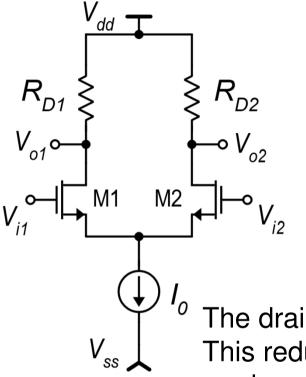
CMOS differential amplifier with resistive load: limitations



- 1. The S/E version has a poor CMRR (large A_c) and large input offset voltage
- 2. Both the S/E and fully-diff. versions reach low voltage gains at small supply voltage

Suggestion for problem 1: Consider the output voltage in the fully-differential case with no resistor mismatch:

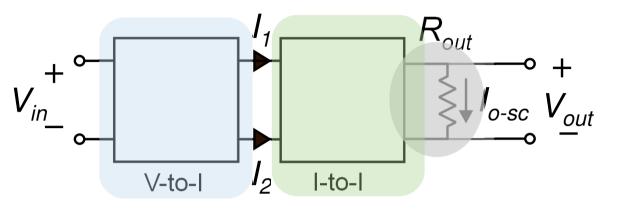
$$V_{OD} = R_D \left(I_{D2} - I_{D1} \right) \text{ (for } R_{D1} = R_{D2} \text{)}$$

The drain current difference appears:

This reduces A_c (I_{D1} and I_{D2} tend to be equal for only common mode applied) and the output voltage for $V_D=0$ is affected only by matching errors.

Solution for a S/E amplifier: produce the current difference $(I_{D1}-I_{D2})$ and then put it into a single resistor. **Problem 2:** Do not use a passive component for the resistor

A more general case: single-stage voltage amplifiers



The first component converts the input voltage (single or differential) into a current (single or differential)

example:
$$I_1 - I_2 = G_{m1}V_{in}$$

(Linear Model)

The second component is a current processing network, that takes the input currents and applies simple linear operations such as:

- Addition and subtraction
- Addition of constant currents
- Multiplication by a constant gain factor

example:

The processed currents are finally conveyed to an output resistance (R_{out}) and converted back to a voltage (V_{out}). In most cases, R_{out} is not a physical resistor, but it is the output differential resistance of the I-to-I network. For this reason, one of the function of the I-to-I network is increasing the

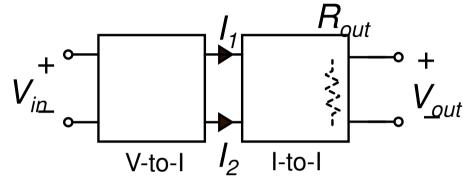
output resistance to increase gain $V_{out} = I_{o-sc}R_{out} = k_1G_{m1}V_{in}R_{out}$

defining: $G_m = k_I G_{m1}$ $I_{o-sc} = G_m V_{in} \implies V_{out} = G_m V_{in} R_{out}$

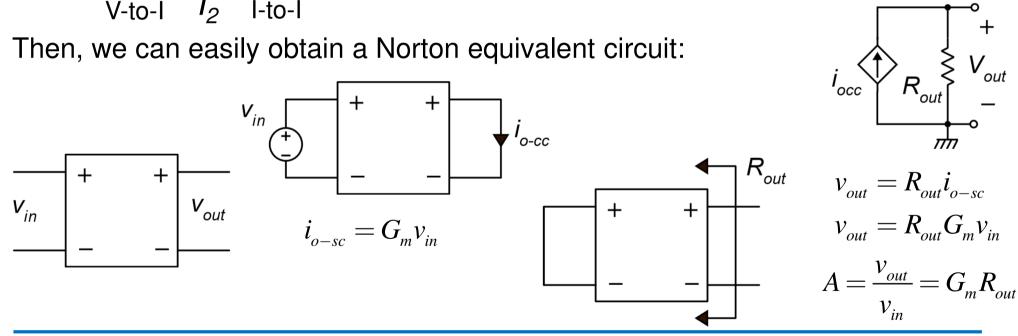
$$A = \frac{V_{out}}{V_{in}} = G_m R_{out}$$

Output short circuit current
$$\Rightarrow I_{o-sc} = k_I (I_1 - I_2) = k_I G_{m1} V_{in}$$

A general method for calculation of the gain in single-stage amplifiers



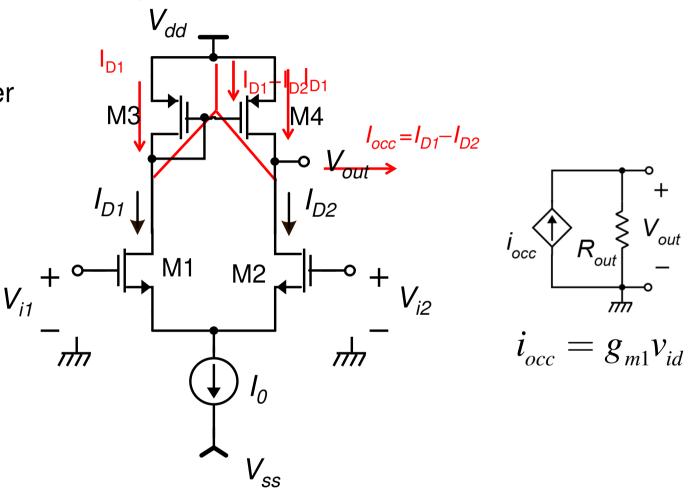
In a single-stage amplifier it is generally simple to calculate the output short-circuit current i_{o-sc}



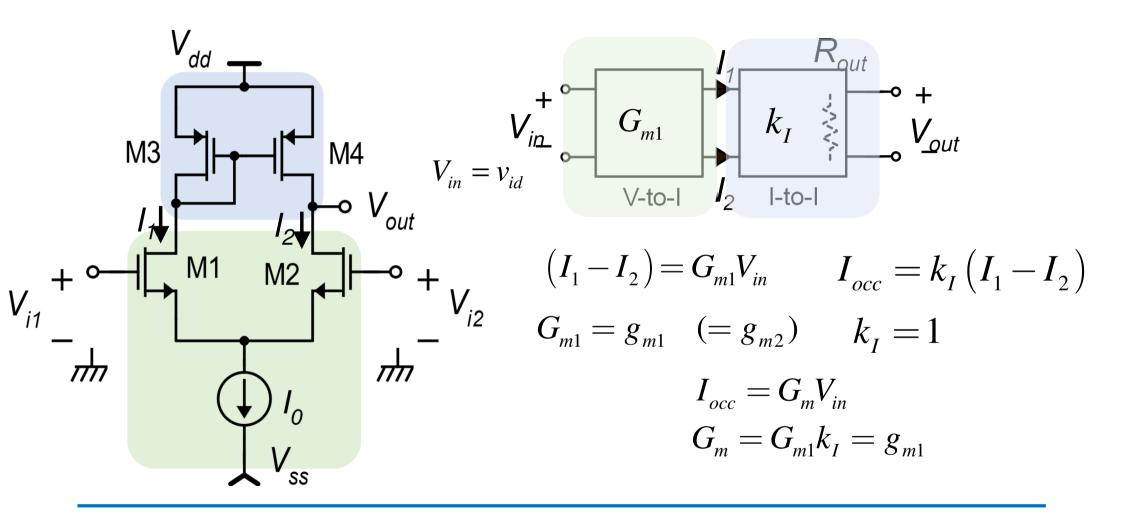
CMOS differential amplifier with current mirror load

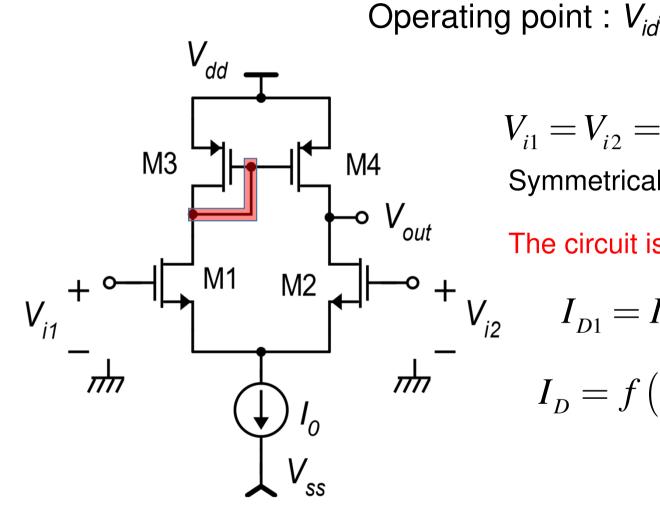
Specifications

- We need a S/E amplifier
- High CMRR (> 80 dB)
- High gain (~ 40 dB) even at low supply voltages (V_{dd}-V_{ss}).



Subunits of the amplifier with mirror load





 $V_{i1} = V_{i2} = V_C$

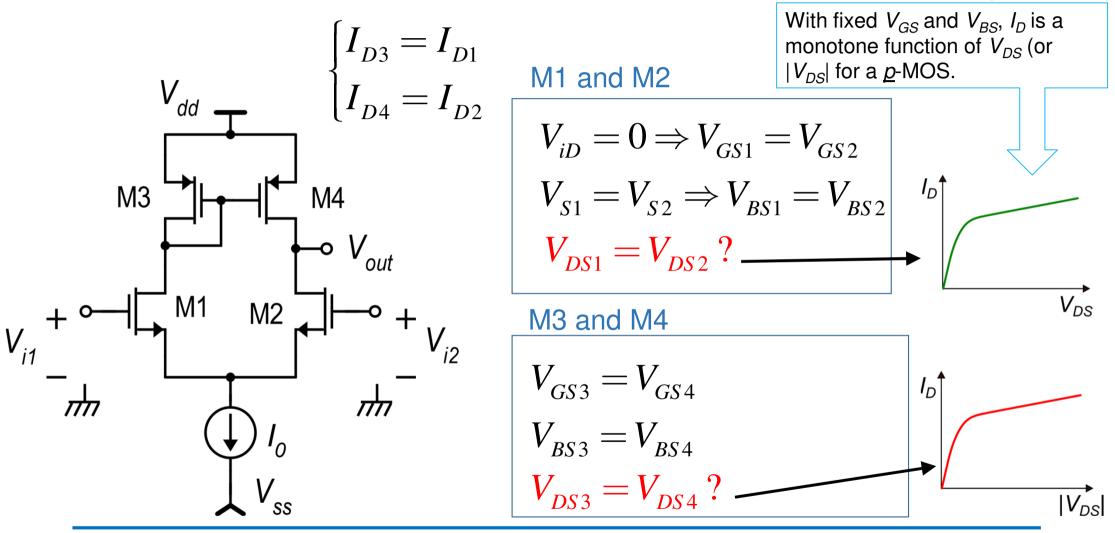
Symmetrical stimulus, but

The circuit is not symmetrical

$$I_{D1} = I_{D2}$$
 exactly?

$$I_D = f\left(V_{GS}, V_{BS}, V_{DS}\right)$$

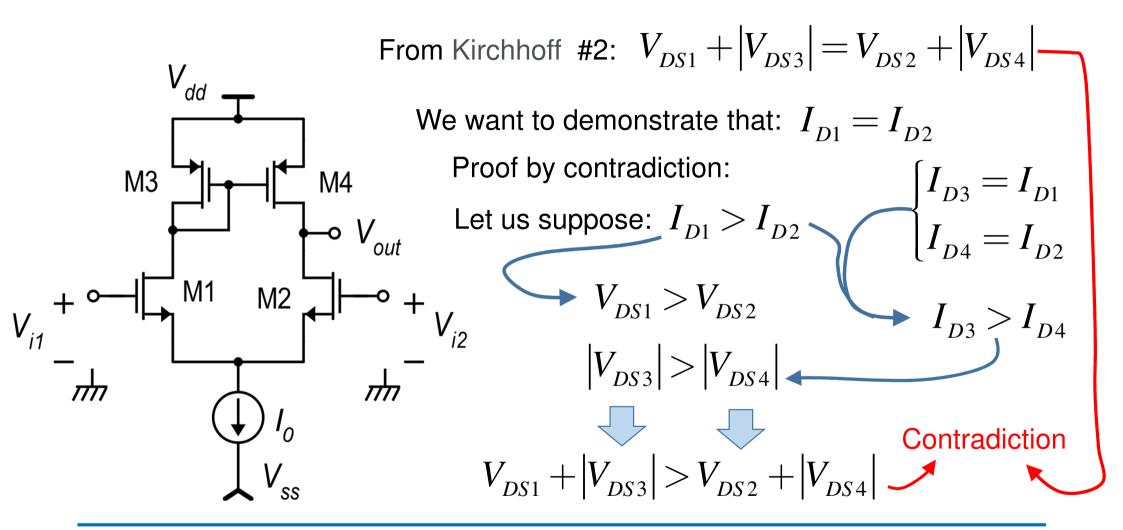
Demonstration of the exact symmetry of the electrical solution for $V_{id}=0$



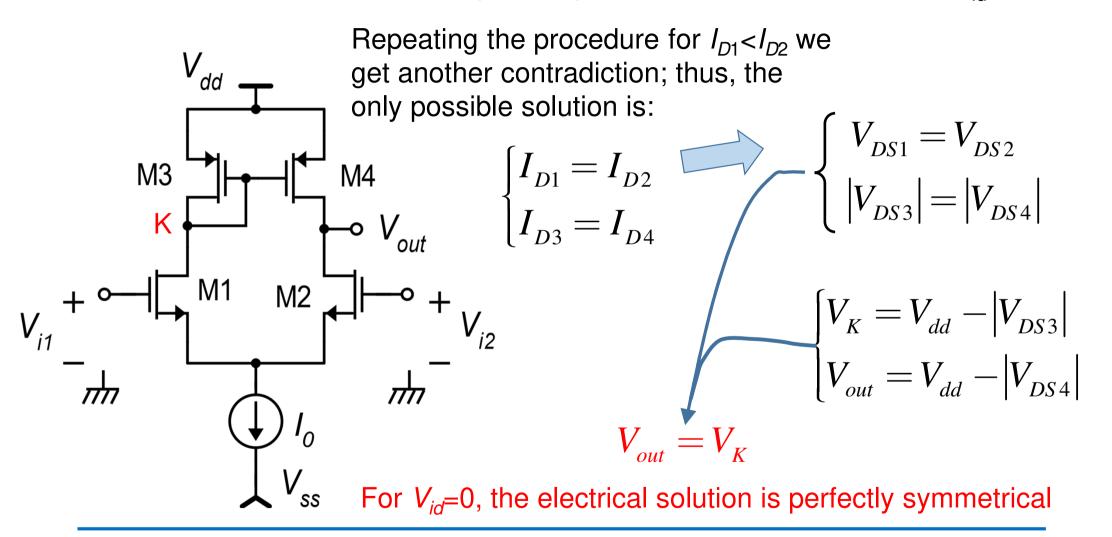
P. Bruschi – Microelectronic System Design

7

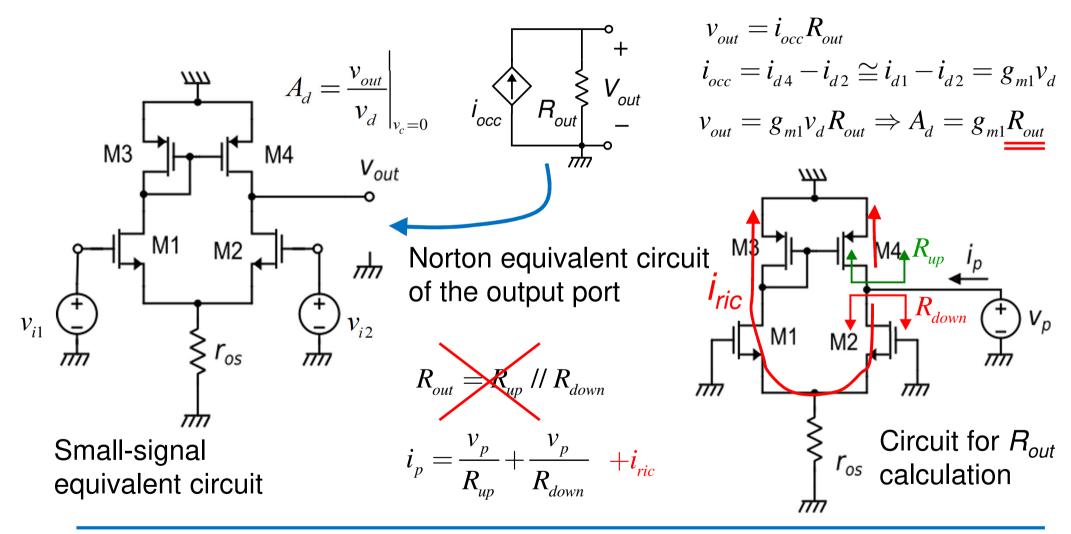
Demonstration of the exact symmetry of the electrical solution for $V_{id}=0$



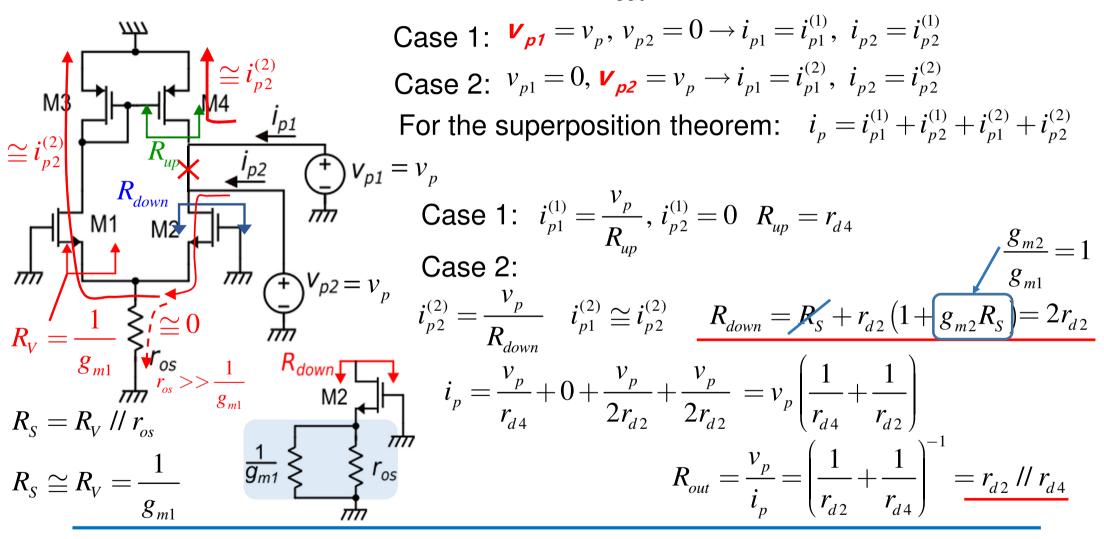
Demonstration of the exact symmetry of the electrical solution for $V_{id}=0$



Differential mode gain



Differential mode gain: R_{out} calculation.



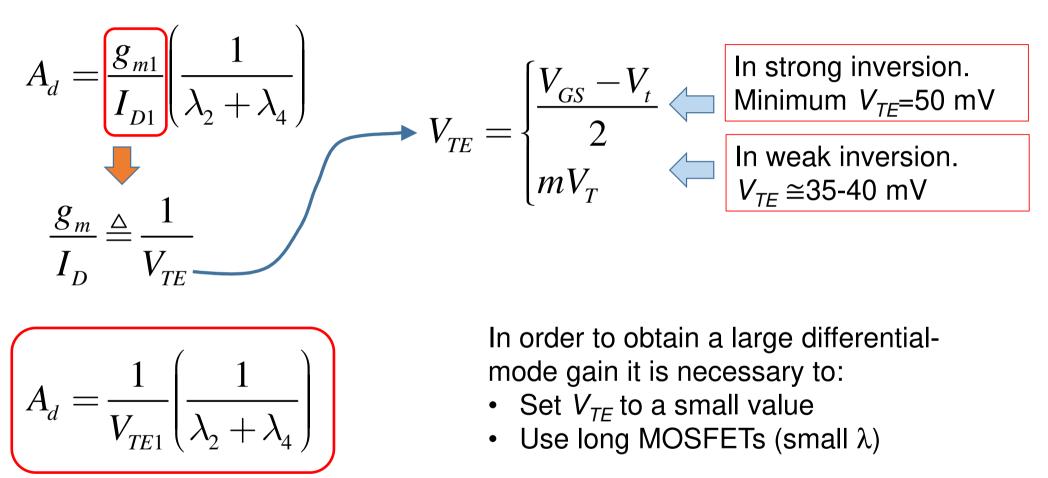
P. Bruschi – Microelectronic System Design

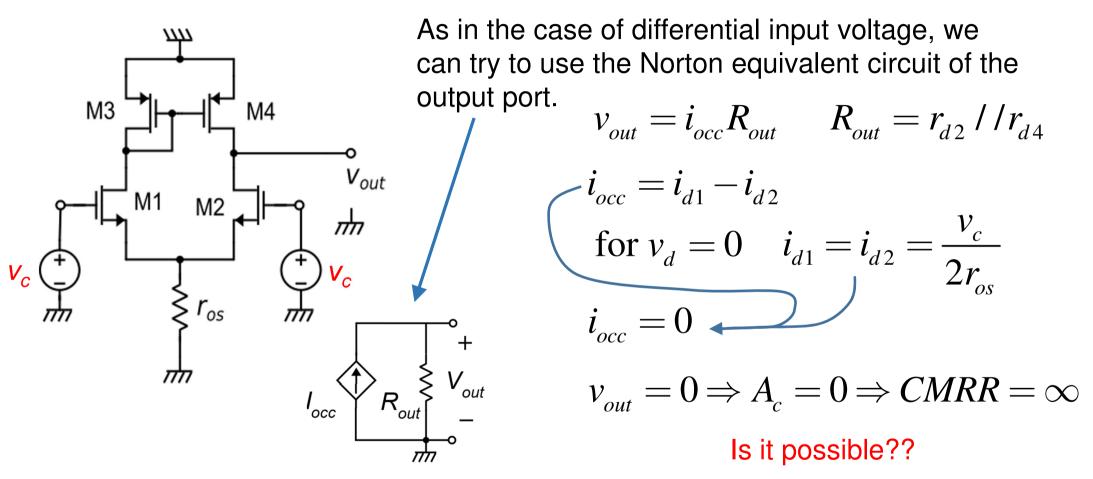
11

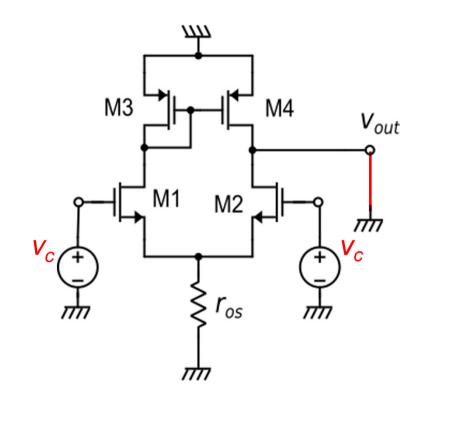
Differential mode gain

 $R_{out} = r_{d2} / r_{d4}$ Just to find the order of magnitude we can assume: $r_{d2} = r_{d4} = r_d$ $A_d = g_{m1} R_{out} = g_{m1} (r_{d2} / r_{d4})$ $A_d = \frac{g_m r_d}{2} \sim 50$ Independently from the supply voltage $A_{d} = g_{m1} \left[\frac{1}{\frac{1}{r_{d2}} + \frac{1}{r_{d4}}} \right] \qquad \frac{1}{r_{d}} = g_{d} = \lambda I_{D} \qquad A_{d} = g_{m1} \left[\frac{1}{\lambda_{2} I_{D2} + \lambda_{4} I_{D4}} \right]$ $A_{d} = \frac{g_{m1}}{I_{D1}} \left[\frac{1}{\lambda_{2} + \lambda_{4}} \right] \qquad I_{D2} = I_{D4} = I_{D1}$

Differential mode gain





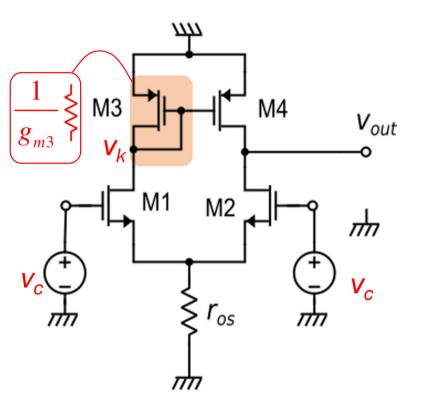


The problem occurs when we calculate iocc. Placing a short circuit across the output port, disrupts the symmetry:

$$v_{ds4} = 0 \quad v_{ds3} = -\frac{1}{g_{m3}} i_{d1} \neq 0$$
$$v_{ds1} = -\frac{1}{g_{m3}} i_{d1} - v_{s1} \quad v_{ds2} = -v_{s1} \neq v_{ds1}$$
$$i_{d1} \neq i_{d2} \qquad i_{occ} = i_{d4} - i_{d2} \neq 0$$

^{*i*}d2

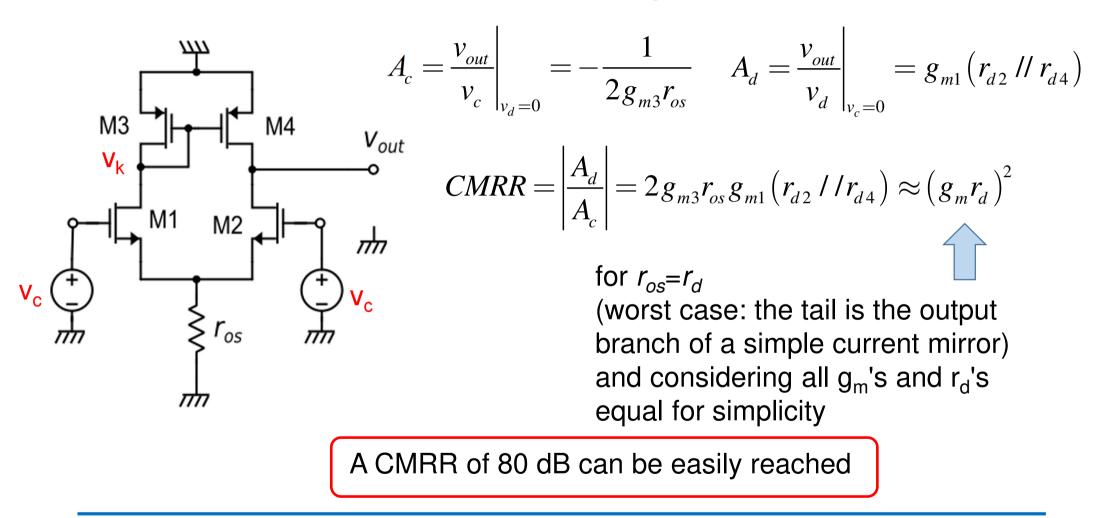
$$i_{d3} \neq i_{d4}$$



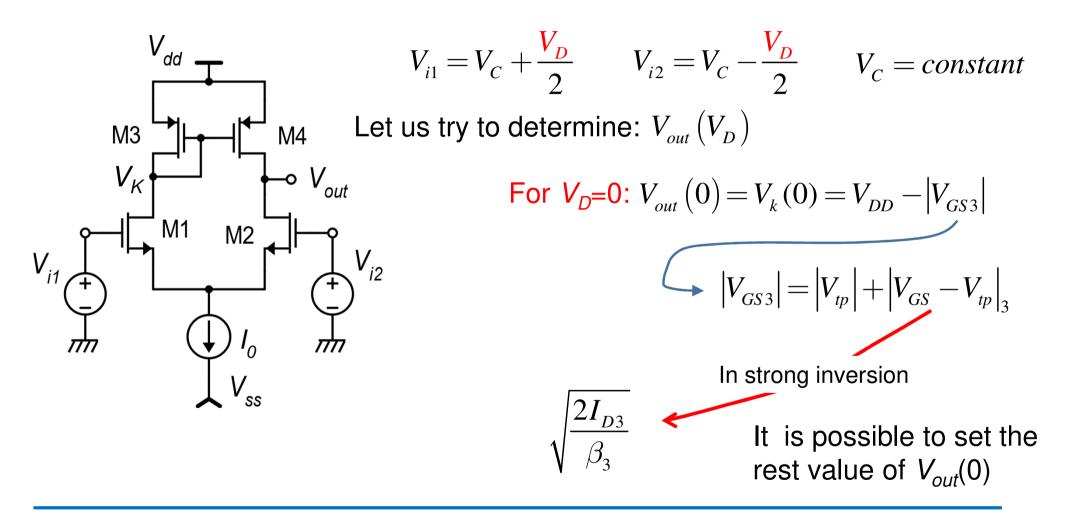
It is possible to exactly calculate i_{occ} , taking into account the actual i_{d1}/i_{d2} ratio and i_{d4}/i_{d3} ratio

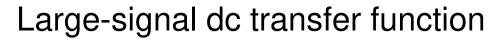
... but this is a very tedious approach There is a much simpler way:

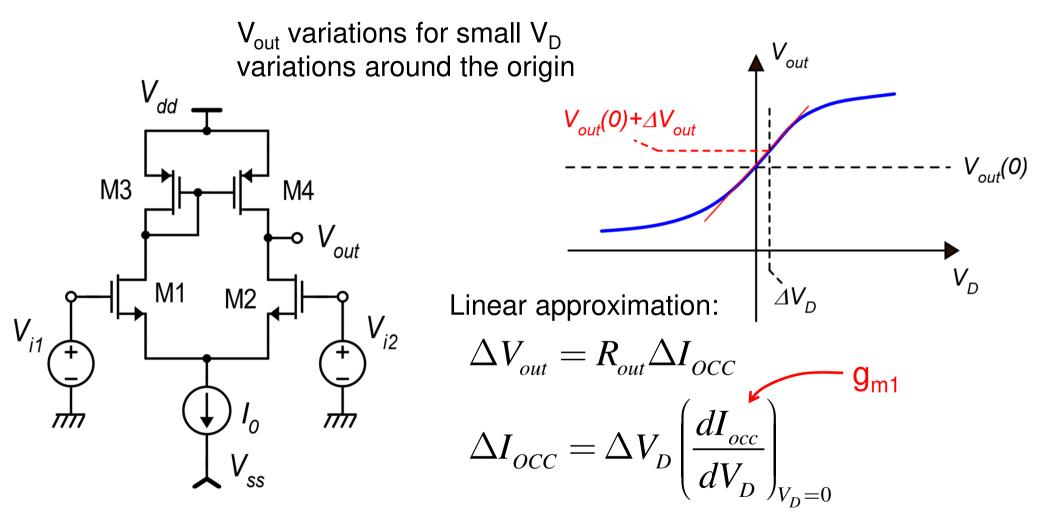
Let us remove the short circuit and directly calculate v_{out} . Now , for $v_{id}=0$, the circuit is symmetric again and, in particular: $v_k = v_{out}$ $v_{out} = v_k = -\frac{1}{g_{m3}}i_{d1} \cong -\frac{v_c}{2r_{os}g_{m3}}$



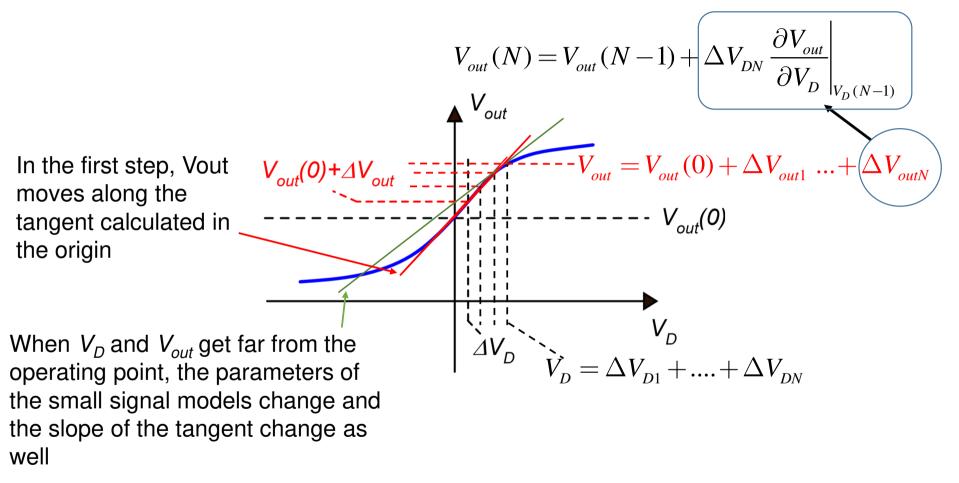
Large-signal dc transfer function

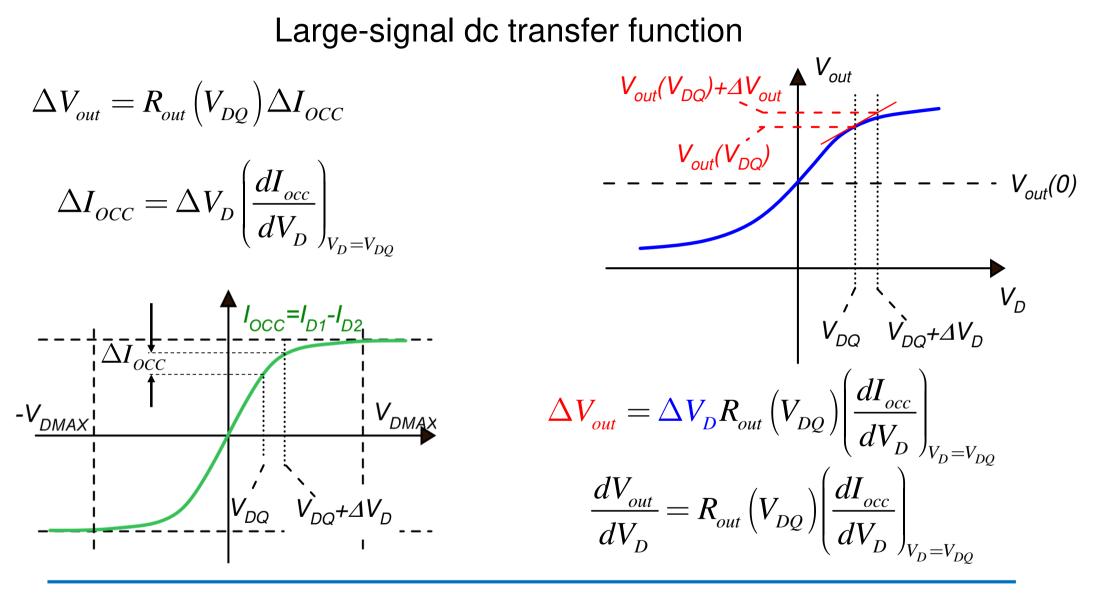






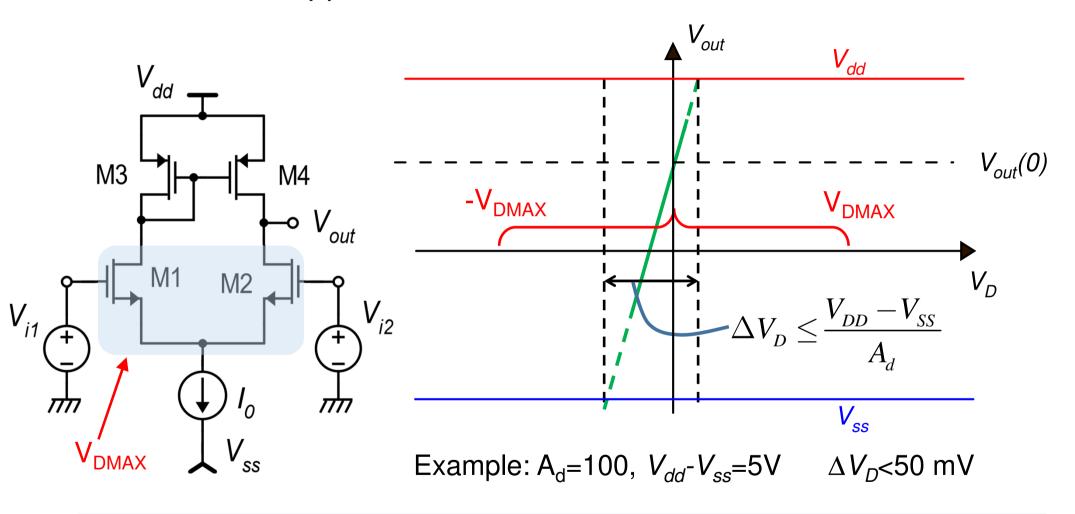
Moving away from the origin, step by step

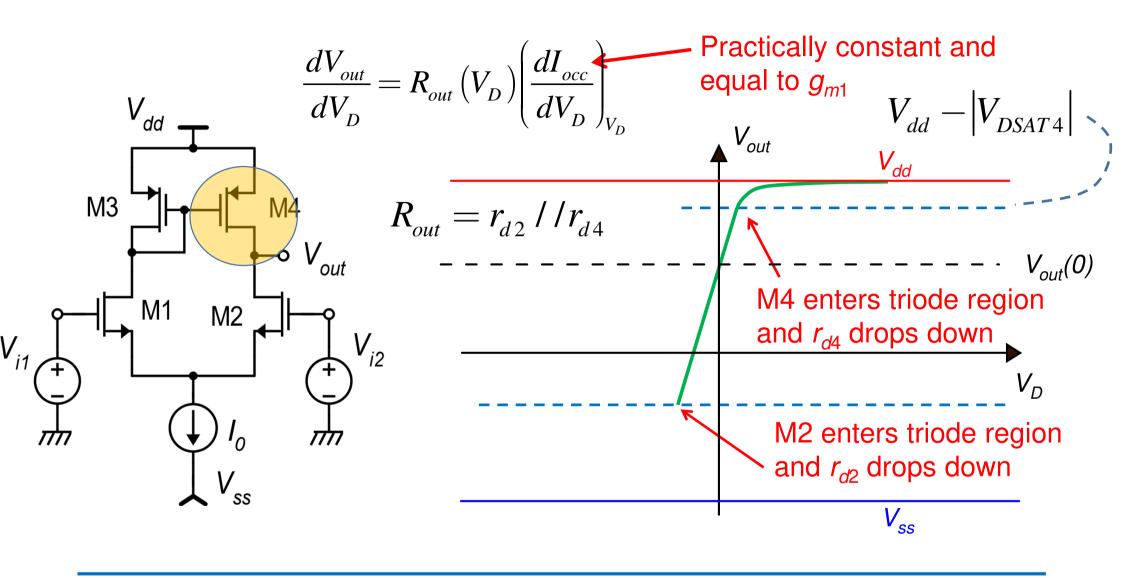




P. Bruschi – Microelectronic System Design

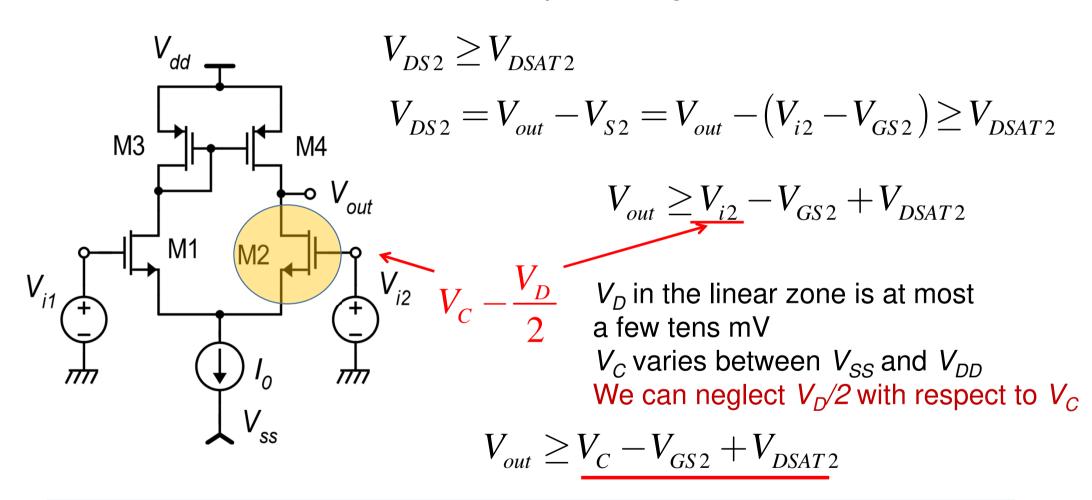
Approximate dc transfer characteristic



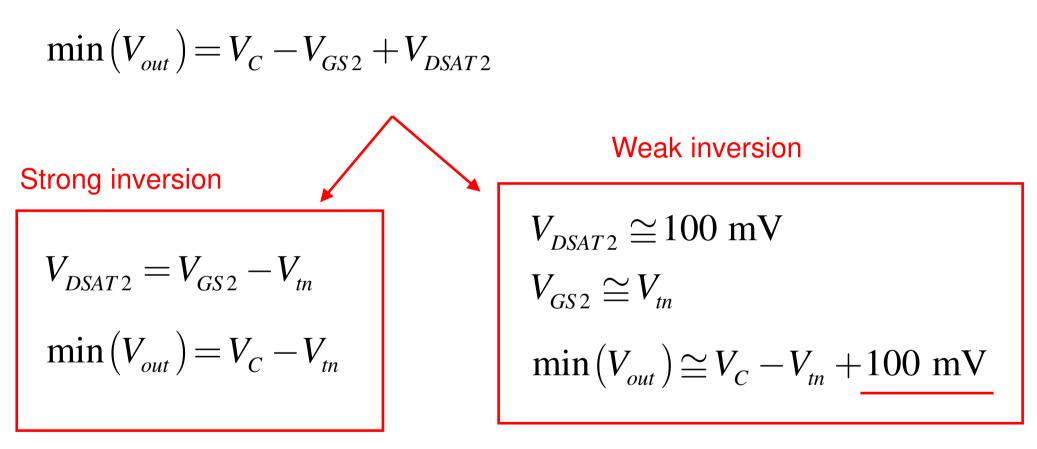


P. Bruschi – Microelectronic System Design

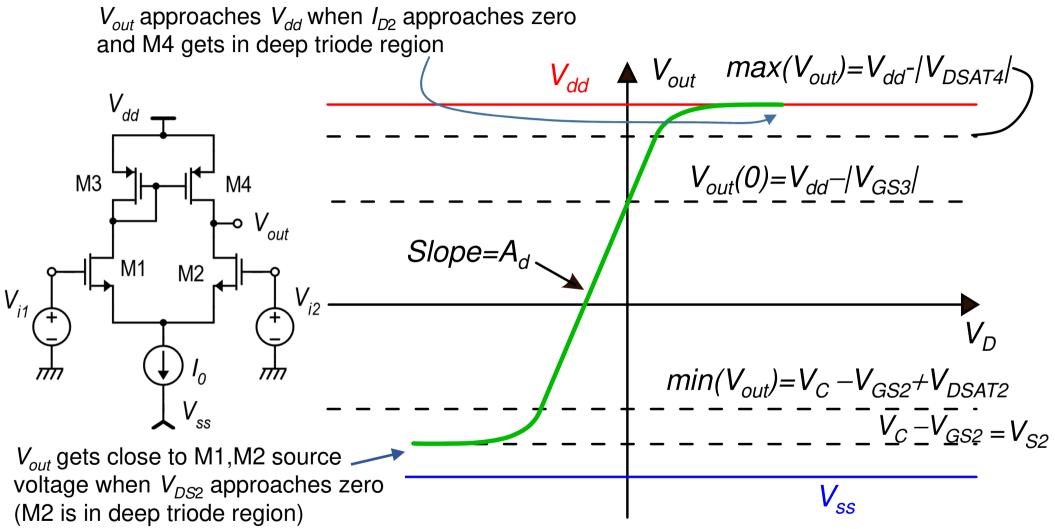
Minimum output voltage



Minimum output voltage

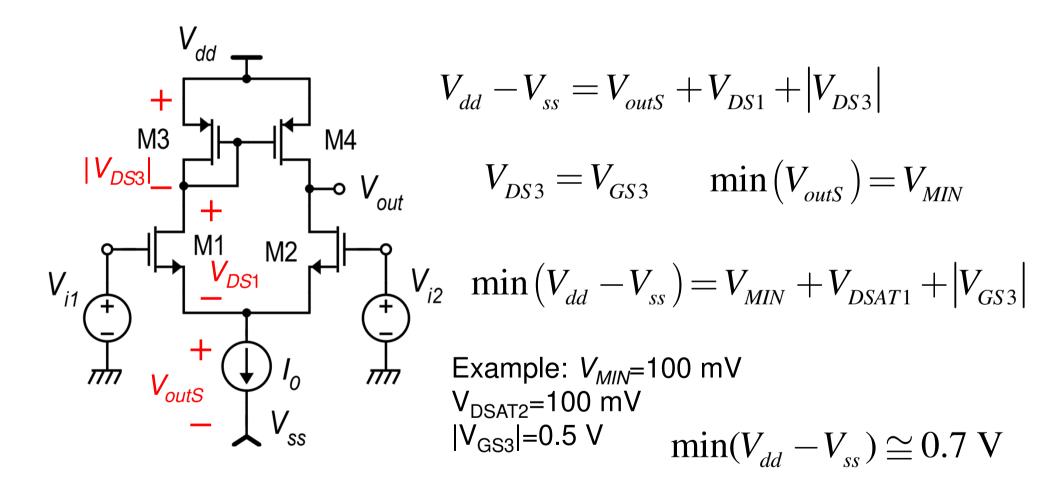


Complete dc transfer characteristic

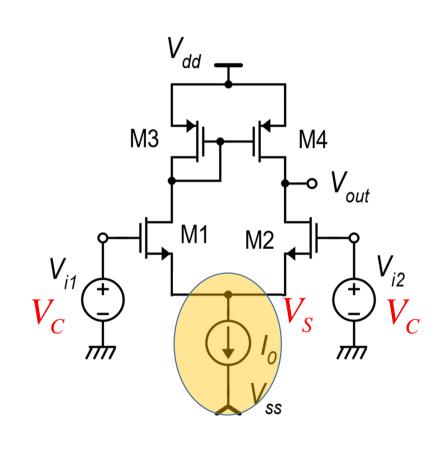


P. Bruschi – Microelectronic System Design

Minimum supply voltage V_{dd} - V_{ss}



Input common mode range



Lower limit

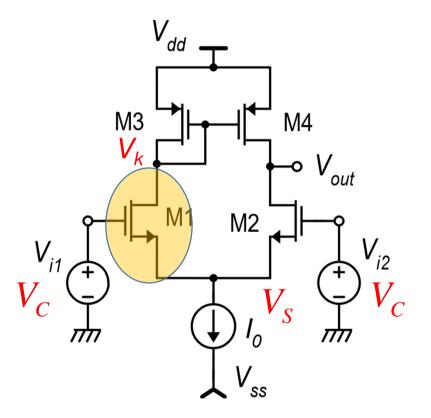
As V_C is progressively decreased, also V_S decreases at the same pace and eventually the voltage across the current source I_0 will get smaller than the minimum value V_{MIN} . From that point on, I_0 will rapidly decrease, turning off the stage.

$$\min\left(V_{C}\right) = V_{SS} + V_{MIN} + V_{GS1}$$

Note: when the output voltage of the current source I_0 gets below V_{MIN} , its output resistance (r_{os}) gets small, degrading the CMRR.

Input common mode range

Upper limit



As V_C is progressively increased, also V_S increases at the same pace. Since $V_{out} = V_K = V_{D2}$ = V_{D1} is fixed, eventually V_{DS1} and V_{DS2} will drop below the saturation voltage.

$$V_{DS1} = V_{K} - V_{S1} \ge V_{DSAT1}$$

$$V_{dd} - |V_{GS3}| - (V_{C} - V_{GS1}) \ge V_{DSAT1}$$

$$V_{dd} - |V_{GS3}| + V_{GS1} - V_{DSAT1} \ge V_{C}$$

Input common mode range: upper limit V_{dd} $V_{dd} - |V_{GS3}| + V_{GS1} - V_{DSAT1} \ge V_C$ M4 М3 V_{out} $|V_{GS3}| = |V_{tp3}| + |V_{GS3} - V_{tp3}|$ M1 M2 *V*_{i2} $V_{GS1} = V_{tn1} + (V_{GS1} - V_{tn1})$ These overdrive voltages can be made equal by design, so they cancel each other $\max(V_C) =$ $= V_{dd} - |V_{tp3}| + V_{tn1} - |V_{GS3} - V_{tp3}| + (V_{GS1} - V_{tn1}) - V_{DSAT1}$ This difference can be >0 because it is likely that: $V_{tn1} > |V_{tp3}|$ $(V_{t1} \text{ is affected by body effect}$ if M1 and M2 body is at V_{SS}) This difference can be >0The input common mode voltage can get even slightly higher than V_{dd}