Two-stage op-amp: design for GBW and Phase Margin

P. Bruschi - Design of Mixed Signal Circuits

Preliminary assumptions

$$
s_{z}=\frac{-1}{C_{C}\left(R_{C}-\frac{1}{G_{m 2}}\right)} \quad \begin{aligned}
& \text { In this design procedure, we } \\
& \text { decide to cancel the zero: }
\end{aligned}
$$

$$
R_{C}=\frac{1}{G_{m 2}}
$$

We consider that the GBW and phase margin can be estimated by using a two-pole approximation of the frequency response, with a dominant pole (ω_{p}):

$$
\omega_{p} \ll \omega_{2} \quad \omega_{2} \ll \omega_{3}, \omega_{\text {tail }}, \omega_{\text {mirror }}
$$

GBW and unity-gain angular frequency (ω_{0})

P. Bruschi - Design of Mixed Signal Circuits

GBW and stability specifications

P. Bruschi - Design of Mixed Signal Circuits

An approximate approach: Hypothesis 1

Hypothesis 1: C_{1} is much smaller than C_{2} and $C_{\mathrm{C}}: \quad C_{2} \gg C_{1}$
Motivation:
C_{2} includes the load capacitance, C_{L}
C_{C} can be made arbitrarily large to satisfy $\quad C_{S}<C_{1} \ll C_{C}$ the hypothesis

$$
\omega_{2}=\frac{G_{m 2}}{\left(C_{1}+C_{2}\right)}\left(1+\frac{C_{S}}{C_{C}}\right)^{-1} \cong \frac{G_{m 2}}{\left(C_{1}+C_{2}\right)} \quad \omega_{2} \cong \frac{G_{m 2}}{C_{2}}
$$

An approximate approach: Hypothesis 2

Hypothesis 2: The parasitic component C_{2}^{\prime} is much smaller than C_{L} :

$$
C_{2}=C_{2}^{\prime}+C_{L} \cong C_{L} \quad \omega_{2} \cong \frac{G_{m 2}}{C_{2}} \cong \frac{G_{m 2}}{C_{L}}
$$

Now the expression of ω_{2} is strongly simplified

Hypotheses 1 and 2 correspond to consider that all parasitic capacitances of the amplifier are negligible with respect to C_{L} and C_{C}, which are external to the amplifier $\left(C_{L}\right)$ or are purposely placed devices $\left(C_{C}\right)$.

The GBW specification shapes the second stage $\left(G_{m 2}\right)$

$\omega_{2} \cong \frac{G_{m 2}}{C_{L}}$
For the stability requirement: $\omega_{2}=\sigma \omega_{0}$

$$
\omega_{2}=\sigma \cdot 2 \pi f_{0} \cong \sigma \cdot 2 \pi G B W
$$

$$
2 \pi G B W
$$

$$
\frac{G_{m 2}}{C_{L}} \cong \sigma \cdot 2 \pi G B W \quad G_{m 2} \cong 2 \pi \sigma \cdot G B W \cdot C_{L}
$$

GBW specification
P. Bruschi -Design of Mixed Signal Circuits

Back to the first stage

$$
\begin{aligned}
G_{m 2} & \cong 2 \pi \sigma \cdot G B W \cdot C_{L} \\
R_{C} & =\frac{1}{G_{m 2}}
\end{aligned}
$$

$$
\omega_{0} \cong \frac{G_{m 1}}{C_{C}} \quad \begin{aligned}
& \text { would allow for a smaller } \mathrm{C}_{\mathrm{c}} \text { value, saving area. However } \\
& \text { cannot get too small, otherwise hypothesis } 1 \text { risks to fail. }
\end{aligned}
$$

To guide the choice, it is convenient to relate C_{C} to C_{L} and to the $G_{m 1} / G_{m 2}$ ratio, through the stability condition

$$
\underset{\text { stability condition }}{\omega_{2}=\sigma \omega_{0}} \quad \frac{G_{m 2}}{C_{L}}=\sigma \frac{G_{m 1}}{C_{C}} \quad\left(\frac{G_{m 1}}{G_{m 2}}=\frac{1}{\sigma} \frac{C_{C}}{C_{L}}\right)
$$

C_{C} and C_{L}, the "rule of thumb" and its limits

$$
\left.\frac{G_{m 1}}{G_{m 2}}=\frac{1}{\sigma} \frac{C_{C}}{C_{L}} \quad \begin{array}{ll}
\text { (a) } C_{2} \cong C_{L} \gg C_{1} \\
\text { (b) } C_{C} \gg C_{1}
\end{array}\right\} \text { Hypothesis } 1
$$

If we make $C_{C}=C_{L}$, validity of condition (a) makes automatically respected also condition (b). Making C_{C} even larger than C_{L} does not add validity to hypothesis 1 and require more area.
Rule of thumb: $C_{C}=C_{L} \quad G_{m 1}=\frac{1}{\sigma} G_{m 2} \quad$ With $\sigma=3\left(\varphi_{m} \cong 70^{\circ}\right)$
We have determined
both $G_{m 1}$ and $G_{m 2}$

$$
G_{m 1}=\frac{1}{3} G_{m 2}
$$

Limits of the rule of thumb

Rule of thumb: $C_{C}=C_{L} \quad \begin{aligned} & \text { Cases where it can be convenient to apply a } \\ & \text { different choice }\end{aligned}$
Case of large \boldsymbol{C}_{L} : If the maximum load capacitance is particularly large (> tens pF), using the rule of thumb can result in too large a compensation capacitance, and then in non-acceptable chip area occupation. In those cases, the $\mathrm{C}_{C} / \mathrm{C}_{L}$ can be made smaller than one $\left(C_{C}<C_{L}\right)$ in order to make C_{C} easily integrable.

For example: with $C_{L}=100 \mathrm{pF}$,
I choose: $C_{C}=10 \mathrm{pF}$

$$
\frac{G_{m 1}}{G_{m 2}}=\frac{1}{\sigma} \frac{C_{C}}{C_{L}}=\frac{1}{10 \sigma} \cong \frac{1}{30}
$$

Application to the simple two-stage op-amp

$$
G_{m 2}=g_{m 5} \cong 2 \pi \sigma \cdot G B W \cdot C_{L}
$$

$$
G_{m 1}=g_{m 1}=G_{m 2} \frac{1}{\sigma} \frac{C_{C}}{C_{L}}=g_{m 5} \frac{1}{\sigma} \frac{C_{C}}{C_{L}}
$$

Once the M1 and M5 overdrive voltages have been chosen, the GBW specification determines the aspect ratios (W/L) of both MOSFETs

$$
\begin{aligned}
& g_{m 1}=\mu_{p} C_{O X} \frac{W_{1}}{L_{1}}\left|V_{G S}-V_{t}\right|_{1} \quad \square \\
& g_{m 5}=\mu_{n} C_{O X} \frac{W_{5}}{L_{5}}\left(V_{G S}-V_{t}\right)_{5}
\end{aligned} \quad \square \begin{aligned}
& \frac{W_{1}}{L_{1}}=\frac{g_{m 1}}{\mu_{p} C_{O X}\left|V_{G S}-V_{t}\right|_{1}} \\
& \frac{W_{5}}{L_{5}}=\frac{g_{m 5}}{\mu_{n} C_{o X}\left(V_{G S}-V_{t}\right)_{5}}
\end{aligned}
$$

P. Bruschi -Design of Mixed Signal Circuits

GBW and supply current

$$
\begin{aligned}
& I_{\text {supply }}=2 I_{D 1}+I_{D 5} \\
& g_{m}=\frac{I_{D}}{V_{T E}} \Rightarrow I_{D}=g_{m} V_{T E} \\
& I_{\text {supply }}=2 g_{m 1} V_{T E 1}+g_{m 5} V_{T E 5}
\end{aligned}
$$

$$
I_{\text {supply }}=g_{m 5}\left(V_{T E 5}+2 \frac{g_{m 1}}{g_{m 5}} V_{T E 1}\right)
$$

$$
g_{m 5} \cong 2 \pi \sigma \cdot G B W \cdot C_{L} \quad I_{\text {supply }}=2 \pi \sigma \cdot G B W \cdot C_{L} \cdot\left(V_{T E 5}+2 \frac{g_{m 1}}{g_{m 5}} V_{T E 1}\right)
$$

P. Bruschi - Design of Mixed Signal Circuits

GBW, C_{L} and supply current

$$
\begin{aligned}
& I_{\text {supply }}=2 \pi \sigma \cdot G B W \cdot C_{L} \cdot\left(V_{T E 5}+2 \frac{g_{m 1}}{g_{m 5}} V_{T E 1}\right) \\
& \frac{g_{m 1}}{g_{m 5}}=\frac{1}{\sigma} \frac{C_{C}}{C_{L}}
\end{aligned}
$$

- The higher the GBW and load capacitance C_{L}, the higher the supply current and then the power consumption
- For the same $G B W$ and C_{L} specifications, lower supply currents can be obtained with the lowest $V_{T E 5}$ and $V_{T E 1}$.

Robustness against C_{L} variations

We have designed the op-amp for the maximum C_{L}. It must be stable also for smaller values
If we reduce C_{L}, then C_{2} reduces and hypothesis 1 may be no more valid. Then we have to use the complete expression for ω_{2} :

Effects of C_{2} reduction:

Robustness against C_{L} variations

In a two-stage amplifier:

- Reducing (or even removing) the load capacitance improves stability
- Increasing the load capacitance reduces stability and eventually cause instability

Limits of the simplified design procedure

Given a GBW specification, the procedure can be summarized in the following way

1. Find the required $\mathrm{G}_{\mathrm{m} 2}$ value from the equation: $\quad \omega_{2} \cong \sigma \cdot 2 \pi G B W=\frac{G_{m 2}}{C_{L}}$
2. Choose a proper C_{C} / C_{L} ratio, depending on the value of C_{L}
3. Find the required $\mathrm{G}_{\mathrm{m} 1}$: $\quad G_{m 1}=\frac{1}{\sigma} \frac{C_{C}}{C_{L}} G_{m 2}$

It seems that using the required current to set $G_{m 2}$ and $G_{m 1}$ to the correct value, we can reach an arbitrarily high GBW, independently of the process being used. This is clearly not reasonable.

Limits of the simplified design procedure

The problem stands in the hypotheses the procedure is based on.
The hypotheses derive from the fact that C_{L} is generally prevalent over the parasitic capacitances:

Hyp. 1

$$
C_{2} \gg C_{1} \quad \square C_{L} \gg C_{1}, C_{2}^{\prime} \quad \triangleleft C_{2}=C_{2}^{\prime}+C_{L} \cong C_{L} \text { Hyp. } 2
$$

$C_{C} \gg C_{1}$ can be satisfied choosing a large enough C_{C}.
Trying to get larger and larger $G_{m 2}$ and $G_{m 1}$ increases also the size of the MOSFETs in the first and second stage, causing violation of the hypotheses

P. Bruschi - Design of Mixed Signal Circuits

Limits of the simplified design procedure

$$
\omega_{2}=\sigma \cdot 2 \pi f_{0} \cong \sigma \cdot 2 \pi G B W
$$

$G B W=\frac{1}{2 \pi \sigma} \omega_{2}$

$$
\omega_{2}=\frac{G_{m 2}}{\left(C_{1}+C_{2}\right)} \cdot \frac{1}{1+\frac{C_{S}}{C_{C}}} \longleftarrow \begin{aligned}
& \text { I can still set } \mathrm{C}_{\mathrm{C}} \\
& \text { as large as to } \\
& \text { make } \mathrm{C}_{\mathrm{S}} / \mathrm{C}_{\mathrm{C}} \ll 1
\end{aligned}
$$

$$
\omega_{2} \cong \frac{G_{m 2}}{\left(C_{1}+C_{2}\right)}
$$

$$
G B W=\frac{1}{2 \pi \sigma} \frac{G_{m 2}}{\left(C_{1}+C_{2}\right)}=\frac{1}{2 \pi \sigma} \frac{G_{m 2}}{\left(C_{1}+C_{2}+C_{L}\right)}
$$

Limits of the simplified design procedure

$$
\begin{aligned}
& G B W=\frac{1}{2 \pi \sigma} \frac{G_{m 2}}{\left(C_{1}+C_{2}{ }^{\prime}+C_{L}\right)} \\
& C_{1}=C_{G S 5}+C_{D B 2}+C_{D B 4} \cong C_{G S 5} \\
& C_{2}{ }^{\prime}=C_{D B 5}+C_{D B 6} \ll C_{G S 5} 5
\end{aligned}
$$

$$
G B W \cong \frac{1}{2 \pi \sigma} \frac{g_{m 5}}{\left(C_{G S 5}+C_{L}\right)}
$$

$$
\begin{gathered}
G B W \cong \frac{1}{2 \pi \sigma} \frac{g_{m 5}}{C_{G S 5}} \\
\frac{1}{2 \pi} \frac{g_{m 5}}{C_{G S 5}} \cong f_{T 5}
\end{gathered}
$$

$$
G B W \cong \frac{f_{T 5}}{\sigma} \frac{1}{\left(1+\frac{C_{L}}{C_{G S 5}}\right)}
$$

Maximum achievable GBW

$$
C_{g s 5}=\frac{g_{m 5}}{2 \pi f_{T 5}}
$$

Increasing $g_{m 5}$ for a given $f_{T 5}$, increases $C_{g s 5}$ proportionally

$G B W$
In this region
the hypotheses
are valid
$G B W=\frac{1}{2 \pi \sigma} \frac{g_{m 5}}{C_{L}}$

The slew rate problem

Just after a step variation of the input voltage, the feedback voltage, derived by the output voltage, cannot change instantaneously and the input differential voltage of the opamp can be driven out of the linearity region of the first stage

If the input step is large enough, the input stage saturates

Slew rate in Miller-compensated two-stage op-amps

The second stage can be represented as an inverting amplifier with gain $G_{m 2} R_{2}$.
Impedance Z_{L} represents the load condition. If Z_{L} has a resistive component, the gain of the second stage will be smaller than $G_{m 2} R_{2}$. Z_{L} includes the load capacitance

Slew rate in Miller-compensated two-stage op-amps

Note that current I_{F} flows also through the output terminal of the amplifier. Then, the analysis shown above is applicable if the amplifier is capable of producing the total current $I_{F}+I_{L}$

Slew rate of the simple class-A, two stage op-amp.

$$
s_{R}=\frac{\left|I_{01-\max }\right|}{C_{C}}
$$

From simple inspection of the first stage:

$$
\begin{aligned}
& \left|I_{01-\max }\right|=I_{0} \\
& s_{R}=\frac{I_{0}}{C_{C}}=\frac{2 I_{D 1} \quad I_{D 1}=V_{T E 1} g_{m 1}}{C_{C}} \\
& s_{R}=2 V_{T E 1} \frac{g_{m 1}}{C_{C}}=2 V_{T E 1} \omega_{0}
\end{aligned}
$$

For a given $G B W$, the higher $V_{T E 1}$, the higher the slew rate

