Digital to Analog Converters

Ideal function: $\quad V_{\text {out }}=V_{M I N}+\frac{V_{F S}}{2^{n}} D$
$\mathrm{n}=$ nominal resolution (in number of bits) unipolar output range

Input: digital code Output: analog signal
A clock can be present for synchronization reasons or to avoid glitches during data update
bipolar output range

D can be signed
e.g, two's complement
P. Bruschi - Design of Mixed Signal Circuits

DAC applications

- Digital to analog signal reconstruction: e.g. audio and video signals, actuator control (e.g. control of motors, solenoids, piezoactuators
- Sensor excitation: generation of bias voltages, sinusoidal waveforms, etc)
- Direct Digital Synthesis (DDS) of waveforms for telecommunications
- Trimming of analog blocks (e.g. offset nulling)
- Feedback components in ADCs

DAC performance parameters

DAC errors

INL, DNL

Ideal case
 (absence of non-linearity errors)

P. Bruschi - Design of Mixed Signal Circuits

DAC Architectures

	Pros	Cons
R-2-R ladder	Reduced number of resistor of similar value	Potentially non-monotonic Suffer from the on-resistance of the switches
Resistor String	Guaranteed monotonic Low power consumption	Very large number of resistors
Current Steering	Very fast. No need for resistors. Can be designed to be always monotonic	Current output. Flicker Noise
Switched Capacitors	Optimal power vs speed trade-off	The output may be not available in the whole clock cycle. Large glitches

DAC resistor string

For any value of code D, only one switch at a time is on, selecting one of the 2^{n} voltage levels produced by the resistive divider

If code D turns on a certain switch, code D+1 turns on the switch placed in position up, then the output voltage can only grow

The monotonicity is guaranteed

INL in a resistor string: a simple estimate

We consider a code that, in the ideal
case, select the mid voltage: $\Rightarrow V_{\text {out -id }}=\frac{V_{\text {REF }}}{2}$
Ideally $\quad R_{1}=R_{2}$
In a real case: $\quad R_{1}=\bar{R}+\frac{\Delta R}{2}, \quad R_{2}=\bar{R}-\frac{\Delta R}{2}$
$V_{\text {out }}=V_{\text {ref }} \frac{R_{1}}{R_{1}+R_{2}}=\frac{\bar{R}+\frac{\Delta R}{2}}{2 \bar{R}}=\frac{V_{\text {ref }}}{2}\left(1+\frac{\Delta R}{2 \bar{R}}\right)$

$$
V_{\text {out }}=V_{\text {ref }} \frac{R_{1}}{R_{1}+R_{2}}
$$

$$
\begin{cases}V_{I N L}=\frac{V_{r e f}}{2} \frac{\Delta R}{2 \bar{R}} & \frac{V_{I N L}}{L S B}=\frac{2^{n}}{V_{r e f}} \frac{V_{r e f}}{2} \frac{\Delta R}{2 \bar{R}}=2^{n-2} \frac{\Delta R}{\bar{R}} \\ L S B=\frac{V_{R E F}}{2^{n}} & \end{cases}
$$

INL and resistor matching

$$
\begin{array}{ll}
\frac{V_{I N L}}{L S B}=2^{n-2} \frac{\Delta R}{\bar{R}} \quad \begin{array}{l}
\text { In an n-bit DAC, to have an }|I N L|<1 \mathrm{LSB}, \\
\text { the relative matching errors should be: }
\end{array} \\
& 2^{n-2} \frac{\Delta R}{\bar{R}}<1
\end{array}
$$

Example: 12 bit DAC:
$\frac{\Delta R}{\bar{R}}<\frac{1}{2^{10}} \cong 10^{-3}$
Feasible, with large area occupation

Example: 16 bit DAC:

$$
\frac{\Delta R}{\bar{R}}<\frac{1}{2^{14}} \cong 6 \times 10^{-5}
$$

Unfeasible. Requires complicated post-production trimming

Current Steering DAC

It can be made monotonic-guaranteed by driving the 2^{n} mosfets of the array with thermometric coding It suffers from the same INL problem of the resistor string DAC

P. Bruschi - Design of Mixed Signal Circuits

Thermometric coding

The first D lines are set to 1 If D is incremented by one, one more device is routed to the output: lout increases. Monotonicity is guaranteed

Capacitive DAC

- Capacitor bank has better matching properties than resistor string
- Low-power solution (no static consumption in the capacitor bank)
- Output not always valid
- Troubles with C-2C solutions due to parasitic capacitance of the bottom plate

P. Bruschi - Design of Mixed Signal Circuits

DAC Comparison

Type	Accuracy	Current consumption	Speed	
Voltage	Resistor string, R-2R	Up to 12 bit	$1 \mu \mathrm{~A}-1 \mathrm{~mA}$	Up to $100 \mathrm{MS} / \mathrm{s}$ (limited by buffer)
Current	Current steering, l-2l	Up to 10 bit	$10 \mu \mathrm{~A}-30 \mathrm{~mA}$	Up to $10 \mathrm{GS} / \mathrm{s}$
Charge	Capacitor bank	Up to 14 bit	$1 \mathrm{nA}-10 \mu \mathrm{~A}$	Up to $100 \mathrm{MS} / \mathrm{s}$ (limited by buffer)

Analog to Digital Converters

ADC applications

- Measurements and data acquisition
- Industrial (control systems, PLCs, ...)
- Sensor integration (robotics, loT, ...)
- Commercial electronics (mobile phones, video and audio devices, microcontrollers ...)
- High-speed communications (data link, IF conversion...)

Analog to Digital Converters (ADCs)

It is useful to refer to the equivalent voltage of D

$$
v_{i n-d i g}=V_{M I N}+\frac{V_{F S}}{2^{n}} D
$$

$\boldsymbol{v}_{i n-\text { dig }}$ must be the best approximation of $v_{i n}$, given the number of bit of D

The characteristic of an n-bit ADC with no offset, gain, and non-linearity errors (only quantization errors)

$$
\Delta \equiv L S B=\frac{V_{F S}}{2^{n}}
$$

ADCs - Main Performances

Speed

Depending on f_{s} :

- Nyquist Rate ADCs
- Oversampling ADCs

Resolution

Affected by:

- quantization noise
- electrical noise
- harmonic distortion

Power consumption

$$
P_{D} \propto f_{S}
$$

Depending on the ADC architecture:

$$
P_{D} \propto \begin{cases}N & \text { Pipeline } \\ N^{2} & \text { SAR } \\ 2^{N} & \text { Flash } \\ 2^{2 N} & \text { Thermal noise limited }\end{cases}
$$

N : ADC resolution
P. Bruschi - Design of Mixed Signal Circuits

Nyquist-Rate vs. Oversampling ADCs

Nyquist Rate ADC: $\quad f_{S} \cong 2 B_{S}$

$$
f_{S} \cong f_{s-N y q}
$$

Oversampling ADC: $f_{S} \gg 2 B_{S}$

$$
f_{S} \gg f_{s-N y q}
$$

The output code depends only on the last conversion.
Previous conversions do not affect the present code

The output code depends also on the previous history of sampled data.

ADCs - Static Parameters

- Offset error: difference between the actual ADC characteristic and the perfect ADC characteristic, evaluated at the zero transition

- Gain error: difference between the last step midpoint of the actual ADC and the last step midpoint of the ideal ADC, after the compensation of the offset error

[^0]P. Bruschi - Design of Mixed Signal Circuits

ADCs - Static Parameters

- DNL error: difference in the step width between the actual characteristic and the ideal one

- INL error: vertical difference between the actual input-output characteristic and the ideal one, after the compensation of the offset and gain error

http://ww1.microchip.com/downloads/en/appnotes/atmel-8456-8-and-32-bit-avr-microcontrollers-avr127-understanding-adc-parameters application-note.pdf
P. Bruschi - Design of Mixed Signal Circuits

ADCs - Static Parameters

Complete 12-Bit, 40 MSPS Monolithic A/D Converter AD9224

Parameter	Min	Typ	Max	Units
ACCURACY				
Integral Nonlinearity (INL)		± 1.5	± 2.5	LSB
Differential Nonlinearity (DNL)	12	± 0.33	± 1.0	LSB
No Missing Codes Guaranteed			Bits	
Zero Error (@ $\left.+25^{\circ} \mathrm{C}\right)$		± 0.12	± 0.3	\% FSR
Gain Error (@ $\left.+25^{\circ} \mathrm{C}\right)^{1}$		± 0.3	± 2.2	\% FSR
Gain Error (@ $\left.+25^{\circ} \mathrm{C}\right)^{2}$			± 1.6	\% FSR

[^1]Typical Performance Characteristics avvo, ovoo $=+5 \mathrm{~V}, F_{\mathrm{s}}=40 \mathrm{MHz}(50 \%$ duty cycle] unless otherwise noted.)

PRODUCT DESCRIPTION
The AD9224 is a monolithic, single supply, 12-bit, 40 MSPS, analog-to-digital converter with an on-chip, high performance sample-and-hold amplifier and voltage reference. The AD9224 uses a multistage differential pipelined architecture with output error correction logic to provide 12 -bit accuracy at 40 MSPS data rates, and guarantees no missing codes over the full operating temperature range.

Figure 2. Typical DNL

Figure 5. Typical INL

ADCs - Dynamic Parameters

P. Bruschi - Design of Mixed Signal Circuits

Quantization noise in the frequency domain

Since the ADC samples the input data, the output frequency domain is $\left[-\mathrm{f}_{\mathrm{s}} / 2,+\mathrm{f}_{\mathrm{s}} / 2\right]$

Two extreme cases

The v_{nq} spectrum is a Dirac delta

P. Bruschi - Design of Mixed Signal Circuits

The uniform power spectral density (PSD) model for the quantization noise

$$
\Delta=\frac{V_{F S}}{2^{N}}=L S B
$$

$$
\left\langle v_{n q}^{2}\right\rangle=\frac{\Delta^{2}}{12}
$$

This model is very useful and simple but should be applied with much care.
In real cases, the quantization noise depends on the input signal, and so does its spectrum.
The uniform spectral density model is acceptable when the input signal has magnitude and/or frequency such that the output levels are changed in a fast and almost random way.
This happens when the average time spent by the signal on a single level is short (of the order of the sampling time).

Signal to Noise Ratio and resolution

$\begin{aligned} & \text { Considering only } \\ & \text { quantization noise: }\end{aligned}\left\langle v_{n q}^{2}\right\rangle=\frac{\Delta^{2}}{12} \quad S N R=S Q N R=\frac{V_{F S}^{2}}{8} \frac{12}{\Delta^{2}}=\frac{3}{2} \frac{V_{F S}^{2}}{\Delta^{2}}$

$$
\begin{aligned}
\Delta=\frac{V_{F S}}{2^{n}} \quad & S Q N R=\frac{V_{F S}^{2}}{2} \frac{3 \cdot 2^{2 n}}{V_{F S}^{2}}=\frac{3}{2} \cdot 2^{2 n} \\
& S Q N R_{d B}=10 \log _{10}(S Q N R) \cong 6.02 n+1.76
\end{aligned}
$$

Effective Number Of Bits (ENOB)

Distortion and SFDR (spurious free

$S_{Q N R_{d B}}=10 \log _{10}(S Q N R) \cong 6.02 n+1.76$
$\operatorname{SINAD}_{d B} \cong 6.02 \cdot E N O B+1.76$

$$
E N O B=\frac{\operatorname{SINAD}_{d B}-1.76}{6.02}
$$

ADCs - Figure of Merits

Walden FoM:

$$
F o M_{W}=\frac{P_{D}}{f_{s-N y q} 2^{E N O B}} \quad[\mathrm{~J} / \mathrm{conv}]
$$

Schreier FoM:

$$
\begin{equation*}
F o M_{S}=\left.S N D R\right|_{d B}+10 \log \left(\frac{f_{S-N y q} / 2}{P_{D}}\right) \tag{dB}
\end{equation*}
$$

P. Bruschi - Design of Mixed Signal Circuits

Comparison of different topologies

Nyquist rate ADCs

N-bit ADC

- Direct conversion:
- Flash converters

- Counting and Integrating ADCs:
- Counting converters
- Dual-slope
2^{N} cycles of comparison
(simple/accurate but slow)
- Binary-Search Algorithm based:
- Successive approximation converters (SAR)
- Pipelined converters
\square N cycles of comparison (good trade-off speed/resolution)

A very common SAR ADC: the charge-redistribution ADC

Reset phase

All capacitors are in parallel, with one terminal connected to the input voltage $\mathrm{V}_{\text {in }}$.

Sampling phase

- The op-amp is placed in open loop configuration and the bottom plates of all capacitors are connected to gnd.
- The voltage of the top plates ($V_{\text {top }}$) is free to evolve (it is floating, no current comes from the OP to $V_{\text {top }}$)

Top voltage in the sampling phase

P. Bruschi - Design of Mixed Signal Circuits

SAR phases

$\underset{\text { ru }}{\text { x }} \int$ - Phase $S A R_{k}$ begins by connecting the bottom plate of C_{k} to the reference voltage $V_{\text {REF }}$ through switch S_{k}

- This causes a jump in voltage $V_{\text {top }}$.
- Bit k-th is the output of the composite comparator $\left(V_{b}\right)$ at the end of phase SAR $_{k}$
- If $b_{k}=0 S_{k}$ comes back to $g n d$, else it remains at $V_{\text {REF }}$

Composite comparator

The gain of $O A$ is so large that the offset and hysteresis of CMP has negligible impact on the composite comparator characteristics.

$$
V_{b}=\left\{\begin{array}{l}
1 \text { if } V_{i A}>v_{n} \\
0 \text { if } V_{i A} \leq v_{n}
\end{array}\right.
$$

$$
V_{b}=\left\{\begin{array}{l}
1 \text { if }-V_{\text {top }}>v_{n} \Leftrightarrow \underline{V_{\text {top }}<v_{n}} \\
0 \underline{\text { if }-V_{\text {top }} \leq v_{n}} \Leftrightarrow \underline{V_{\text {top }} \geq v_{n}}
\end{array}\right.
$$

Phase $\mathbf{S A R}_{\mathbf{k}}$: calculation of the $V_{\text {top }}$ jump

$\underbrace{\Delta V_{\text {top }} \text { at phase } \mathrm{SAR}_{\mathrm{k}}}$

$$
\begin{gathered}
\Delta V_{\text {top }}=\Delta V_{k}=\Delta V \frac{C_{k}}{C_{\text {tot }}}=\underbrace{V_{R E F} \frac{2^{k} C_{0}}{2^{n} C_{0}}} \\
V_{L S B}=\frac{V_{R E F}}{2^{n}}=\Delta \quad \Delta V_{k}=2^{k} V_{L S B}
\end{gathered}
$$

All-capacitor network: equivalent circuit for variations. Capacitors can be replaced by a resistors of value $1 / C$

Phase $\mathbf{S A R}_{\mathrm{n}-1}$

from sampling phase

$$
V_{t o p}=\overbrace{-V_{i n}\left(t_{s}\right)-v_{n}\left(t_{s}\right)}+\Delta V_{n-1}=-V_{i n}\left(t_{s}\right)-v_{n}\left(t_{s}\right)+\frac{V_{R E F}}{2}
$$

Decision for bit b_{n-1} (taken at time $t_{n-1}=$ end of phase SAR $_{n-1}$)

$$
V_{b}=1 \text { if } V_{\text {top }}\left(t_{n-1}\right)<-v_{n}\left(t_{n-1}\right) \square-V_{\text {in }}\left(t_{s}\right)-v_{n}\left(t_{s}\right)+\frac{V_{R E F}}{2}<-v_{n}\left(t_{n-1}\right)
$$

Phase SAR $_{n-1}$

$$
\begin{aligned}
& b_{n-1}=1 \text { if: }-V_{i n}\left(t_{s}\right)-v_{n}\left(t_{s}\right)+\frac{V_{R E F}}{2}<-v_{n}\left(t_{n-1}\right) \\
& V_{i n}\left(t_{s}\right)>\frac{V_{R E F}}{2}-\underbrace{v_{n}\left(t_{s}\right)+v_{n}\left(t_{n-1}\right)},
\end{aligned}
$$

Subtraction of two noise samples taken at different times: constant and correlated components are rejected (CDS).

Neglecting noise / offset components, the condition becomes:

$$
V_{i n}\left(t_{s}\right)>\frac{V_{R E F}}{2}
$$

This is in conformity with the successive approximation algorithm

Phase SAR $_{n-2}$

Switch $\mathrm{S}_{\mathrm{n}-1}$ goes back to $g n d$ if $\mathbf{b}_{\mathrm{n}-1}=\mathbf{0}$ Otherwise, it remains to $\mathrm{V}_{\text {REF }}$

If S_{n-1} comes back to $g n d$, it subtracts ΔV_{n-1} from $V_{\text {top }}$

$$
\begin{aligned}
& V_{\text {top }}=-V_{\text {in }}\left(t_{s}\right)-v_{n}\left(t_{s}\right)+\frac{b_{n-1} \Delta V_{n-1}}{\mu}+\Delta V_{n-2}<-v_{n}\left(t_{n-2}\right) \\
& \text { gnd, it subtracts } \Delta \mathrm{V}_{n-1} \text { from } \mathrm{V}_{\text {top }}
\end{aligned}
$$

Decision for b_{n-2}

$$
\begin{gathered}
b_{n-2}=1 \text { if: } V_{\text {in }}\left(t_{s}\right)>\underbrace{b_{n t t}(n-2)}_{V_{n-1} \Delta V_{n-1}+\Delta V_{n-2}} \\
\text { if } \mathrm{b}_{n-1}=1 \quad V_{\text {tst }}(n-2)=\frac{V_{R E F}}{2}+\frac{V_{R E F}}{4}-\mathrm{b}_{\mathrm{n}-2}=1 \\
\text { if } \mathrm{b}_{\mathrm{n}-1}=0 \quad V_{\text {tst }}(n-2)=\begin{array}{l}
\mathrm{b}_{n-2}=0 \\
V_{R E F} \\
4 \\
0
\end{array} \mathrm{~b}_{\mathrm{n}-2}=1 \\
\mathrm{~b}_{n-2}=0
\end{gathered}
$$

Generalization

At k-th step (phase $\mathrm{SAR}_{\mathrm{k}}$), bit b_{k} is determined from the comparison of $V_{i n}\left(t_{s}\right)$ with:

$$
V_{t s t}(k)=\underbrace{b_{n-1} \Delta V_{n-1}+b_{n-2} \Delta V_{n-2}+\ldots .+b_{k+1} \Delta V_{k+1}}+\Delta V_{k}
$$

Increments applied in previous phases and maintained only if the corresponding bits are 1 increment is halved

$$
\Delta V_{k}=\frac{\Delta V_{k+1}}{2}
$$

At the last phase, SAR_{0}, the $\operatorname{LSB}\left(b_{0}\right)$ is determined and the conversion is complete. The bits determined in the successive phases are stored inside a register of the control logic and can be retrieved at the end of conversion.

Examples of conversion cycle

[^0]: http://ww1.microchip.com/downloads/en/appnotes/atmel-8456-8-and-32-bit-avr-microcontrollers-avr127-understanding-adc-parameters application-note.pdf

[^1]: NOTES
 Includes internal voltage reference error
 ${ }^{2}$ Excludes internal voltage reference erro

