Digital to Analog Converters

DAC applications

- Digital to analog signal reconstruction: e.g. audio and video signals, actuator control (e.g. control of motors, solenoids, piezoactuators
- Sensor excitation: generation of bias voltages, sinusoidal waveforms, etc)
- Direct Digital Synthesis (DDS) of waveforms for telecommunications
- Trimming of analog blocks (e.g. offset nulling)
- Feedback components in ADCs

DAC performance parameters

INL, DNL

DAC Architectures

	Pros	Cons	
R-2-R ladder	Reduced number of resistor of similar value	Potentially non-monotonic Suffer from the on-resistance of the switches	
Resistor String	Guaranteed monotonic Low power consumption	Very large number of resistors	
Current Steering	Very fast. No need for resistors. Can be designed to be always	Current output. Flicker Noise	
	monotonic	The output may be not	
Switched Capacitors	Optimal power vs speed trade-off	available in the whole clock cycle. Large glitches	

DAC resistor string

For any value of code D, only one switch at a time is on, selecting one of the 2ⁿ voltage levels produced by the resistive divider

If code D turns on a certain switch, code D+1 turns on the switch placed in position up, then the output voltage can only grow

The monotonicity is guaranteed

INL in a resistor string: a simple estimate

INL and resistor matching

 $\frac{V_{INL}}{LSB} = 2^{n-2} \frac{\Delta R}{\overline{R}}$

In an n-bit DAC, to have an |*INL*|<1 LSB, the relative matching errors should be:

$$2^{n-2} \frac{\Delta R}{\overline{R}} < 1$$
 \longrightarrow $\frac{\Delta R}{\overline{R}} < \frac{1}{2^{n-2}}$

Example: 12 bit DAC:

$$\frac{\Delta R}{\overline{R}} < \frac{1}{2^{10}} \cong 10^{-3}$$

Feasible, with large area occupation

$$\frac{\Delta R}{\overline{R}} < \frac{1}{2^{14}} \cong 6 \times 10^{-5}$$

Unfeasible. Requires complicated post-production trimming

It can be made monotonic-guaranteed by driving the 2ⁿ mosfets of the array with thermometric coding It suffers from the same INL problem of the resistor string DAC

Capacitive DAC

- Capacitor bank has better matching properties than resistor string
- Low-power solution (no static consumption in the capacitor bank)
- Output not always valid
- Troubles with C-2C solutions due to parasitic capacitance of the bottom plate

P. Bruschi – Design of Mixed Signal Circuits

DAC Comparison

	Туре	Accuracy	Current consumption	Speed
Voltage	Resistor string, R-2R	Up to 12 bit	1 μA – 1 mA	Up to 100 MS/s (limited by buffer)
Current	Current steering, I-2I	Up to 10 bit	10 μA – 30 mA	Up to 10 GS/s
Charge	Capacitor bank	Up to 14 bit	1 nA – 10 μA	Up to 100 MS/s (limited by buffer)

Analog to Digital Converters

ADC applications

- Measurements and data acquisition
- Industrial (control systems, PLCs, ...)
- Sensor integration (robotics, IoT, ...)
- Commercial electronics (mobile phones, video and audio devices, microcontrollers ...)
- High-speed communications (data link, IF conversion...)

Analog to Digital Converters (ADCs)

ADCs - Main Performances


```
N: ADC resolution
```

Nyquist-Rate vs. Oversampling ADCs

Nyquist Rate ADC:

$$f_S \cong 2B_S$$

$$f_S \cong f_{s-Nyq}$$

The output code depends only on the last conversion. Previous conversions do not affect the present code

The output code depends also on the previous history of sampled data.

ADCs – Static Parameters

• Offset error: difference between the actual ADC characteristic and the perfect ADC characteristic, evaluated at the zero transition

• Gain error: difference between the last step midpoint of the actual ADC and the last step midpoint of the ideal ADC, after the compensation of the offset error

http://ww1.microchip.com/downloads/en/appnotes/atmel-8456-8-and-32-bit-avr-microcontrollers-avr127-understanding-adc-parameters application-note.pdf

ADCs – Static Parameters

• **DNL error:** difference in the step width between the actual characteristic and the ideal one

 INL error: vertical difference between the actual input-output characteristic and the ideal one, after the compensation of the offset and gain error

http://ww1.microchip.com/downloads/en/appnotes/atmel-8456-8-and-32-bit-avr-microcontrollers-avr127-understanding-adc-parameters application-note.pdf

ADCs – Static Parameters

Complete 12-Bit, 40 MSPS Monolithic A/D Converter

AD9224

Parameter Min Тур Max Units ACCURACY Integral Nonlinearity (INL) ± 1.5 ± 2.5 LSB Differential Nonlinearity (DNL) LSB ± 0.33 ± 1.0 No Missing Codes Guaranteed 12 Bits Zero Error (@ +25°C) ± 0.12 ± 0.3 % FSR Gain Error (@ +25°C)1 ± 0.3 ± 2.2 % FSR Gain Error (@ +25°C)2 % FSR ± 0.4 ± 1.6

NOTES ¹Includes internal voltage reference error. ²Excludes internal voltage reference error.

Typical Performance Characteristics (AVDD, DVDD = +5 V, Fs = 40 MHz [50% duty cycle] unless otherwise noted.)

P. Bruschi – Design of Mixed Signal Circuits

PRODUCT DESCRIPTION

The AD9224 is a monolithic, single supply, 12-bit, 40 MSPS, analog-to-digital converter with an on-chip, high performance sample-and-hold amplifier and voltage reference. The AD9224 uses a multistage differential pipelined architecture with output error correction logic to provide 12-bit accuracy at 40 MSPS data rates, and guarantees no missing codes over the full operating temperature range.

ADCs – Dynamic Parameters

P. Bruschi – Design of Mixed Signal Circuits

Quantization noise in the frequency domain

The uniform power spectral density (PSD) model for the quantization noise

This model is very useful and simple **but should be applied with much care.**

In real cases, the quantization noise depends on the input signal, and so does its spectrum.

The uniform spectral density model is acceptable when the input signal has **magnitude** and/or **frequency** such that the output levels are changed in a **fast** and almost **random** way.

This happens when the average time spent by the signal on a single level is short (of the order of the sampling time).

Signal to Noise Ratio and resolution

ADCs – Figure of Merits

Walden FoM:

Schreier FoM:

P. Bruschi – Design of Mixed Signal Circuits

P. Bruschi – Design of Mixed Signal Circuits

Nyquist rate ADCs N-bit ADC

- Direct conversion:
 - Flash converters

1 cycle of comparison (fast but with low resolution)

- Counting and Integrating ADCs:
 - Counting converters
 - Dual-slope

2^N cycles of comparison (simple/accurate but slow)

- Binary-Search Algorithm based:
 - Successive approximation converters (SAR)
 - Pipelined converters

N cycles of comparison (good trade-off speed/resolution)

A very common SAR ADC: the charge-redistribution ADC

<u>All capacitors are in parallel</u>, with one terminal connected to the input voltage V_{in} .

Sampling phase

- The op-amp is placed in open loop configuration and the bottom plates of all capacitors are connected to gnd.
- The voltage of the top plates (V_{top}) is free to evolve (it is floating, no current comes from the OP to V_{top})

Top voltage in the sampling phase

P. Bruschi – Design of Mixed Signal Circuits

Composite comparator

 $V_{iA} = -V_{top}$

The gain of OA is so large that the offset and hysteresis of CMP has negligible impact on the composite comparator characteristics.

$$V_b = \begin{cases} 1 & \text{if } V_{iA} > v_n \\ 0 & \text{if } V_{iA} \le v_n \end{cases}$$

$$V_{b} = \begin{cases} 1 & \text{if } -V_{top} > v_{n} \Leftrightarrow \underline{V_{top}} < v_{n} \\ 0 & \text{if } -V_{top} \le v_{n} \Leftrightarrow \underline{V_{top}} \ge v_{n} \end{cases}$$

Phase **SAR**_k: calculation of the V_{top} jump

Phase SAR_{n-1} $b_{n-1} = 1$ if: $-V_{in}(t_s) - v_n(t_s) + \frac{V_{REF}}{2} < -v_n(t_{n-1})$ $V_{in}(t_s) > \frac{V_{REF}}{2} - v_n(t_s) + v_n(t_{n-1})$

Subtraction of two noise samples taken at different times: constant and correlated components are rejected (CDS).

Neglecting noise / offset components, the condition becomes:

$$V_{in}\left(t_{s}\right) > \frac{V_{REF}}{2}$$

possible values of $V_{in}(t_s)$ and resulting value of b_{n-1}

This is in conformity with the successive approximation algorithm

Decision for b_{n-2}

Generalization

At k-th step (phase SAR_k), bit b_k is determined from the comparison of $V_{in}(t_s)$ with:

$$V_{tst}(k) = \underbrace{b_{n-1}\Delta V_{n-1} + b_{n-2}\Delta V_{n-2} + \dots + b_{k+1}\Delta V_{k+1}}_{Y} + \Delta V_{k}$$

At any step the increment is halved increment is halved $\Delta V_{k} = \frac{\Delta V_{k+1}}{2}$

At the last phase, SAR_0 , the LSB (b_0) is determined and the conversion is complete. The bits determined in the successive phases are stored inside a register of the control logic and can be retrieved at the end of conversion.

Examples of conversion cycle

