The simplest CMOS two-stage op-amp

First stage: p-input differential amplifier with mirror load
Bias currents of the op-amp

$$
I_{0}=\frac{\beta_{7}}{\beta_{8}} I_{\text {bias }} \quad I_{1}=\frac{\beta_{6}}{\beta_{8}} I_{\text {bias }}
$$

$$
\text { Second stage: } n \text {-input }
$$ common source class-A stage

The output of the first stage is "referred to gnd"

The input of the second stage is "referred to $g n d "$

P. Bruschi - Design of Mixed Signal Circuits

Use of a single M8 device to bias multiple op-amp

M8 can be shared among different amplifiers and is not part of the opamp architecture
For this reason, we do not consider M8 in the amplifier topology

Degrees Of Freedom (DOFs)

Possible DOFs:
W, L of all devices (14 DOFs)
I_{0}, I_{1}
$\mathrm{C}_{\mathrm{C}}, \mathrm{R}_{\mathrm{C}}$
First estimate: Total number of DOFS: 18
But ...

- Not all DOFs are independent.
- It is necessary to choose a set of independent DOFs

Constraints

Constraints are relationships among DOFs

Two types of constraints:

- Equality constraints:
E.g. $\frac{I_{1}}{I_{0}}=\frac{\beta_{6}}{\beta_{7}}$
- Inequality constraints:
E.g. $\quad G B W(D O F s) \geq G B W_{\text {min }}$

Constraints

- Every equality constraint reduces the dimension of the DOF space. Equality constraints represent exact conditions that has to be fulfilled in order to guarantee correct operation of the circuit. Some equality constraints derive from simple considerations, such as symmetry: $\mathrm{M} 1=\mathrm{M} 2, \mathrm{M} 3=\mathrm{M} 4$. With a few exceptions, equality constraints are specific of the topology and does not depend on the specifications
- Inequality constraints are derived from the circuit specifications. They do not reduce the dimension of the DOF space but select regions of the DOF space where the specs are met.

The sizing process: role of multiple inequality constraints

A very simple case with only two independent DOFs and two inequality constraints

Combining the various inequality constraints, we find a domain (the intersection of all regions) where all points satisfy all constraints. All points in the domain are valid solutions.

If such region does not exist (null intersection), the sizing problem is: "unfeasible".

The sizing process: automatic algorithms
Region where
constraint 2 is respected

Sizing of a new topology: steps

1. Find equality constraints to reduce the number of independent DOFs. These constraints will be of two types:
(a) Strictly necessary constraints (if not respected the circuit does not work properly)
(b) Arbitrary constraints: they are added to further reduce the DOF set and simplify the design. These constraints should be motivated.
2. Choose a set of DOFs that have the following properties:
(a) the remaining dependent DOFs can be easily derived from this set;
(b) the specifications (inequality constraints) can be written easily and in a simple form as a function of the selected DOFs
3. Write the specifications in terms of the selected DOFs and try to find general design rules.

Equality constraints for the simple 2-stage op-amp

Symmetry (necessary to obtain low offset and high CMRR
N. of equality constraints

$$
\begin{aligned}
& \mathrm{M} 1=\mathrm{M} 2\left(W_{1}=W_{2}, L_{1}=L_{2}\right) \text {----- } \\
& \mathrm{M} 3=\mathrm{M} 4\left(W_{3}=W_{4}, L_{3}=L_{4}\right) \text {------ }
\end{aligned}
$$

Current ratios

$$
\begin{equation*}
\frac{I_{1}}{I_{0}}=\frac{\beta_{6}}{\beta_{7}}=\frac{W_{6} / L_{6}}{W_{7} / L_{7}} \tag{1}
\end{equation*}
$$

Initial DOF number: 18, Resulting DOFs after reduction: 18-5=13

[^0]
Necessary constraint: null systematic offset

Necessary constraint: null systematic offset

More constraints

P. Bruschi - Microelectronic System Design

Residual number of DOFs

13-4 = 9 Of these residual DOFs we can separate two ones $\left(C_{C}\right.$ and $\left.R_{C}\right)$ that do not affect the dc performances and the operating point. We will come back to them later. Then we will focus on 7 DOFs (bias current I_{0} and device size) that affect the operating point and we will call them "static" DOFs).

We could select 7 DOFs within the original set (16 DOFs, R_{C} and C_{C} are not included) and then try to derive the remaining ones using the equations that tie them (equality constraints).

It is more useful to choose a set of DOFs that may not necessarily include the original 18 , in a way that the other ones can be easily derived.

Selection of the 7 DOFs

Rationale: the most important MOSFETs of the circuits are M1 (=M2) and M5, since these are the devices that are at the heart of the two stages, where they perform the V-to-I conversion.

We include all possible DOFs of M1 and M5 into the selected set

$$
\begin{aligned}
& \text { M1: } W_{1}, L_{1},\left|V_{G S}-V_{t}\right|_{1} \quad 6 \text { DOFs } \\
& \text { M5: } W_{5}, L_{5},\left(V_{G S}-V_{t}\right)_{5}
\end{aligned}
$$

To complete the set, let us include also L_{6} into the DOFs
Final set of static DOFs: $\left\{W_{1}, L_{1},\left|V_{G S}-V_{t}\right|_{1}, W_{5}, L_{5},\left(V_{G S}-V_{t}\right)_{5}, L_{6}\right\}$

Derivation of all the op-amp parameters from the 7 DOFs

All conditions will refer to the operating point $\left(\mathrm{V}_{\mathrm{id}}=0\right)$
M 2 is dentical to M 1 , then M1 DOFs specify also M2 parameters

$$
\begin{aligned}
& I_{0}=2 I_{D 1}, I_{1}=I_{D S} \\
& \left.I_{D 1}=f_{p}\left(\underline{W_{1}, L_{1},\left|V_{G S}-V_{t}\right|_{1}}\right)=\frac{\mu_{p} C_{O X}}{2} \underline{\underline{W_{1}}} \underline{\underline{L}} \underline{\left(V_{G S}-V_{t}\right.}\right)_{1}^{2} \\
& I_{D 5}=f_{n}\left[\underline{W_{5}, L_{5},\left(V_{G S}-V_{t}\right)_{5}}\right]=\frac{\mu_{n} C_{O X}}{2} \frac{W_{s}}{\underline{L_{s}}}\left(\frac{\left.V_{G S}-V_{t}\right)_{5}^{2}}{2}\right.
\end{aligned}
$$

M3=M4:

$$
L_{3}=\underline{L_{5}}
$$

$$
\begin{aligned}
& I_{D 3}=I_{D 1} \\
& \left(V_{G S}-V_{t}\right)_{3}=\left(V_{G S}-V_{t}\right)_{5}
\end{aligned}
$$

$$
\frac{\mu_{n} C_{O X}}{2} \frac{W_{3}}{L_{3}}=\frac{I_{D 3}}{\left(V_{G S}-V_{t}\right)_{3}^{2}} \Rightarrow \frac{W_{3}}{L_{3}}
$$

$$
W_{3}, L_{3}
$$

Derivation of all the op-amp parameters from the 7 DOFs

P. Bruschi - Microelectronic System Design

Small-signal equivalent circuit

Note: the equivalent circuit can be used to represent the behavior of most two-stage topologies, not just the simple amplifier of the figure.
$C_{1}=C_{D B 2}+C_{D B 4}+C_{G S 5}$
$C_{2}=C_{2}{ }^{\prime}+C_{L}$
$C_{2}{ }^{\prime}=C_{D B 5}+C_{D B 6}$

$$
\begin{array}{ll}
G_{m 1}=g_{m 1} & R_{1}=r_{d 4}\left\|r_{d 2}=r_{d 1}\right\| r_{d 3} \\
G_{m 2}=g_{m 5} & R_{2}=r_{d 5} \| r_{d 6}
\end{array}
$$

All these values are functions of the DOFs

dc gain

dc gain as a function of the DOFs

P. Bruschi - Microelectronic System Design

Frequency response of a two-stage op-amp

P. Bruschi - Microelectronic System Design

Frequency response, simplified small-signal circuit

If the compensation group $\mathrm{C}_{\mathrm{C}}-\mathrm{R}_{\mathrm{C}}$ is not present:

We still have $\mathrm{C}_{\mathrm{gd5}}$ parasitic capacitance, which is not sufficient to produce the compensation effect

Uncompensated frequency response

Miller compensation $=$ Pole splitting

To do this, we need to calculate the Miller factor $K=v_{\text {out }} / v_{1}$. We force voltage v_{1} and use

It is convenient to divide the bridge impedance $\mathrm{R}_{\mathrm{C}}-\mathrm{C}_{\mathrm{C}}$ into two impedances by means of the Miller theorem the Norton equivalent model of the output port.

$\uparrow i_{\text {out-sc }}=v_{1}\left(\frac{G_{m 2}+s C_{C} R_{C} G_{m 2}-s C_{C}}{1+s C_{C} R_{C}}\right)$

Miller factor

P. Bruschi - Microelectronic System Design

Transformation of the bridge impedance Z_{C} by the Miller Theorem

$$
K=\frac{v_{\text {out }}}{v_{1}}=-Z G_{m 2}\left(\frac{1+s C_{C}\left(R_{C}-\frac{1}{G_{m 2}}\right)}{1+s C_{C} R_{C}}\right)
$$

The low frequency limit of the K factor:

Miller transformations: shifting the input pole to very low frequencies

$$
Z_{1 M}=\frac{Z_{C}}{1-K}=\frac{1}{j \omega C_{C}(1-K)} \quad Z_{2 M}=\frac{-K Z_{C}}{1-K}=\frac{-K}{j \omega C_{C}(1-K)}
$$

$$
Z_{1 M}=\frac{1}{j \omega C_{C}\left(1+G_{m 2} R_{2}\right)} \cong \frac{1}{j \omega C_{C} G_{m 2} R_{2}} \quad Z_{2 M} \cong \frac{1}{j \omega C_{C}}
$$

This sets the dominant pole:
First effect of Miller compensation: a very large capacitor $G_{m 2} R_{2} C_{C}$ is brought back to the input mesh, shifting the input

$$
\omega_{p} \cong \frac{1}{R_{1} G_{m 2} R_{2} C_{C}}
$$

Second effect of Pole Splitting:

 shifting the output pole to high frequencies

We cannot use the Miller theorem again, because the resulting pole would fall at frequencies where K is very different from $\mathbf{K}(0)$.

At frequencies such that: $\frac{1}{\omega C_{2}} \ll R_{2}, \frac{1}{\omega C_{1}} \ll R_{1}$ and still: $\frac{1}{\omega C_{C}} \gg R_{C}$
The equivalent circuit reduces to:

Current source $G_{m 2} v_{1}$ is controlled by the voltage across it:
$v_{1}=v_{\text {out }} \frac{C_{C}}{C_{1}+C_{C}}$

Second effect of Miller Compensation:
 shifting the output pole to high frequencies

Then, it is equivalent to a resistance: $R_{V}=\frac{v_{\text {out }}}{i}$

$$
v_{1}=v_{\text {out }} \frac{C_{C}}{C_{1}+C_{C}} \quad i=G_{m 2} v_{1}=v_{\text {out }} G_{m 2} \frac{C_{C}}{C_{1}+C_{C}}
$$

$R_{V}=\frac{v_{\text {out }}}{i}=\frac{1}{G_{m 2}} \frac{C_{1}+C_{C}}{C_{C}} \leftarrow$ This resistance "sees" a capacitance: $C_{V}=C_{2}+\frac{C_{1} C_{C}}{C_{1}+C_{C}}$
This sets a pole at: $\omega_{2}=\frac{1}{R_{V} C_{V}}$

$$
\omega_{2}=\frac{1}{\frac{1}{G_{m 2}} \frac{C_{1}+C_{C}}{C_{C}}\left(C_{2}+\frac{C_{1} C_{C}}{C_{1}+C_{C}}\right)}
$$

Note: R_{v} is actually the op-amp output resistance at medium and high frequencies. It is of the order of $1 / G_{m 2}$ and is much smaller than the value in dc (order of r_{d}).

Second effect of Miller Compensation:

 shifting the output pole to high frequencies$$
\begin{aligned}
& \omega_{2}=\frac{1}{R_{V} C_{V}}=\frac{1}{\frac{1}{G_{m 2}} \frac{C_{1}+C_{C}}{C_{C}}\left(C_{2}+\frac{C_{1} C_{C}}{C_{1}+C_{C}}\right)}=\frac{G_{m 2}}{\frac{C_{1} C_{2}+C_{C} C_{2}+C_{1} C_{C}}{C_{C}}} \\
& \omega_{2}=\frac{G_{m 2}}{\left(\frac{C_{1} C_{2}}{C_{C}}+C_{2}+C_{1}\right)}=\frac{G_{m 2}}{\left(C_{1}+C_{2}\right)\left(1+\frac{1}{C_{C}} \cdot \frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)} \quad C_{S}=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \quad \begin{array}{l}
\text { Series of } \mathrm{C}_{1} \\
\text { and } \mathrm{C}_{2}
\end{array} \\
& \omega_{2}=\frac{G_{m 2}}{\left(C_{1}+C_{2}\right)\left(1+\frac{C_{S}}{C_{C}}\right)}
\end{aligned}
$$

Miller Factor and overall transfer function

Factorizing $A: \quad A=\frac{v_{\text {out }}}{v_{\text {id }}}=\frac{v_{1}}{v_{\text {id }}} \frac{v_{\text {out }}}{v_{1}}=\frac{v_{1}}{v_{\text {id }}} K(s)$

The zero introduced by $R_{C}-C_{C}$
$K(s)=\frac{v_{\text {out }}}{v_{1}}=-Z G_{m 2}\left(\frac{1+s C_{C}\left(R_{C}-\frac{1}{G_{m 2}}\right)}{1+s C_{C} R_{C}}\right)$

$$
A=\frac{v_{\text {out }}}{v_{i d}}=\frac{v_{1}}{v_{i d}} \frac{v_{\text {out }}}{v_{1}}=\frac{v_{1}}{v_{i d}} K(s)
$$

$$
\begin{aligned}
& \text { If } R_{C}=0 \\
& \left(\text { no } R_{C}\right)
\end{aligned} \quad s_{z}=\frac{-1}{C_{C}\left(\frac{-1}{G_{m 2}}\right)}=\frac{G_{m 2}}{C_{C}}>0
$$

This zero occurs also in the overall transferfunction of the amplifier (A). It cannot be cancelled by an equal zero, since an unstable pole (>0) would be required

Effects of the zero in the transfer function

Thanks to R_{C} :

$$
\begin{gathered}
s_{z}=\frac{-1}{C_{C}\left(R_{C}-\frac{1}{G_{m 2}}\right)} \\
R_{C}=\frac{1}{G_{m 2}} \quad S_{z} \rightarrow \infty
\end{gathered}
$$

With this choice for R_{C}, we can eliminate the zero and cancel its bad effect on the phase delay. Other choices are possible: for $R_{c}>1 / G_{m 2}$ it is possible to change the positive zero into a negative one and use it to compensate $f_{p 2}$.

Summary of pole splitting

Capacitor C_{C} introduces a feedback across the second stage that:

1. Puts an equivalent large capacitor $\left(\mathrm{C}_{\mathrm{C}} \mathrm{G}_{\mathrm{m} 2} \mathrm{R}_{2} \gg \mathrm{C}_{1}\right)$ across the output resistance of the first stage $\left(R_{1}\right)$ shifting the first pole back to very low frequencies
2. Reduces the output resistance $\left(R_{V}\right)$ at medium/high frequencies from R_{2} to a value close to $1 / G_{m 2}$. This shifts the output pole to much higher frequencies.
3. Resistor $\mathbf{R}_{\mathbf{C}}$ is significant only at high frequencies and "shapes" the zero, either cancelling it or turning it into a negative zero

Pole splitting, graphical view

Before compensation

After compensation

Summary of singularities

$\omega_{p} \cong \frac{1}{R_{1} G_{m 2} R_{2} C_{C}}$
$\omega_{2} \cong \frac{G_{m 2}}{\left(C_{1}+C_{2}\right)\left(1+\frac{C_{s}}{C_{C}}\right)}=\frac{G_{m 2}}{\left(C_{1}+C_{2}\right)}\left(1+\frac{C_{S}}{C_{C}}\right)^{-1} \quad C_{S}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
$\omega_{3} \cong \frac{1}{R_{C}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{C}}\right)^{-1}} \gg \omega_{2}$
This third pole ($\mathrm{s}_{3}=-\omega_{3}$), can be guessed considering that at very high frequencies the whole network reduces to the three capacitors and resistor R_{C}.

[^0]: P. Bruschi - Microelectronic System Design

