
Amplifier Norton schematization with output referred noise source
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General input-output law of a 

voltage amplifier with noise/offset:



General method to calculate the input referred noise / offset
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Application of the method to the two-stage op-amp
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It is convenient to calculate the equivalent output 

noise currents of the two stages individually, and 

then study the whole amplifier using the following 

equivalent circuit.
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Output noise short circuit current of the first stage
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In order to calculate the output noise 

short-circuit  current, we need to 

calculate the current gains A
Ik, from 

each one of the MOSFET noise sources 

to the output short circuit current. 

Input stage with noise current 

sources of all devices



Effect of in3, in4
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in4 is directly connected to the output port, then 

it flows  directly into the output short circuit: 
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in3 is directly connected to the input of 

the current mirror. It sees a low 

resistance towards the mirror and high 

resistance towards M1 (2rd1). Then it 

flows almost completely into the mirror 

and reaches the output port after an 

inversion (caused by the mirror).
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Effect of in7

P. Bruschi – Design of Mixed Signal Circuits 6

( ) ( ) [ ]7 7 7
1 2 1

on cc n n n
i i i iα α α− ≅ − − = −  

In the case of perfect symmetry and zero 

input differential voltage (Vid=0), which is the 

case that we are analyzing: 
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If a relatively large input differential voltage is 

present, α can be significantly different from 

0.5 and the effect of in7 is no more negligible. 

In the following part of this analysis, we will consider α=0.5
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Effect of in1, in2
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Since in1 and in2 are floating, 

we can split them into two 

sources with a terminal at gnd. 
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in1-a: same effect as in3: AI1-a ≅ −1

in1-b: same effect as in7: AI1-b ≅ 0 1 1
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Putting all contribution together for the first stage:
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Equivalent output noise current of the second stage
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Equivalent small signal circuit 

with current sources

No input signal  
because we are 

calculating the 
effect of noise



Putting the two stages together
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Step 1. Calculate the 

Ym of the op-amp
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AIh is the transfer function (current gain) from a 
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Calculation of AIh
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AIh drops below 1 (0 dB)

around the unity-gain
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Let us come back to the noise
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Circuit for calculation of the total output noise current



In the simple 2-stage op-amp
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A more interesting formula can be obtained 
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Input noise density of the op-amp
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Thermal noise
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Flicker noise
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General considerations about the op-amp noise:
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Let us recall the thermal noise and use: gm1=ID1/VTE1) 
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• For both the thermal and flicker noise, it is convenient to set F<<1 (VTE1<<VTE3)

• The larger ID1, the lower the input thermal noise voltage density 

• A small VTE1 helps obtaining small thermal noise densities  with lower current

• A small flicker noise density can be obtained using large M1 and M3 areas

Thermal

Flicker



Input offset voltage of the op-amp
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Op-amp with the equivalent 

current sources that takes 

into account  parameter 

variations 

Let us just replace the noise current sources with the 
equivalent current sources of parameter variations

Note that M1,M2 and M3,M4 form pairs 

of matched devices.

Then, we can group their parameter variation 

sources into single contributions that contain 

only matching errors



Input offset voltage of the op-amp
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Input offset voltage of the op-amp
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Input offset voltage of the op-amp: standard deviation
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Design for input offset voltage
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Offset voltage: area optimization procedure
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Offset voltage: area optimization procedure

P. Bruschi – Design of Mixed Signal Circuits 25

( )2

1
2 1

vio

B
S A a

aσ

 
= + + 

 
2

1
2

vio

B
A aA B

aσ

 
= + + + 

 

only these two terms depend on a. then

we have to find the minimum of:

( )
B

f a aA
a

= +
2

( )
0

df a B
A

da a
= − =

OPT

B
a

A
=

a

f(a)

(a>0)

∞∞

OPT
a

1 1 2

1

vio OPT

B
W L A

aσ

 
= + 

 

3 3 1 1W L a W L= ⋅

2

1 1 3 3

vio

A B

W L W L
σ ≅ +



Current consumption of the op-amp
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• In this section, we will consider the main factors that affect the current 

consumption of the operational amplifier.

• We have already found an expression that ties the current consumption with 

the GBW specification

• Here, we will review that expression, introducing also the role of the "F" 

parameter that comes from the noise and offset analysis

• After that, we will find an expression of the current consumption that 

highlights the relationship with the thermal noise specification



GBW and supply current (from the GBW and ϕm design procedure)
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Current consumption of the op-amp - role of the thermal noise spec
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If the "dominant" specification is the thermal noise 

PSD (SVn-th), we can use a different expression
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Let us start again from the general formula:
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We need to highlight 
the role of gm1

... and consider the expression of the 

input thermal noise voltage PSD:



Current consumption of the op-amp
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Note: 

low thermal noise (Svn-th) 

means high current 

consumption

Note: F and 1/F 
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Examples
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Consistent and contrasting specifications  
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As we have seen in previous example, the GBW specification and thermal 

noise density specification are consistent, since for both the following rule 

holds: the stricter the specification, the higher the required supply-current.

If the design include both specifications, then one of them is likely to be 

dominant. In the previous example, the noise specification dominates: the 

minimum supply current required to meet the required noise specification 

is much larger the current required for the given GBW-CL combination. 

Then, if we design the amplifier for the noise density, we certainly meet 

the GBW requirement. 

Other specification pairs are likely to be contrasting: thermal noise and 

speed are in contrast with the supply current specification. The same can 

be said about  flicker noise and area. 



Action of various specifications:
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gm3

W3/L3

W1,L1,

W3,L3, 

W5,L5

AREA

Power Consumption



Commercial products: high speed - low thermal noise CMOS op-amp
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low power?



Commercial product: low power op-amp
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