Effect of matching errors on the precision of ratios in integrated circuits.

Premise:
Let us define the ratio:

$$
\begin{equation*}
r=\frac{R_{1}+\ldots+R_{M}}{R_{M+1}+\ldots+R_{M+N}} \tag{1}
\end{equation*}
$$

Where R is a quantity (e.g. the resistance) associated to a type of component (e.g. a resistor) and R_{i} are the value assumed by R on $N+M$ nominally identical components. Clearly, the nominal value of r is M / N.
Let us now consider a series of different runs for the same chip, and identify the runs with number j. With obvious notation, we will indicate the ratio r_{j} at run j as:

$$
\begin{equation*}
r_{j}=\frac{R_{1, j}+\ldots+R_{M, j}}{R_{M+1, j}+\ldots+R_{M+N, j}} \tag{2}
\end{equation*}
$$

For each run we can consider that the vaules $R_{i, j}$ are the result of a stochastic process. We can define the mean $\left\langle R_{j}\right\rangle$ of that process. $\left\langle R_{j}\right\rangle$ can be regarded as the average of an infinite number of nominally identical components $R_{i, j}$, all produced in the same chip at run j. This is clearly an ideal operation, since the number of component that can be included into a single chip in a single run is finite and generally small. We also observe that $\left\langle R_{j}\right\rangle$ varies widely from run to run owing to process variations (global variations). We can write the $R_{i, j}$ values as:

$$
\begin{equation*}
R_{i, j}=<R_{j}>+\delta R_{i, j} \tag{3}
\end{equation*}
$$

It can be easily demonstrated that, if the mean $\left\langle R_{j}\right\rangle$ is really the limit of the average calculated on an ideally infinite number of components, the deviations $\delta R_{i, j}$ are uncorrelated, i.e. $\left\langle\delta R_{i, j} \cdot \delta R_{k, j}\right\rangle$ averaged over an infinite number of runs is zero.

Using (3) we can write the ratio (2) as:

$$
\begin{equation*}
r_{j}=\frac{\left(\langle R j\rangle+\delta R_{1, j}\right)+\ldots .+\left(\langle R j\rangle+\delta R_{M, j}\right)}{\left(\langle R j\rangle+\delta R_{M+1, j}\right)+\ldots .+\left(\langle R j\rangle+\delta R_{M+N, j}\right)}=\frac{M\langle R j\rangle+\sum_{i=1}^{M} \delta R_{i, j}}{N\langle R j\rangle+\sum_{i=M+1}^{M+N} \delta R_{i, j}} \tag{4}
\end{equation*}
$$

which can be rewritten as:

$$
\begin{equation*}
r_{j}=\frac{M}{N} \frac{1+\sum_{i=1}^{M} \frac{\delta R_{i, j}}{\left\langle R_{j}\right\rangle}}{1+\sum_{i=M+1}^{M+N} \frac{\delta R_{i, j}}{\left.<R_{j}\right\rangle}} \tag{5}
\end{equation*}
$$

Paolo Bruschi - Effect of matching errors on the precision of ratios in integrated circuits

If

$$
\begin{equation*}
\sum_{i=1}^{M} \frac{\delta R_{i, j}}{<R_{j}>} \ll 1 \quad \text { and } \quad \sum_{i=M+1}^{M+N} \frac{\delta R_{i, j}}{<R_{j}>} \ll 1 \tag{8}
\end{equation*}
$$

then, we can apply first order Taylor approximation and easily find that:

$$
\begin{equation*}
r_{j} \cong \frac{M}{N}\left(1+\frac{\delta R_{i, j}}{M<R_{j}>}-\sum_{i=M+1}^{M+N} \frac{\delta R_{i, j}}{N<R_{j}>}\right) \tag{9}
\end{equation*}
$$

Now, considering that $\delta R_{i, j}$ are uncorrelated, we find:

$$
\begin{equation*}
\frac{\sigma_{r}}{r_{\text {nom }}} \cong \sigma_{\frac{\delta R}{R}} \sqrt{\frac{1}{N}+\frac{1}{M}} \tag{10}
\end{equation*}
$$

where $r_{\text {nom }}$ is the nominal value of ratio r, i.e. M / N.
Eq. (10) relates the standard deviation of the relative error on the ratio r to the standard deviation of the relative mismatch error of the quantity R with respect of the average over a single run, $\langle R j\rangle$. Since the data that is generally reported is the standard deviation of the relative matching error between two elements, ΔR, than we have to find a relationship between $\sigma_{\delta \mathrm{R}}$ and $\sigma_{\Delta R}$.

Considering for simplicity two elements R_{1} and R_{2}, we can write:

$$
\begin{equation*}
\Delta R=R_{1, j}-R_{2, j}=\delta R_{1, j}-\delta R_{2, j} \tag{11}
\end{equation*}
$$

Using the statistical independence of the terms $\delta R_{i, j}$, we get:

$$
\begin{equation*}
\sigma_{\Delta R}^{2}=\sigma_{\delta R_{1}}^{2}+\sigma_{\delta R_{2}}^{2}=2 \sigma_{\delta R}^{2} \tag{12}
\end{equation*}
$$

With simple substitutions, we can rewrite (10) as:

$$
\begin{equation*}
\frac{\sigma_{r}}{r_{\text {nom }}} \cong \sigma_{\frac{\Delta R}{R}}\left[\frac{1}{\sqrt{2}} \sqrt{\frac{1}{N}+\frac{1}{M}}\right] \tag{13}
\end{equation*}
$$

