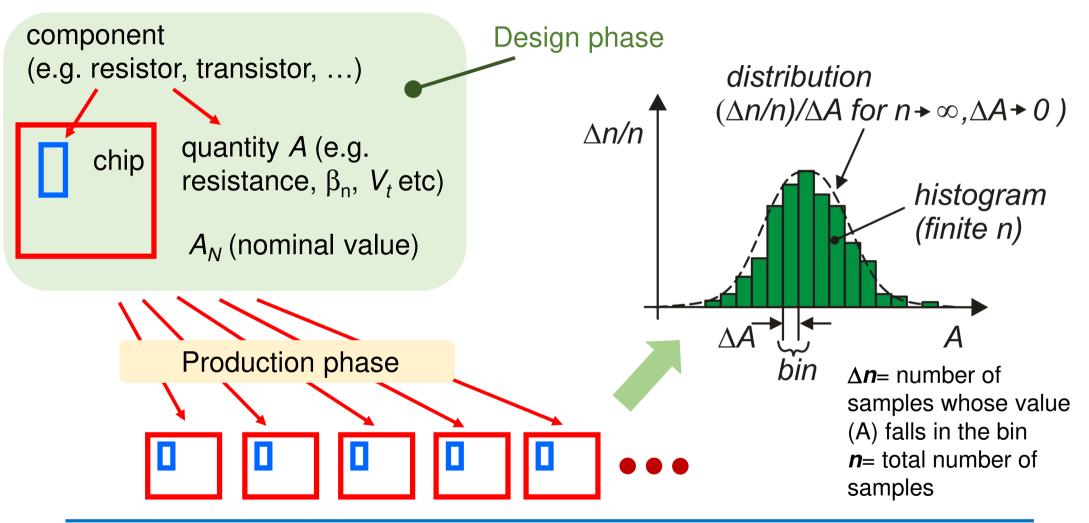
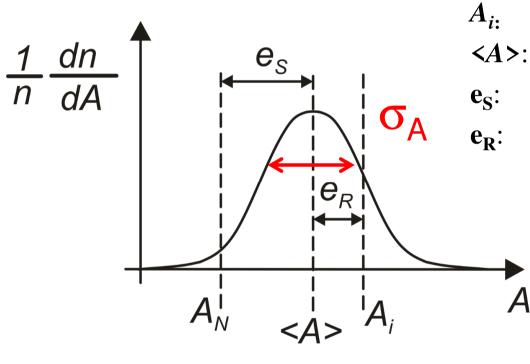
Process Errors in Integrated Circuits



Components of the error and statistical representation



- A_N : nominal value
 - A for a generic i-th component.
- *<A>*: the mean of the distribution.
 - Systematic error = $\langle A \rangle A_N$
 - Random error for the i-th component $e_R = A_i \langle A \rangle$.

Random error: standard deviation

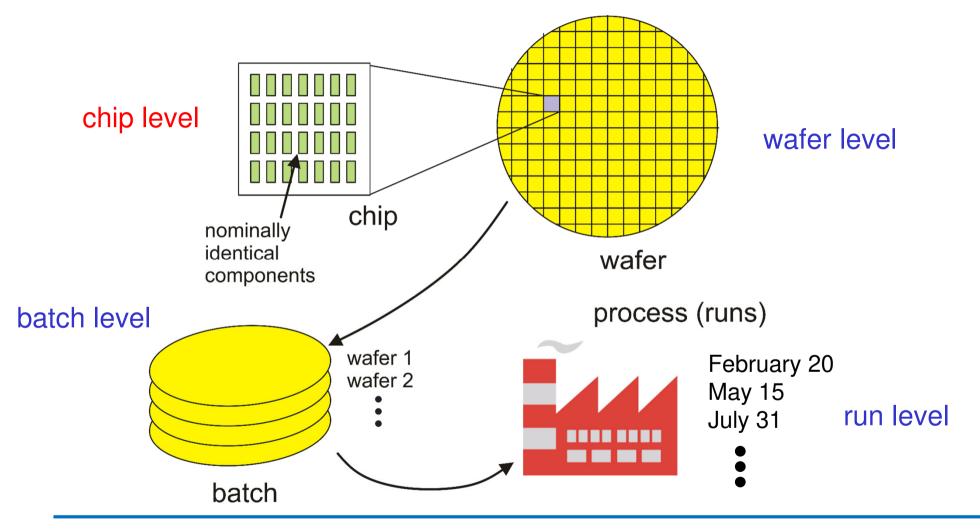
$$\sigma_{A} = \sqrt{\left\langle \left(A - \langle A \rangle\right)^{2}\right\rangle}$$

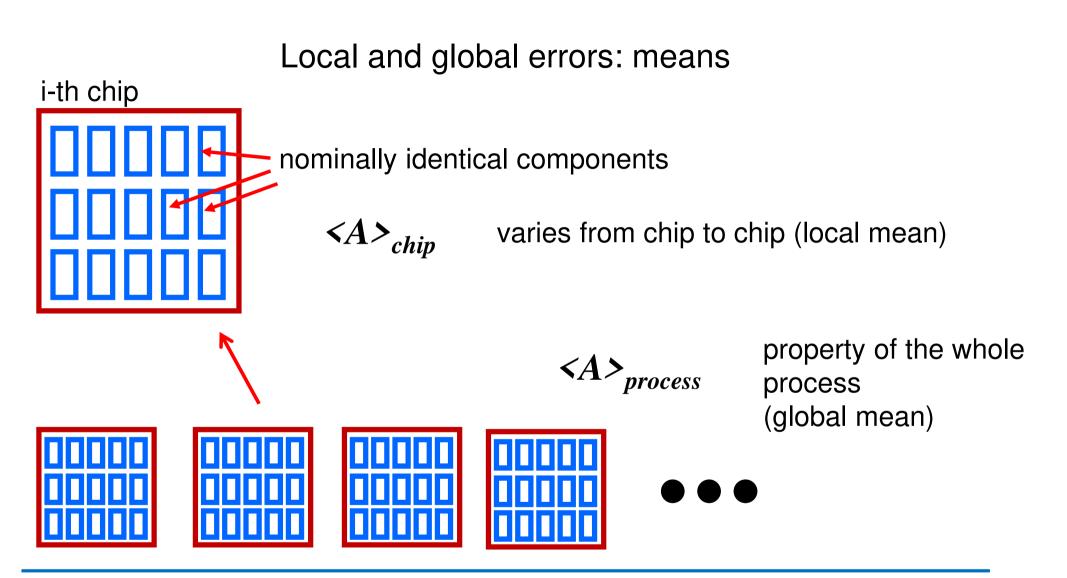
Confidence intervals

Max deviation from the mean	±σ	±2σ	±3σ	±4σ
Fraction of data within the interval	68.3 %	95.4 %	99.7 %	99.994 %
Fraction of data outside the interval	31.7 %	4.6 %	0.3 %	0.006 %

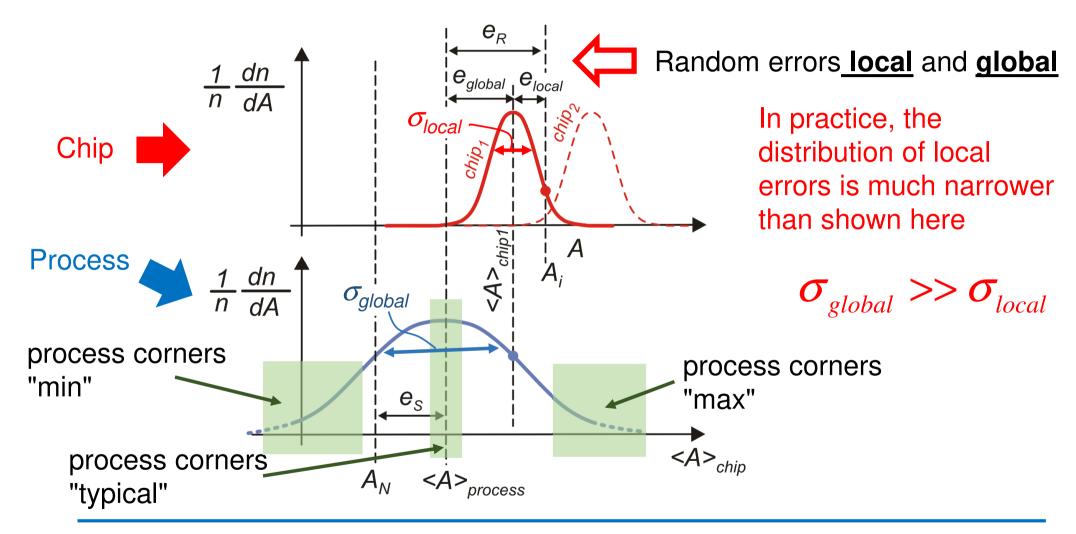
In 99.7 % of cases, A is in the interval: $[< A > -3\sigma_A, < A > +3\sigma_A]$

Errors in Integrated Circuits: Levels



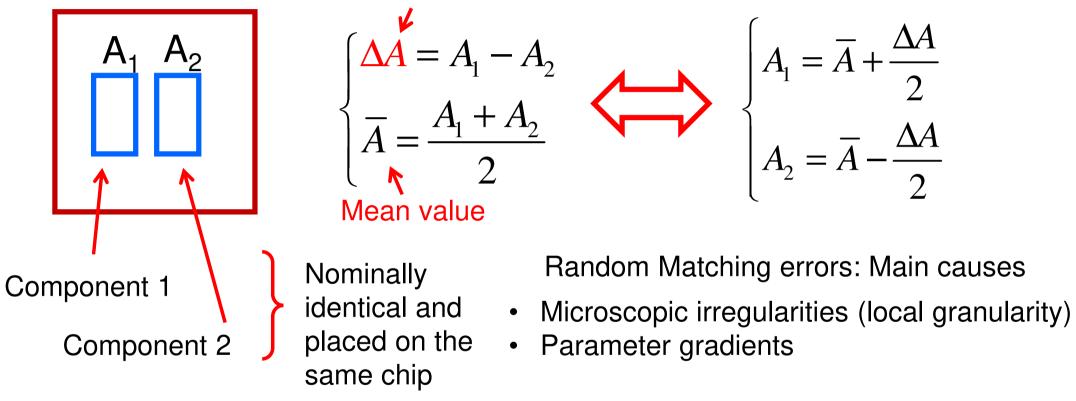


Local and global errors



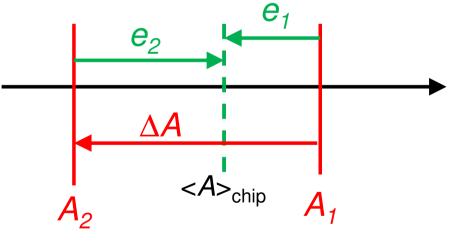
Matching errors: definition

Matching error (or mismatch)



Relationship between matching error and local error

$$A_{1} = \langle A \rangle_{chip} + e_{1}$$
 local errors
$$A_{2} = \langle A \rangle_{chip} + e_{2} \qquad \Delta A = A_{1} - A_{2} = e_{1} - e_{2}$$



Matching errors: causes

- Matching errors are the consequence of the local errors, which, in turn, derive from non uniformity of physical and chemical parameters over the chip area.
- Matching errors may have a systematic component. This means that one of the two components will be, on average, greater or lesser than the other. A systematic matching error is generally the consequence of a design error.

From here on, we will consider only <u>random matching errors</u>. The causes of random matching error are mainly of two types:

- Microscopic irregularities (local granularity)
- o Parameter gradients

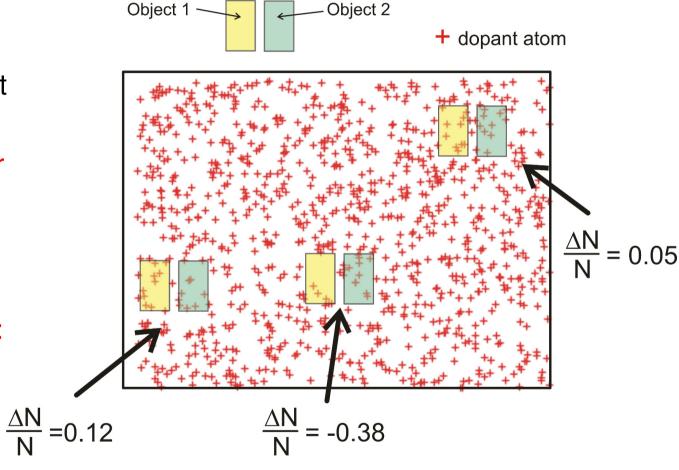
Matching errors: Microscopic irregularities

Simple case: A depends on the number of dopants atoms within the component area (N)

 $\Delta N = N_1 - N_2$ matching error

Depending on the position ΔN is subjected to large variations.

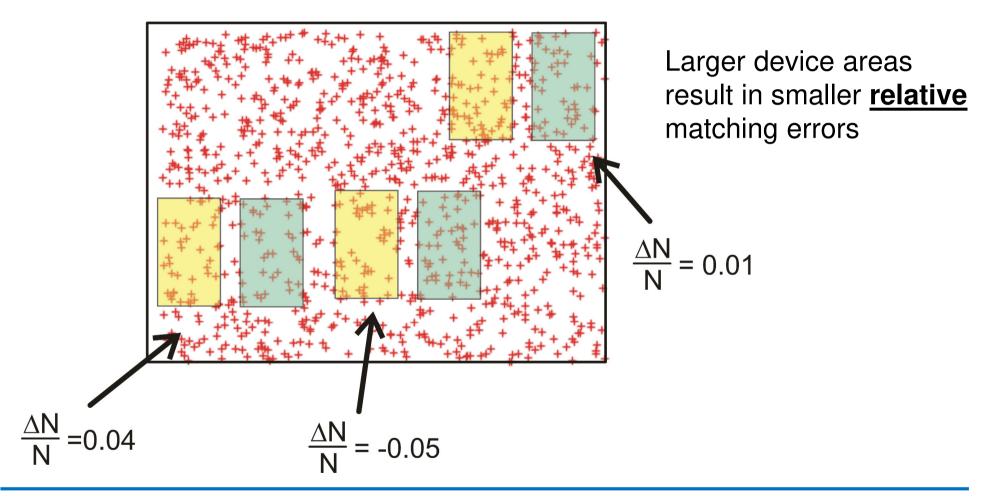
The important parameter is: Relative matching error:



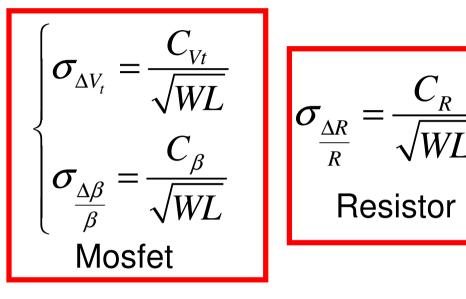
Matching errors: Microscopic irregularities

- The number of dopants atoms affects several properties such as effective sheet resistance and MOSFET threshold voltage
- The example can be replicated for other quantities, such as oxide thickness, where the crosses in the figure may represent local maxima or minima
- The large fluctuation of ΔN/N can be ascribed to the small area of the devices shown in the example. For even smaller devices its is likely that one of the two devices does not include any dopant atom : ΔN/N may exceed unity (100 % error).

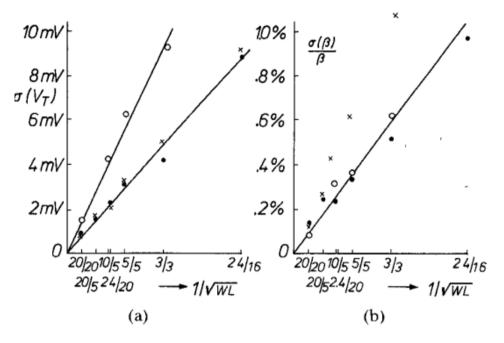
Microscopic irregularities: effect of device area



Microscopic irregularities: the Pelgrom model



 C_{vt} , C_{β} and C_{R} are constant parameters of the process Their values are given in the Design Rule Manual, with names that depend on the foundry (there is no general convention). C_{vt} units are generally V·µm, while C_{β} and C_{R} ones are µm.



From: Pelgrom et a IEEE J. of Solid State Circuits, 1989I

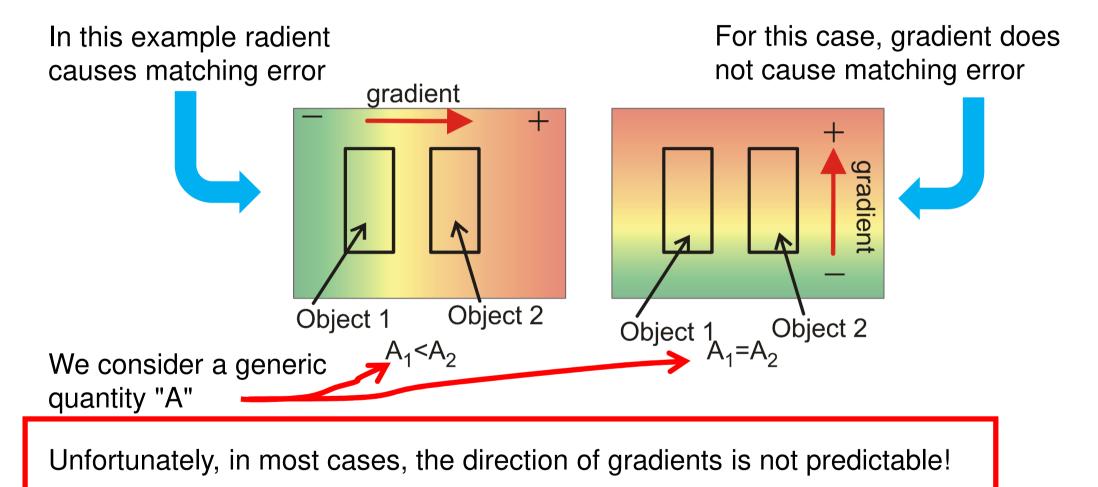
Matching Errors: Gradients

• Gradients indicate that important quantities that affect the device properties are not uniformly distributed on a <u>macroscopic scale</u>. This means that these quantities gradually varies across the chip area.

Quantities of interest can be, for example:

- Dopant density
- Oxide thickness
- Geometrical process biases (e.g. etching undercut)
- □ Temperature (e.g. due to power devices present on the chip)
- □ Mechanical stress (mainly due to the packaging process

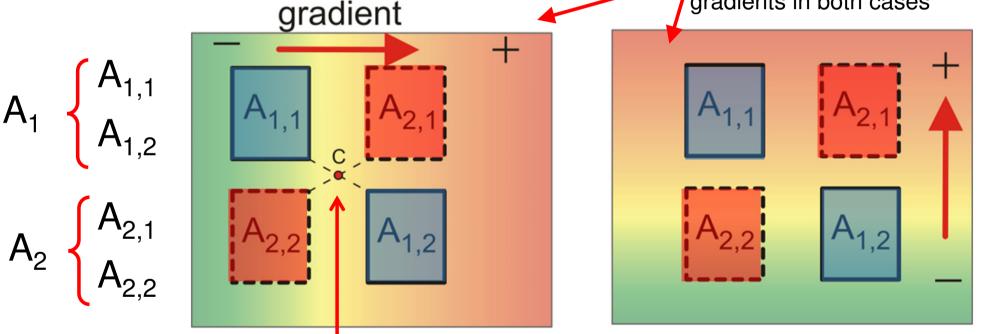
Effect of gradients on device matching



Layout rules that prevent device mismatch caused by gradients

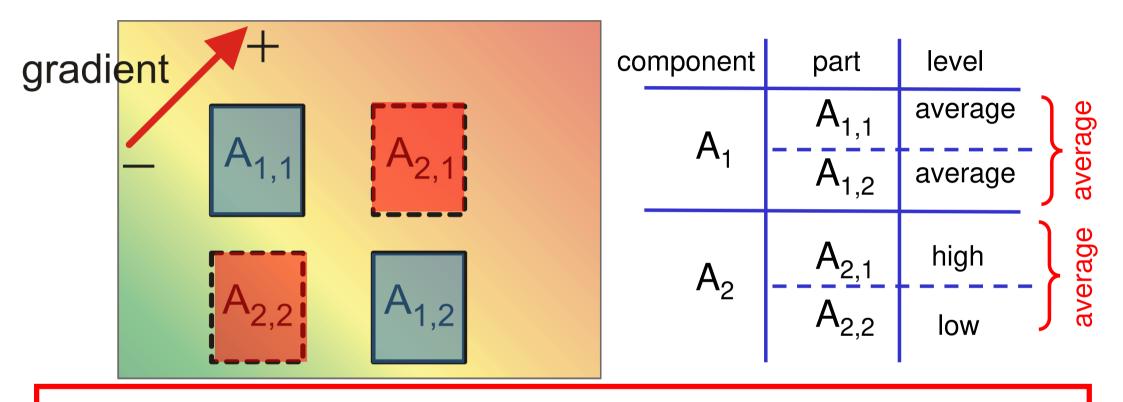
- Rule 1 (obvious): Take the distance between objects as close as possible. (This rule is less effective for large devices)
- Rule 2: Use <u>common centroid</u> configurations.

Object 1 and 2 are placed symmetrically with respect to the gradients in both cases



Centroid of both A₁ and A₂ objects

Common centroid configuration: Oblique gradients



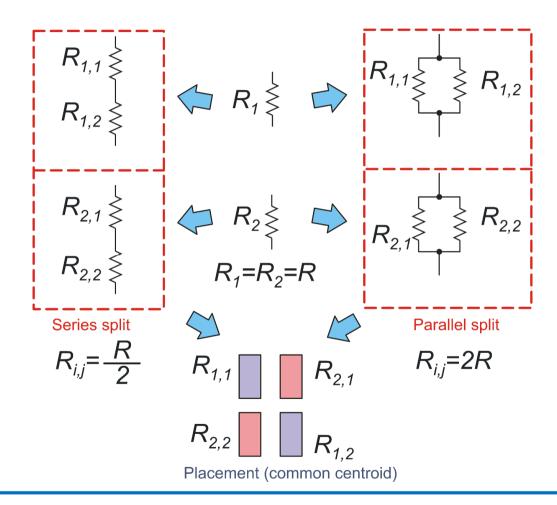
The common centroid configuration is effective also against oblique gradients..

Split and connect components in common centroid configurations

Case 1::Resistors

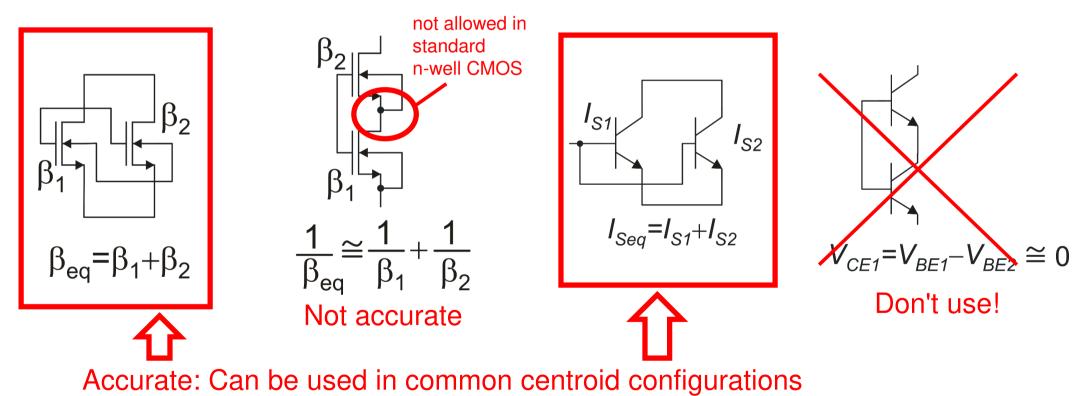
Series are preferred when resistors R_1 and R_2 are large

Parallels have to be preferred for small resistances



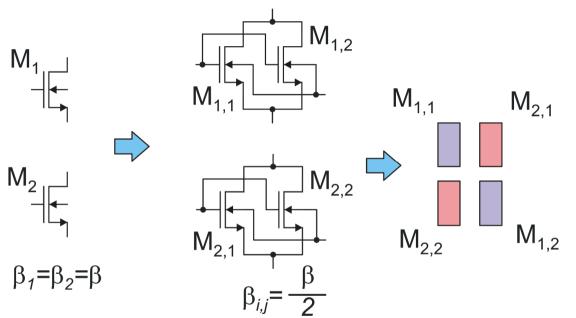
Split and connect components in common centroid configurations

Other devices - Properties of series and parallels



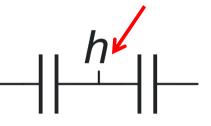
Split and connect components in common centroid configurations

Case 2: MOSFETS



Case 3: CAPACITORS

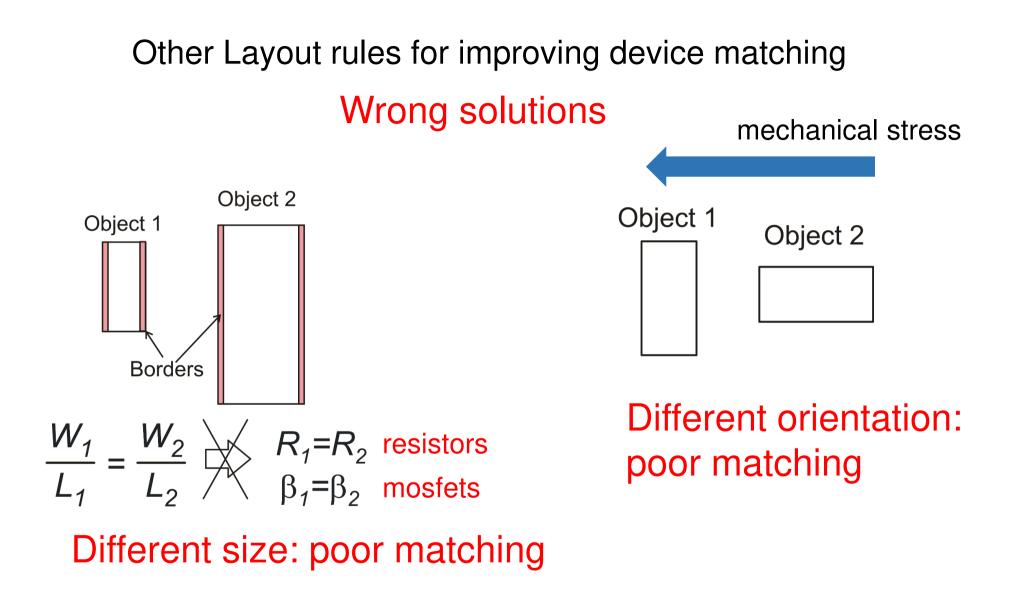
Floating node (no dc path)



Series connections of capacitors have to be avoided as much as possible unless dc paths are provided for the floating node

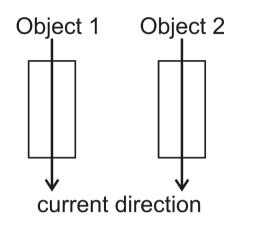
BJTs: Same as Mosfets (parallels only)

Capacitors: Parallel connections are preferred (no floating nodes)



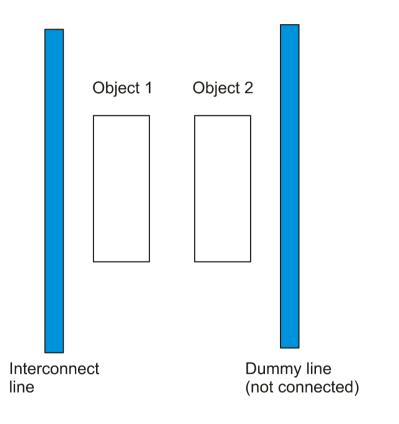
Other Layout rules for improving device matching

Same direction (to match thermoelectric effects)



Temperature gradients develop extra voltage differences that depend on the current direction (up to several hundred µVs

Same surroundings

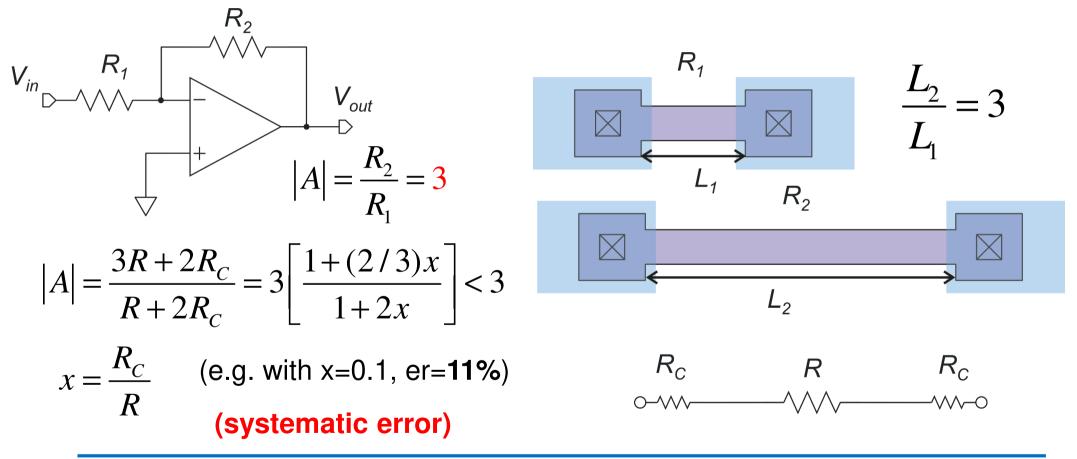


Summary of rules for a good device matching

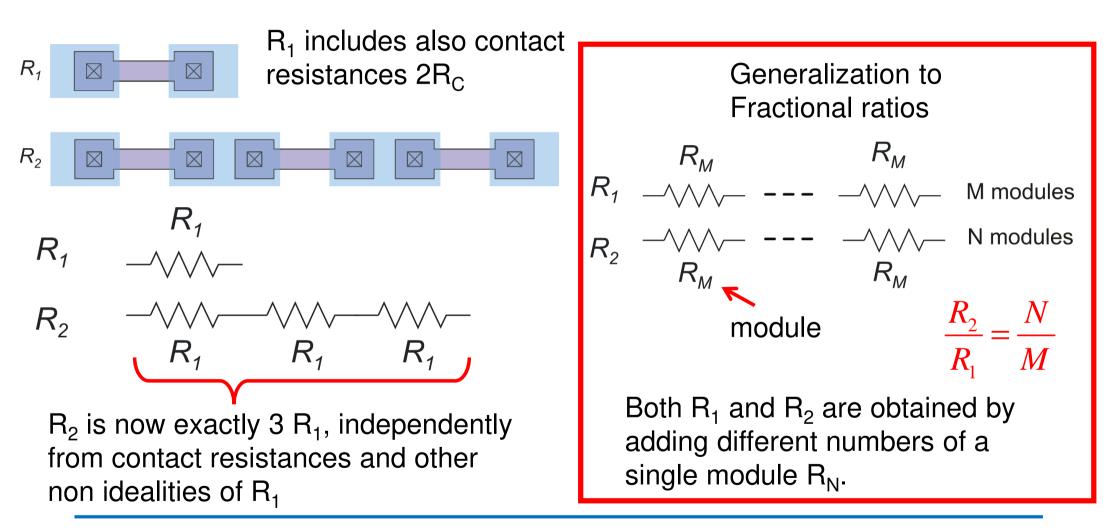
- Devices must be nominally identical (same dimensions, same orientation)
- Device areas should be as large as possible (Pelgrom model)
- Place devices as close as possible
- Use common centroid configurations
- Same current direction for the two devices
- The devices should "see" the same surroundings

Rules to obtain accurate ratios

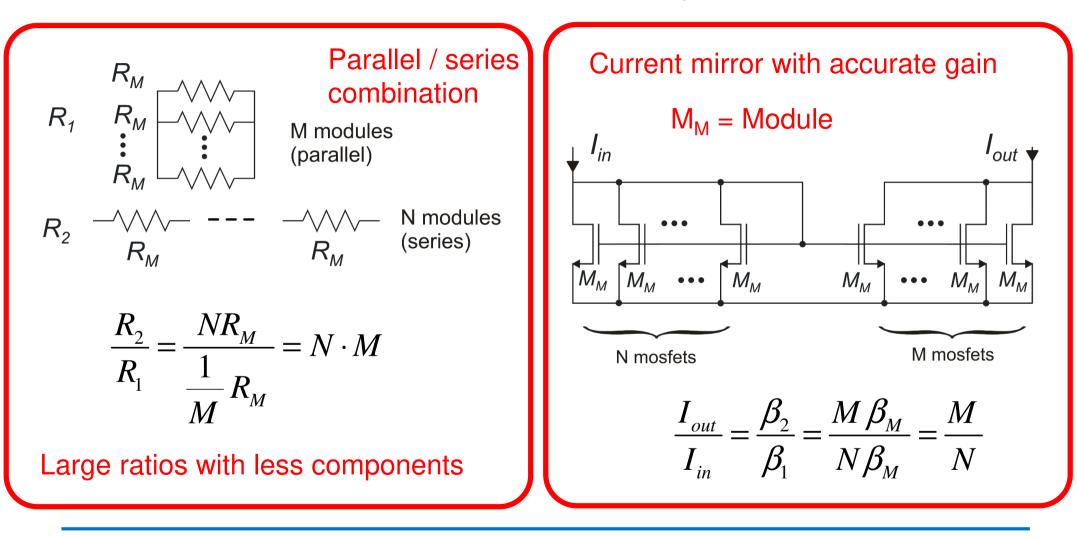
Example: accurate inverting amplifier with gain magnitude =3



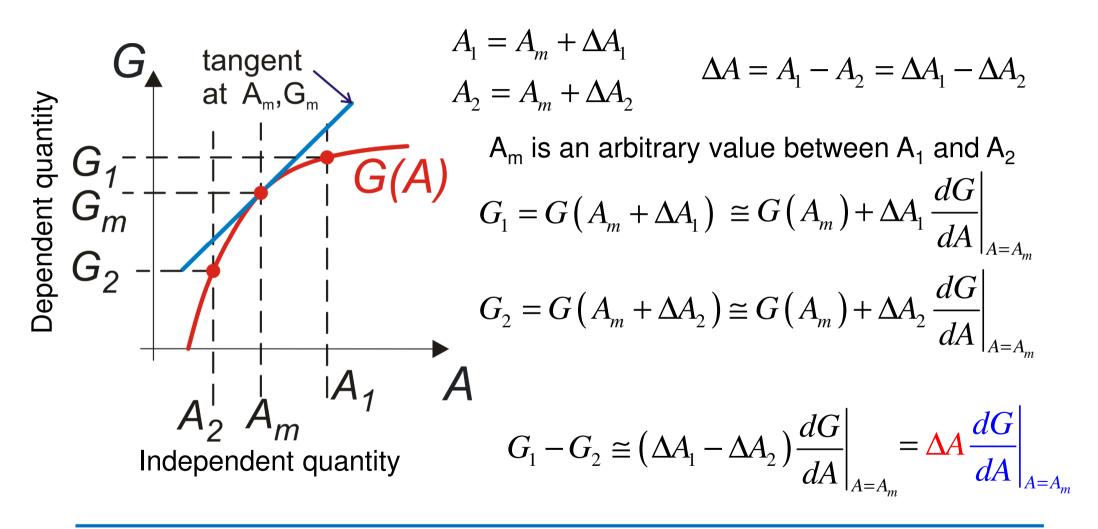
Accurate ratios: modular components



Accurate ratios: modular components



Elements of error propagation theory



For multiple independent variables - general case

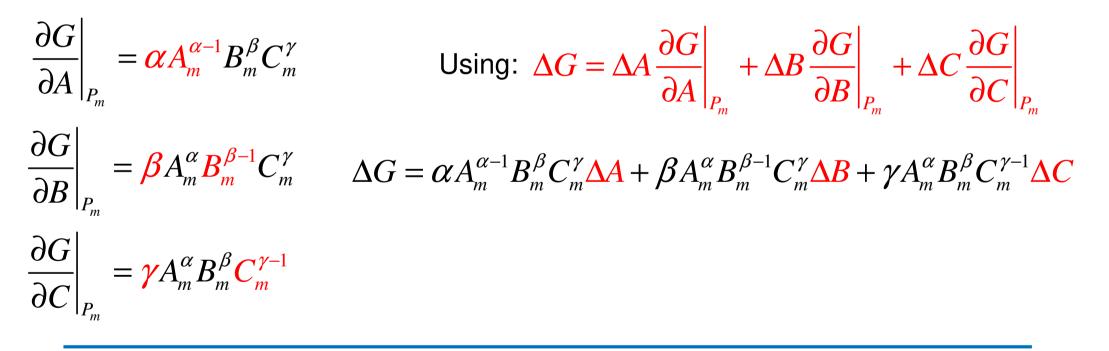
Error propagation: particular case 1

posynomial expression

case 1:

$$G(A, B, C) = A^{\alpha} B^{\beta} C^{\gamma}$$

 α,β,γ : real exponents A,B,C real positive variables



Error propagation: particular case 1

case 1

 $G(A, B, C) = A^{\alpha} B^{\beta} C^{\gamma}$

Relative variation (or relative error) -

$$\frac{\Delta G}{G_m} = \frac{\alpha A_m^{\alpha-1} B_m^{\beta} C_m^{\gamma} \Delta A + \beta A_m^{\alpha} B_m^{\beta-1} C_m^{\gamma} \Delta B + \gamma A_m^{\alpha} B_m^{\beta} C_m^{\gamma-1} \Delta C}{A_m^{\alpha} B_m^{\beta} C_m^{\gamma}}$$

$$\frac{\Delta G}{G_m} = \alpha \frac{\Delta A}{A_m} + \beta \frac{\Delta B}{B_m} + \gamma \frac{\Delta C}{C_m}$$

Sum of the single relative errors, weighted by the respective exponents

 $\blacktriangleright \frac{\Delta G}{G_{m}} = \frac{\Delta G}{G(P_{m})} = \frac{\Delta G}{A_{m}^{\alpha}B_{m}^{\beta}C_{m}^{\gamma}}$

Examples

Power in a resistor
$$P = \frac{V^2}{R} = V^2 R^{-1}$$
 $\longrightarrow \frac{\Delta P}{P_m} = 2 \frac{\Delta V}{V_m} - \frac{\Delta R}{R_m}$

If the relative difference in voltage is 1 %, the relative difference in power is 2 %. If the resistance changes by 1 %, we have a power reduction of 1 %.

Resistance of an integrated resistor

$$R = R_{S} \frac{L}{W} \quad \Longrightarrow \quad \frac{\Delta R}{R_{m}} = \frac{\Delta R_{S}}{R_{Sm}} + \frac{\Delta L}{L_{m}} - \frac{\Delta W}{W_{m}}$$

Error propagation: particular case 2

 $G(A, B, C) = \ln\left(A^{\alpha}B^{\beta}C^{\gamma}\right)$

case 2: logarithm of a posinomial

$$Z = \left(A^{\alpha}B^{\beta}C^{\gamma}\right) \qquad \Delta G = \Delta Z \frac{dG}{dZ}\Big|_{Z=Z_{m}} = \Delta Z \frac{d\left[\ln(Z)\right]}{dZ}\Big|_{Z=Z_{m}} = \frac{\Delta Z}{Z_{m}}$$

$$\Delta G = \frac{\Delta Z}{Z} = \alpha \frac{\Delta A}{A_m} + \beta \frac{\Delta B}{B_m} + \gamma \frac{\Delta C}{C_m}$$

Here we have the absolute error of G, not the relative one.

Example

+
$$V_D$$
 $V_D = V_T \ln\left(\frac{I_D}{I_S}\right)$ where V_T is nearly 28 at room temperature
 $\Delta V_D = V_T \left(\frac{\Delta I_D}{I_D} - \frac{\Delta I_S}{I_S}\right)$

An I_D difference of 10 % produces a V_D difference of 2.5 mV

25 mV

Application to matching errors

- Generally, when dealing with matching errors: $A_m = \overline{A}$ (mean value) but also the nominal value or other choices are possible
- Matching errors has also the following basic property: Linearity: $G=A+B \ \Delta G=\Delta A+\Delta B$ G=kA, where k is a constant : $\Delta G=k\Delta A$

• In the case of relative error, if
$$G = kA$$
: $\frac{\Delta G}{G} = \frac{\Delta A}{A}$

- Matching errors: statistical independence
- Matching errors of <u>different quantities</u> (e.g., quantities A,B,C) can be often considered independent from each other since they are mostly affected by microscopic irregularities, that do not show significant correlations when pairs of quantities are considered.
- In addition matching errors of <u>different device pairs</u> can be also considered independent, or, at least, uncorrelated.

$$\Delta G = k_1 \Delta A + k_2 \Delta B + k_3 \Delta C \implies \sigma_{\Delta G} = \sqrt{k_1^2 \sigma_{\Delta A}^2 + k_2^2 \sigma_{\Delta B}^2 + k_3^2 \sigma_{\Delta C}^2}$$