Popular op-amp topologies

Two stage op-amp with simple differential amplifier in the input stage and class-A common-source output stage

p-input version Input range may include *gnd* May **sink** large currents

Improved topologies (better performances, but greater complexity)

Class-AB output stages

$$I_{D5} = \frac{1}{2} \frac{\beta_5}{\beta_3} \frac{\beta_7}{\beta_8} I_{bias}$$

$$I_{D6} = \frac{\beta_6}{2} \left(V_{GS6} - V_{tp} \right)^2$$

 $I_{\rm D5}$ does not depend on $V_{\rm dd},$ while $I_{\rm D6}$ does. The output short circuit current depends on $V_{\rm dd}$

$$V_{GS6} = V_{DD} - V_{batt} - V_{GS5}$$
 Poor PSSR

Op-amps with class- AB output stages

If we want to save this solution, we need to adapt both V_{GS5} and V_{GS6} when V_{dd} changes, and guarantee that:

$$I_{D5} = I_{D6}$$

is always valid

Op-amps with class- AB output stages

P. Bruschi – Design of Mixed Signal Circuits

Limitations: minimum V_{dd}

Minimum Vdd: $3V_{GS} \cong 2.1 \text{ V}$

For the class-A amplifier, the minimum Vdd was only V_{GS} +2 $V_{DSAT} \cong 0.9$ V

Reduced V_{GS} excursion for the output devices

$$V_{GS6-MAX} = V_{dd} - V_{GS10}$$

$$I_{OP-MAX} = \frac{\beta_{6}}{2} \left(V_{GS6-MAX} - V_{tp} \right)^{2}$$
$$I_{ON-MAX} = \frac{\beta_{5}}{2} \left(V_{GS5-MAX} - V_{tn} \right)^{2}$$

- Both V_{GS5} and V_{GS6} cannot reach V_{dd}. If large output currents are required, this means that M5 and M6 should be designed with very large W
- I_{ON-MAX} strongly depends on the input common mode voltage

The Monticelli's class-AB stage

P. Bruschi – Design of Mixed Signal Circuits

First stage: folded cascode for improved gain and larger swing

High performance - two-stage CMOS op-amp • High gain: $\approx (g_m r_d)^3$ V_{bias1} M33 Class-AB output stage I_{bias} M34 Rail-to-Rail input range V_{i2} M2 V_{bias2} M24 and M35 form the R_c Monticelli's cell M35 V_{i1} M24 V_{i2} M22-M23 and M33-M34 produce V_{out} V bias3 the gate bias for M24 and M35, respectively M1 In quiescent conditions, we design I_{bias}, V_{GN} M23 and M34 to make: $V_{GS24} = V_{GS23}$ and M23 $V_{GS35} = V_{GS34}$ l_{bias} $V_{GS1} = V_{GS22}$ This simplify
setting of M1,M2
quiescent current M22 л. R. Hogervorst et al., "A Compact Power-Efficient 3 V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries", IEEE JSSC, 1994

Commercial products

Figure 1. OPA30x Classic Two-Stage Topology