Effect of matching errors in current mirrors

CMOS simple current mirror with $\mathrm{k}_{\mathrm{M}}=1$

$$
\Delta I=I_{\text {out }}-I_{\text {in }}=I_{D 2}-I_{D 1}=\Delta I_{D}
$$

P. Bruschi - Microelectronic System Design

Standard deviations

$$
\frac{\Delta I}{I}=\frac{\Delta I_{D}}{I_{D}}=\frac{\Delta \beta}{\beta}-\frac{2 \Delta V_{t}}{\left(V_{G S}-V_{t}\right)}
$$

$$
\begin{gathered}
\sigma_{\frac{\Delta I_{D}}{I_{D}}}=\sqrt{\frac{\sigma_{\Delta \beta}^{\beta}}{2}+\left(\frac{2 \sigma_{\Delta V_{t}}}{V_{G S}-V_{t}}\right)^{2}} \\
\sigma_{\frac{\Delta \beta}{\beta}}=\frac{C_{\beta}}{\sqrt{W L}} \\
\sigma_{V_{t}}=\frac{C_{V_{t}}}{\sqrt{W L}}
\end{gathered}
$$

Case 1: $\mathrm{L}=\mathrm{W}=1 \mu \mathrm{~m}$ $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}=100 \mathrm{mV}$

$$
\sigma_{\frac{\Delta \beta}{\beta}}=0.03 \quad \frac{2 \sigma_{\Delta V_{t}}}{V_{G S}-V_{t}}=0.17 \quad \sigma_{\frac{\Delta I_{D}}{I_{D}}}=0.173(17.3 \%)
$$

Case 1: $\mathrm{L}=\mathrm{W}=1 \mu \mathrm{~m}$ $\mathrm{V}_{\mathrm{Gs}}-\mathrm{V}_{\mathrm{t}}=500 \mathrm{mV}$

$$
\sigma_{\frac{\Delta \beta}{\beta}}=0.03 \quad \frac{2 \sigma_{\Delta V_{t}}}{V_{G S}-V_{t}}=0.034 \quad \sigma_{\frac{\Delta I_{D}}{I_{D}}}=0.0453
$$

Case 1: L=W=10 $\mu \mathrm{m}$ $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}=500 \mathrm{mV}$

$$
\sigma_{\frac{\Delta \beta}{\beta}}=0.003 \quad \frac{2 \sigma_{\Delta V_{t}}}{V_{G S}-V_{t}}=0.0034 \quad \sigma_{\frac{\Delta I_{D}}{I_{D}}}=0.00453(0.453 \%)
$$

P. Bruschi - Microelectronic System Design

Matching in BJT: process parameters
Q1 and Q2 are nominally identical and placed in the same chip. They are affected by matching errors
Q1 and Q2 are biased with identical $\mathrm{V}_{\text {CE }}>\mathrm{V}_{\text {CESAT }}$ and individual $\mathrm{V}_{\text {BE }}$ voltages such that Q1 and Q2 carry the same collector current

$$
I_{C}=I_{S} e^{\frac{V_{B E}}{V_{t}}}\left(1+\frac{V_{C B}}{V_{A}}\right) \cong I_{S} e^{\frac{V_{B E}}{V_{t}}} \Rightarrow \quad V_{B E}=V_{T} \ln \left(\frac{I_{C}}{I_{S}}\right)
$$

$\Delta V_{B E}=V_{T}\left(\frac{\Delta I_{C}}{I_{C}}-\frac{\Delta I_{S}}{I_{S}}\right) \quad I_{C 1}=I_{C 2} \Rightarrow \Delta I_{C}=\left.0 \quad \Delta V_{B E}^{*} \triangleq \Delta V_{B E}\right|_{\Delta I_{c}=0}=-V_{T}\left(\frac{\Delta I_{S}}{I_{S}}\right)$ generically \quad The foundry provides $\sigma_{\Delta V_{B E-e}^{*}}$ (of the minimum size BJT)

[^0]Matching errors in BJT current mirrors

$I_{C}=I_{S} e^{\frac{V_{B E}}{V_{t}}}\left(1+\frac{V_{C B}}{V_{A}}\right) \cong I_{S} e^{\frac{V_{B E}}{V_{T}}}$

$$
\Delta I_{C}=I_{C 2}-I_{C 1} \quad \frac{\Delta I_{C}}{I_{C}}=\frac{\Delta I_{S}}{I_{s}}
$$

$$
\Delta V_{B E}^{*}=-V_{T}\left(\frac{\Delta I_{S}}{I_{S}}\right) \quad \frac{\Delta I_{S}}{I_{S}}=-\frac{\Delta V_{B E}^{*}}{V_{T}}
$$

$$
\begin{array}{r}
\sigma_{\frac{\Delta I_{C}}{I_{C}}}=\sigma_{\frac{\Delta I_{s}}{I_{S}}}=\frac{\sigma_{\Delta V_{B E}^{*}}}{V_{T}} \quad \text { typical values: } \sigma_{\Delta V_{B E-e}^{*}}=100 \mu \mathrm{~V}-300 \mu \mathrm{~V} \\
\sigma_{\frac{\Delta I_{C}}{I_{C}}}=0.4 \times 10^{-2}-1.2 \times 10^{-2} \\
\text { Note: } \quad \sigma_{\Delta V_{B E}^{*}}=\frac{\sigma_{\Delta V_{B E-e}^{*}}}{\sqrt{\text { area }}}
\end{array}
$$

P. Bruschi - Microelectronic System Design

[^0]: P. Bruschi - Microelectronic System Design

