component A1 is divided into the two identical parts 
A1,1 and A1,2, while A2 is divided into A2,1 and A2,2. The centroid of the two devices is indicated with C. 
Note that by splitting each device into two parts, the centroid is allowed to lie outside each convex shape 
that form the device (rectangles in the example). In this way, we can make the centroid to coincide even 
if the two devices does not overlap in any point.   

 

Fig. 1.8. Common centroid configuration in the case of two different gradient orientations.  

From Figure 1.8 (a) and 1.8 (b) it is clear that now the two devices are affected by the quantity of interest 
(to which the gradient refers) in exactly the same way, independently of the gradient direction. In both 
cases depicted in Fig. 1.8 (a) and 1.8 (b), each device has a part that receives a larger value of the quantity 
while the other part receive a smaller value. On average, both devices receive the same value.  

Note that Fig. 1.8 (a) and (b) represent two particular cases. Fig.1.9. represent the case of an oblique 
gradient. Object A1, formed by parts A1,1 and A1,2 gets an intermediate value of the quantity. Object A2 
receives an higher value (part A2,1) and a lower value (A2,2). Again, we have a compensation and on 
average the two components A1 and A2 receive the same effective value of the quantity of interest. 
Differently from the cases depicted in Fig. 1.8 (a) and (b), the symmetry is not perfect for oblique 
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gradients and compensation is perfect only if the gradient is constant across the whole area occupied by 
the two components.  

 

 

Fig. 1.9. Common centroid configuration in the case of oblique gradient.  

 

In order to apply the common centroid approach, it is necessary to split each component into two parts 
that, properly connected, must still behave like the original component. The way components can be split 
and re-connected depends on the type of device. Figure 1.10 show the two options that can be adopted 
when the two components to match are resistors (R1 and R2, of nominal value R). 

 

 

 

Fig. 1.10. Common centroid configuration of resistors implementd with series split and parallel split.  
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 On the left, each one of the two resistors is split into two parts that are then reconnected in series. In 
order to maintain the original value, the individual parts should have half of the original value, i.e. their 
resistance should be R/2.  On the right, the parts are connected in parallel. Then, to maintain the resistance 
of the original components, each part should have a resistance 2R. The placement is the same for the 
series and parallel split. The series split is advantageous in the case that R is large, resulting in particularly 
long resistors. The parallel split has to be preferred only in the case of small resistance (short resistors).  

In the case of active devices, such as MOSFETs or BJTs, the only possible way to split the original 
components is the parallel split. Figure 1.11 illustrate the case of common centroid applied to MOSFETs. 
If the  (=nCoxW/L) of the The original devices, M1 and M2, have the same nominal parameter   
(=nCoxW/L). Then the parts in which they are split are characterized by /2. In practice, the parts have 
half the width (W) of the original MOSFETs. In a parallel connection of MOSFETs, the effective beta is 
the sum of the betas of the devices that form the parallel. The actual arrangement of the single parts is 
shown in Fig. 1.11, on the right. Series split configurations are not applicable to common centroid 
arrangement of MOSFETs. The reason is that in a series of MOSFETs, the two parts do not contribute 
in the same way the property of the composite device. The same applies to BJTs, for which the only 
possible split is the parallel one.  

 

 

Fig. 1.11. Common centroid applied to MOSFETs.  

 

Finally, common centroid configurations are widely used also for capacitors. A good matching between 
capacitors is a key element for the accuracy of switched capacitors circuits and in particular of charge-
redistribution analog to digital converters. In principle, common centroid configurations can be applied 
to capacitors using both the series and the parallel split, just as for resistors. In practice, series connection 
of integrated capacitors has to be discouraged, because the dc voltage of intermediate nodes in a series 
of capacitors cannot be easily controlled. As a result, common centroid schemes are applied to capacitors 
using mainly the parallel split approach. 

 



P. Bruschi:  PSM lecture notes   Process Errors 

 

12 

 

1.6 General rules for matching components 

In addition to the rules introduced in paragraphs 1.4 (area of devices) and 1.5 (common centroid 
arrangement), there are also important rules that have to be mandatorily or optionally followed to reduce 
matching errors between component pairs. Figure  1.12 shows two mandatory rules. On the left, two 
objects with identical W/L ratios (e.g. two resistors or two MOSFETs) are shown. Setting the aspect 
ratios to be equal is not sufficient to obtain a good matching, even in the case that the expressions of the 
quantities of interest (e.g. resistance) include only the W/L ratios. The reason is that the properties of the 
materials that compose the devices tends to be different in the proximity of the boundaries of the device 
area (borders). For example, the resistivity of a conducting layer may be higher close to the borders due 
to reduction in dopant concentration or to increased scattering mechanisms. Since the extensions of the 
borders does not depend on the device dimensions, border-related effects will have a greater relative 
impact on the smaller device. For this reason, matched devices should be identical (same width and 
length). Note that the matching errors introduced by different device areas are systematic. Figure  1.12 
shows two identical object (same lenghts and widths) that are placed along orthogonal directions. This 
may lead to poor matching since material properties can be anisotropic. The typica cause is mechanical 
stress due to the packaging procedure: packaging often occurs at a temperature that can exceed one 
hundred degrees. Successive cooling down produces mechanical stress through the different thermal 
expansion coefficients of the chip and package materials. Mechanical stress has generally a prevalent 
direction and this results in mentioned anysotropy. In addition, also the device dimensions are unevenly 
modified by the stress. A resistor subjected to mechanical stress that having a prevalent axis parallel to 
resistor length, will become longer and narrower than the original device. The opposite occurs if the 
stress is orthogonal to the resistor length. The stress will then cause different changes in the W/L ratios 
of  devices width different orientations. As a result, matched devices should have the same orientation.   

 

Fig. 1.12. Two common errors leading to poor matching: (left) fifferent device areas and (right) different device orientation. 
.  

Figure 1.13 illustrates two optional rules that have to be adopted when very low matching errors have to 
be achieved. The rule represented on the left regards the direction of current in the device. To obtain a 
good matching the direction of the current in the two devices should be the same. The reason is that 
unavoidable temperature gradients introduce an additional voltage drop whose sign depends on the 
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relative direction of the current with respect to the direction of the gradient. Another rule, indicated with 
“common surroundings” or “common environment” is illustrated in Fig. 1.13 (right).  

 

 

 

Fig. 1.13. Common direction (left) and common surroundings (right). .  

 

If object 1 is close to a layout object (an interconnect line in the figure), then, to obtain an excellent 
matching, also object 2 should be close to a similar object. In other words, it is not sufficient that the 
objects are symmetrical, but also the environment where the object are placed must be symmetrical. If a 
metal is not passing close to object 2, we must place a metal (dummy line) that is not used for 
interconnection but only to make the environment symmetric. The dummy line can be left floating or, 
preferably, connected to gnd.  

1.7 Rules for accurate ratios. 

Frequently, important properties of electronic circuits are expressed as ratios of values of different 
components. A very simple example is shown in Fig. 1.14, depicting an inverting amplifier formed  by 
an operational amplifier and two resistors.  

 

 

Fig. 1.14. Opamp-based inverting amplifier.  
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If the loop gain is large enough, the amplifier gain is simply given by: 
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In many cases the gain magnitude (R2/R1) must be accurate, with differences from the ideal case of less 
than 1 %. If the gain magnitude is one, than R1 should be equal to R2 and obtaining a precise gain becomes  
simply a problem of good matching between the two resistors. If the gain to be obtained is different than 
one, than the problem is different. The more intuitive approach would be simply to introduce two 
resistance and set their value in order to obtain the required ratio. Unfortunately, many automated design 
kits assign the entered value of the resistance to the body of the resistor, leving out of the resistance 
computation the contact resistance,  

Figure  1.15 (a) shows what happen if we simply try to obtain the required resistance ratio r by setting 
r=L2/L1. This sets the ratio of the resistor body approximately to the correct ratio. However, considering 
also the contribution of the contact resistances, as shown by the equivalent circuit of Fig.  1.15 (b), the 
actual ratio will be. 
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Fig. 1.15. Ratio obtained by simply scaling the resistor length (a). Equivalent circuit of a resistor with the contavt 
resistances (b).  

The actual resistance ration is not r, unless r=1. For example, if r=3 and RC/R=0.1, we would get: 
R2/R1=2.81, committing an error of nearly -6 %. In most cases, such an error is not acceptable. Clearly, 
it is possible to redesign the resistance values in order to take into account the contact resistance and 
obtain a more precise resistance ratio. Modern design kit of processes oriented to analog and mixed signal 
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design do so automatically. Unfortunately, contact resistance are not as accurate as resistor bodies, thus 
there would be still an important process-dependent inaccuracy. Furthermore, border effects that are not 
documented, makes also the resistor body close to both ends different from the central region. Again, 
border effects have an higher impact on the shorter resistor.  

A much more accurate resistor ratio can be obtained by the so called modular approach. This is illustrated 
in Figure 1.16 (a) for a target ratio r=R2/R1=3. A single resistor module R0 is used to form R1, while R2 
is obtained by simply connecting three identical module R0 in series. A possible layout for R0 is shown 
in Fig. 1.16 (b), while the layout of the two resistors R1 and R2 is shown in Fig. 1.16 (c).  

 

 

 

Fig. 1.16. Example of resistance ratio obtained with the modular approach.   

By this arrangement, contact resistances and all other systematic non-idealities will affect in the same 
way all the instances of module R0, so that the ratio R2/R1 will not change with respect to the ideal value 
(r=3 in the example). The method can be easily extended to non-integer ratios of the form M/N as shown 
in Fig. 1.17, where series of N and M modules (R0) are used for R1 and R2, respectively. 

In addition, it is possible to arrange the modules in parallel. This is advantageous when the resistances 
used to implement the ratio are particularly small. Combinations of series and parallel combinations of 
the same module R0 can be used when a very large or a very small ratio has to be obtained. Using only 
pure series or parallel combinations would lead to the requirement of a large number of modules. For 
example, to implement a ratio r=100, the number of module involved is 101. The same occurs, obviously, 
if the ratio to be obtained is 1/100. Using a parallel of 10 R0 modules for R1 and a series of 10 R0 modules 
for R2 allows obtaining the required ratio of 100 with only 20 instances of module R0. This approach is 
illustrated in Fig. 1.18.  
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Fig. 1.17. Non-integer ratios R2/R1 obtained by the modular approach. .  

 

 

Fig. 1.18. Combination of series and parallel connections of modules to obtain very large ratios with a smaller number of 
components than pure series or parallel modular approaches.  

 

Precise capacitance ratios are generally obtained with parallel connections, for the same reason 
mentioned for the common centroid configurations.  

In the case that the requirement of precise ratios refers to the beta factor () of MOSFETs, high accuracy 
can obtained only with the parallel approach, although series or mixed connections have been proposed 
in the scientific literature [2]. An example of modular approach applied to a MOSFET-based current 
mirror is shown in Fig. 1.19. In both the input and output branch of the mirror, composite MOSFETs 
formed by parallel of a different number of nominally identical modules (M0) are used. The composite 
MOSFET in the input branch, M1, is formed by N modules, while in the output branch M2 is formed by 
M modules. This corresponds to set the nominal ratio 2/1 exactly equal to M/N. Doing the same using 
single MOSFETs for M1 and M2 and varying the aspect ratio (W/L) to obtain the required 2/1 ratio 
results in a significant difference with respect to the target value due to the mentioned border effects 
(effective W and L are different from the drawn dimensions) and by unwanted effects that both W and L 
has on the threshold voltage. However, in all cases that a precise ratio is not required, it is preferable to 
act on the aspect ratio since it generally allows saving silicon area.  
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In the case of BJTs precise ratios of the saturation currents (IS),  are obtained only using parallel 
connections of a single module.   

 

 

Fig. 1.19. Modular approach applied to a MOSFET-based current mirror.  

1.8 Error propagation elements applied to matching errors 

Generally, expressions that allow prediction of process errors (both global and local) are available for a 
few important parameters of the main devices of the process. An example is given in paragraph 1.4, 
where expressions for the standard deviations of matching errors are given for the beta factor and 
threshold voltage of MOSFETs. The problem that has frequently to be solved is finding how global 
properties of a circuit (e.g. an amplifier gain), are affected by the errors on the parameters of each 
component of the circuit. This is a particular case of a general problem called error propagation, which 
consists in finding the error on a quantity G that depends on variables A, B, C and so forth , resulting 
from the errors on the variables it depends on.  

In this paragraph, a few remarkable cases that are easy to remember and that recur often in analog 
electronics. The focus will be on matching errors, but the results can be directly applied to a much wider 
spectrum of cases. 

One-dimensional case 

Let us start with a simple problem, illustrated in Fig.  Quantity G depends on a single quantity A in a 
non-linear fashion. We are interested at finding the difference of the values assumed by  G for two distinct 
values of A, indicated with A1 and A2. We introduce the following definitions: 

 
   1 1 2 2

1 2 1 2

;

;

G G A G G A

G G G A A A

 

     
  (1.12) 

In the case of matching errors, we have two object, named object 1 and object 2, that should be as equal 
as possible. Thus, A1,G1 refer to object 1 while A2, G2 to object 2. However, this model can represent also 
other useful situations. Examples are: 

 we have a single component and A1, G1 refer to the nominal case, while A2, G2 to the real case 
that will be affected by both global and local errors.  



P. Bruschi:  PSM lecture notes   Process Errors 

 

18 

 

 A1, G1 and A2,G2 are simply two different statuses in which a given real component can be found.   

 

 

Fig. 1.20. Simple example of error propagation problem used to introduce the basic definitions.   

 

We now introduce a third value of A, indicated with Am. whose position with respect to A1 and A2 is 
completely arbitrary. Particular cases are when Am coincide with either A1 or A2 or is placed just in the 
middle of them. Values A1 and A2 can be expressed through their deviations with respect to Am: 

 
1 1

2 2

m

m

A A A

A A A

  
  

  (1.13) 

Using a first order approximation of the G(A) function around point A=Am, we can express G(A1) and 
G(A2) as: 

 

   

   

1 1 1

2 2 2

m

m

m m

A A

m m

A A

dG
G G A A G A A

dA

dG
G G A A G A A

dA






     



      



  (1.14) 

 

 1 2

mA A

dG
G G G A

dA 

       (1.15) 

where A=A1-A2=A1-A2.  

The result represented in (1.15) is the well-known first order approximation of the relationship between 
the increment in the dependent variable G and the corresponding increment in the independent variable 
A. What we want emphasize is that the approximation shown in  (1.15) is independent on the point where 
the derivative is calculated (point A=Am). Changing the point affects the accuracy of the approximation, 
but not the form of the latter.  
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Multi-dimensional case 

In the general case, the quantity G depends on several independent variables, indicated with A, B, C and 
so forth. For the sake of simplicity, we will consider the case of three independent variables. We are 
interested at two points in the space of the independent variables and we will indicate these points as 
P1=(A1,B1,C1) and P2=(A2,B2,C2). Repeating the considerations made for the one-dimensional case, we 
can find a linear approximation of the function G(A,B,C) around an arbitrary  point Pm=(Am,Bm,Cm). In 
the same way as in Eq. (1.13) we can express points P1 and P2. through their deviations with respect to 
Pm :  

 
1 1 1 1 1 1

2 2 2 2 2 2

, ,

, ,

m m m

m m m

A A A B B B C C C

A A A B B B C C C

      
      

  (1.16) 

Then, the first order approximation of G(A1,B1,C1) and G(A2,B2,C2) can be written in the form: 

 

 

1 1 1 1

2 2 2 2

( , , )

( , , )

m m m

m m m

m m m

P P P

m m m

P P P

G G G
G G A B C A B C

A B C

G G G
G G A B C A B C

A B C

          
          

  (1.17) 

The difference G=G1-G2 can then be easily obtained from (1.17) as a function of the deviations A=A1-
A2, B=B1,B2 and C=C1-C2.  

 1 2

m m mP P P

G G G
G G G A B C

A B C

  
        

  
  (1.18) 

The advantage of using an arbitrary point for the calculation of the derivatives is that we can use the point 
that is more advantageous for the particular situation. Clearly, for the approximation to be accurate 
enough, point Pm should be close to both P1 and P2. As already stated for the one-dimensional case, Pm 
may be one of the two points P1 and P2, or (P1+P2)/2. Another possible choice that can be convenient in 
some occasions is using the nominal value for Pm, since it is the only value that we know a priori.  

Useful examples of relationships that occurs frequently 

The first relationships that will be analyzed are linear relationships. The following properties, where k is 
a constant,  can be easily demonstrated: 

 
 1 1 2 2

1 2

G A B G A B A B A B

G kA G kA kA k A

            


      
  (1.19) 

Then, linearity can be applied to deviations. After that, it is interesting to analyze the so-called 
posynomial function, defined by the following formula: 

 ( , , )G A B C A B C     (1.20) 

where ,  and  are constant coefficients. Applying (1.18), we find: 
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 1 1 1
m m m m m m m m mG A B C A A B C B A B C C                     (1.21) 

This is not an expression that can be easily remembered. The formula becomes much simpler and 
meaningful if we calculate the relative error, G/G, the particular form G/Gm, where Gm is given by: 

 ( , , )m m m m m m mG G A B C A B C      (1.22) 

With simple calculations, we find: 

 
m m m m

G A B C

G A B C
  

   
     (1.23) 

This expression can be summarized by saying that the relative error of a posynomial dependent variable 
is the sum of the relative errors of the independent variables, weighted by the respective exponents. 
Clearly, in the case that we need to calculate the absolute error G, then we can simply obtain by 
multiplying expression (1.23) by Gm, given by expression (1.22).  

Finally, we will consider the following remarkable case: 

  ( , , ) lnG A B C A B C     (1.24) 

Defining a variable Z equal to the argument of the logarithm in (1.24), i.e. Z=ABCwe can write: 

 
m

m m m m

Z Z m

dG Z
G Z with Z A B C

dZ Z
  




       (1.25) 

Considering that Z is a posynomial, its relative error Z/Zm us given by (1.23), then: 

 
m m m

A B C
G

A B C
  
  

      (1.26) 

We can summarizing expression (1.26) saying that, in the case that the posynomial expression is the 
argument of a natural logarithm, it is the absolute error G to be the sum of the weighted relative errors 
of the independent variables.  
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