Two-stage op-amp: design for GBW and Phase Margin

P. Bruschi – Design of Mixed Signal Circuits

 $\overline{\left(\begin{array}{c} R_{c} - \frac{1}{G_{c}}\right)}$ In this design procedure, we decide to cancel the zero:

We consider that the *GBW* and phase margin can be estimated by using a two-pole approximation of the frequency response, with a dominant pole (ω_p):

$$\omega_p \ll \omega_2 \qquad \omega_2 \ll \omega_3, \ \omega_{tail}, \ \omega_{mirror}$$

GBW and unity-gain angular frequency (ω_0)

GBW and stability specifications

Hypothesis 1: C_1 is much smaller than C_2 and C_C :

Motivation:

 C_2 includes the load capacitance, C_L C_C can be made arbitrarily large to satisfy the hypothesis

An approximate approach: Hypothesis 2

Hypothesis 2: The parasitic component C_2 is much smaller than C_L :

$$C_2 = C'_2 + C_L \cong C_L \qquad \qquad \omega_2 \cong \frac{G_{m2}}{C_2} \cong \frac{G_{m2}}{C_L}$$

Now the expression of ω_2 is strongly simplified

Hypotheses 1 and 2 correspond to consider that all parasitic capacitances of the amplifier are negligible with respect to C_L and C_C , which are external to the amplifier (C_L) or are purposely placed devices (C_C).

The *GBW* specification shapes the second stage (G_{m2})

Back to the first stage

G_{m2}v₁

h

 $\pi\pi$

R.

 $G_{m1}V_{id}$

o V_{out}

We have two degrees of freedom, G_{m1} and C_C : a smaller G_{m1} would allow for a smaller C_C value, saving area. However, C_C cannot get too small, otherwise hypothesis 1 risks to fail.

To guide the choice, it is convenient to relate C_C to C_L and to the G_{m1}/G_{m2} ratio, through the stability condition

$$\omega_2 = \sigma \omega_0 \qquad \qquad \frac{G_{m2}}{C_L} = \sigma \frac{G_{m1}}{C_C} \qquad \qquad \frac{G_{m1}}{G_{m2}} = \frac{1}{\sigma} \frac{C_C}{C_L}$$

stability condition

P. Bruschi – Design of Mixed Signal Circuits

 $G_{m2} \cong 2\pi\sigma \cdot GBW \cdot C_{I}$

 $C_{\rm C}$ and $C_{\rm L}$, the "rule of thumb" and its limits

$$\frac{G_{m1}}{G_{m2}} = \frac{1}{\sigma} \frac{C_C}{C_L}$$
(a) $C_2 \cong C_L >> C_1$
(b) $C_C >> C_1$ Hypothesis 1

If we make $C_C = C_L$, validity of condition (a) makes also condition (b) automatically true. Making C_C even larger than C_L does not add validity to hypothesis 1 and requires more area.

Rule of thumb:
$$C_C = C_L$$
 $G_{m1} = \frac{1}{\sigma}G_{m2}$ With $\sigma = 3 \ (\varphi_m \cong 70^\circ)$

both G_{m1} and G_{m2}

$$G_{m1}=\frac{1}{3}G_{m2}$$

Limits of the rule of thumb

Rule of thumb: $C_C = C_L$ Often, it is convenient to apply a different choice

Case of large C_L : If the maximum load capacitance is particularly large (> tens pF), using the rule of thumb can result in too large a compensation capacitance, and then, in non-acceptable chip area occupation. In those cases, the C_C/C_L can be made smaller than one $(C_C < C_L)$ in order to make C_C easily integrable.

For example: with C_L =100 pF, I choose: C_C =10 pF

$$\frac{G_{m1}}{G_{m2}} = \frac{1}{\sigma} \frac{C_C}{C_L} = \frac{1}{10\sigma} \cong \frac{1}{30}$$

Application of the design procedure to our simple two-stage op-amp

GBW and supply current

GBW, C_L and supply current

$$I_{supply} = 2\pi\sigma \cdot GBW \cdot C_L \cdot \left(V_{TE5} + 2\frac{g_{m1}}{g_{m5}}V_{TE1}\right)$$
$$\frac{g_{m1}}{g_{m5}} = \frac{G_{m1}}{G_{m2}} = \frac{1}{\sigma}\frac{C_C}{C_L}$$

- The higher the *GBW* and load capacitance C_L , the higher the supply current and then the power consumption
- For the same *GBW* and C_L specifications, lower supply currents can be obtained with the lowest V_{TE5} and V_{TE1} .

Robustness against C_L variations

We have designed the op-amp for the maximum C_L . It must be stable also for smaller values

If we <u>reduce</u> C_L , then C_2 reduces and hypothesis 1 may be no more valid. Then we have to use the complete expression for ω_2 :

$$\omega_2 = \frac{G_{m2}}{(C_1 + C_2)} + \frac{1}{1 + \frac{C_s}{C_c}} \quad \omega_2 \text{ increases!}$$

Both denominators reduces

Effects of C_2 reduction:

$$C_{s} = \left(\frac{1}{C_{1}} + \frac{1}{C_{2}}\right)^{-1}$$

$$\frac{C_{s}}{C_{s}}$$
gets smaller

gets smaller

P. Bruschi – Design of Mixed Signal Circuits

 C_{C}

Robustness against C_L variations

In a two-stage amplifier:

- <u>Reducing</u> (or even removing) the load capacitance <u>improves</u> stability
- Increasing the load capacitance reduces stability and eventually causes instability

Given a *GBW* specification, the procedure can be summarized in the following way

1. Find the required G_{m2} value from the equation:

 $\omega_2 \cong \boldsymbol{\sigma} \cdot 2\pi GBW = \frac{G_{m2}}{C_L}$

- 2. Choose a proper C_C/C_L ratio, depending on the value of C_L
- 3. Find the required G_{m1} :

$$G_{m1} = \frac{1}{\sigma} \frac{C_C}{C_L} G_{m2}$$

It seems that using the required current to set G_{m2} and G_{m1} to the correct value, we can reach an arbitrarily high GBW, independently of the process being used. This is clearly not reasonable.

The problem stands in the hypotheses the procedure is based on.

The hypotheses derive from the fact that C_L is generally prevalent over the parasitic capacitances:

Hyp. 1 $C_2 >> C_1$ $C_L >> C_1, C_2'$ $C_2 = C'_2 + C_L \cong C_L$ Hyp. 2 $C_C >> C_1$ can be satisfied choosing a large enough C_C .

Trying to get larger and larger G_{m2} and G_{m1} increases also the size of the MOSFETs in the first and second stage, causing violation of the hypotheses

P. Bruschi – Design of Mixed Signal Circuits

Maximum achievable GBW $GBW \cong \frac{f_{T5}}{\sigma} \frac{1}{\left(1 + \frac{C_L}{C_{cs5}}\right)} \begin{cases} \frac{1}{2\pi\sigma} \frac{g_{m5}}{C_L} & C_{gs5} \ll C_L \\ \frac{f_{T5}}{\sigma} & C_{gs5} \gg C_L \end{cases}$ $C_{gs5} = \frac{g_{m5}}{2\pi f_{m5}}$ Increasing g_{m5} for a given f_{T5} , increases C_{as5} proportionally $C_{gs5} \ll C_L$ GBW In strong inversion In this region f_{T5} $(V_{GS}-V_{t})_{5}$ the hypotheses $GBW_{\rm max}$ are valid $GBW = \frac{1}{2\pi\sigma} \frac{g_{m5}}{C_r}$ GBW tends to saturate to f_{T5}/σ $C_{gs5} >> C_{I}$ $f_{T5} \cong \frac{3}{4\pi} \mu_n \frac{1}{L_r^2} (V_{GS} - V_t)_5$

P. Bruschi – Design of Mixed Signal Circuits

Just after a step variation of the input voltage, the feedback voltage, derived by the output voltage, cannot change instantaneously and the input differential voltage of the opamp can be driven out of the linearity region of the first stage

The slew rate problem

If the input step is large enough, the input stage saturates

Slew rate in Miller-compensated two-stage op-amps

Note that current I_F flows also through the output terminal of the amplifier. Then, the analysis shown above is applicable if the second stage (output stage) is capable of producing the total current I_F+I_L

Slew rate of the simple class-A, two stage op-amp.

1_

 $s_{R} = \frac{|I_{01-\max}|}{C_{C}}$ From simple ins

From simple inspection of the first stage:

$$|I_{01-\max}| = I_0$$

$$s_R = \frac{I_0}{C_C} = \frac{2I_{D1}}{C_C} \qquad I_{D1} = V_{TE1}g_{m1}$$

$$s_R = 2V_{TE1} \frac{g_{m1}}{C_C} = 2V_{TE1} \omega_0$$

 $s_R = GBW \cdot 4\pi V_{TE1}$

For a given *GBW*, the higher V_{TE1} , the higher the slew rate