
The simplest CMOS two-stage op-amp
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First stage: p-input 

differential amplifier 

with mirror load

Second stage: n-input 

common source 

class-A stage
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Bias currents of the op-amp

The output of the first 

stage  is "referred to gnd"

The input of the second 

stage is "referred to gnd"

CC, RC: frequency 

compensation network



Use of a single M8 device to bias multiple op-amp
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M8 can be shared among different 

amplifiers and is not part of the op-

amp architecture

For this reason, we do not consider 

M8 in the amplifier topology



Degrees Of Freedom (DOFs)
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Possible DOFs:

W, L of all devices (14 DOFs)

I0,  I1
CC, RC

• Not all DOFs are independent.

• It is necessary to choose a set 

of independent DOFs

First estimate: Total number of DOFS: 18

But ...



Constraints
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Constraints are relationships 

among DOFs

Two types of constraints:

• Equality constraints: 

E.g. 61
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• Inequality constraints: 

( ) min
GBW DOFs GBW≥E.g.



Constraints
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• Every equality constraint reduces the dimension of the DOF 

space. Equality constraints represent exact conditions that has 

to be fulfilled in order to guarantee correct operation of the 

circuit. Some equality constraints derive from simple 

considerations, such as symmetry: M1=M2,  M3=M4. With a few 

exceptions, equality constraints are specific of the topology and 

does not depend on the specifications 

• Inequality constraints are derived from the circuit specifications. 

They do not reduce the dimension of the DOF space but select 

regions of the DOF space where the specs are met. 



The sizing process: role of multiple inequality constraints
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Combining the various 

inequality constraints, we find a 

domain (the intersection of all 

regions) where all points satisfy 

all constraints. All points in the 

domain are valid solutions. 

If such region does not exist 

(null intersection), the sizing 

problem is: "unfeasible".

A very simple case with only two independent DOFs and two 

inequality constraints



The sizing process: automatic algorithms
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Computer programs that perform 

automatic sizing, are not 

compatible with an infinite number 

of feasible solutions. To find a 

single solution, an optimization 

condition is often added.

If the design is performed 

manually, any point (set of DOFs 

values) in the intersection domain 

is a good solution. Also in this 

case, optimization or arbitrary 

techniques can be used to operate 

the choice



Sizing of a new topology: steps

P. Bruschi – Microelectronic System Design 8

1. Find equality constraints to reduce the number of independent DOFs. 

These constraints will be of two types:

(a) Strictly necessary constraints (if not respected the circuit does not 

work properly)

(b) Arbitrary constraints: they are added to further reduce the DOF set 

and simplify the design. These constraints should be motivated.  

2. Choose a set of DOFs that have the following properties: 

(a) the remaining dependent DOFs can be easily derived from this set; 

(b) the specifications (inequality constraints) can be written easily and 

in a simple form as a function of the selected DOFs

3. Write the specifications in terms of the selected DOFs and try to find 

general design rules.  



Equality constraints for the simple 2-stage op-amp
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Symmetry (necessary to obtain low offset 

and low CMRR

M1=M2  (W1=W2,  L1=L2) ------ 2

N. of equality

constraints

M3=M4  (W3=W4,  L3=L4) ------ 2

Current ratios
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Initial DOF number: 18 ,  Resulting DOFs after reduction: 18-5=13 



Necessary constraint: null systematic offset 
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It is not possible to exactly 

predict Vout, but it will be far from 

Vdd / 2 if ISC is consistently 

different from zero
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Necessary constraint: null systematic offset 

Since only a common mode 

voltage is applied to the input: 
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More constraints
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Good matching M5-M3:  L5=L3

5 6

3 7

1

2

β β

β β
= Null (small) systematic offset

Good matching M6-M7:  L6=L7

Symmetric output swing

(same margins to Vdd

and gnd)

( )
5 6GS t GS t

V V V V− = −

6GS t
V V−

( )
5GS t

V V−

Arbitrary constraints

Let's now consider the 

output characteristic 



Residual number of DOFs
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13 - 4 = 9   Of these residual DOFs we can separate two ones (CC and RC) that 

do not affect the dc performances and the operating point. We will 

come back to them later. Then we will focus on 7 DOFs (bias 

current I0 and device size) that affect the operating point and we will 

call them "static" DOFs). 

We could select 7 DOFs within the original set (16 DOFs, RC and CC are 

not included) and then try to derive the remaining ones using the 

equations that tie them (equality constraints).

It is more useful to choose a set of DOFs that may not necessarily 

include the original 18, in a way that the other ones can be easily 

derived. 



Selection of the 7 DOFs

P. Bruschi – Microelectronic System Design 14

Rationale: the most important MOSFETs of the 

circuits are M1 (=M2) and M5, since these are the 

devices that are at the heart of the two stages, 

where they perform the V-to-I conversion. 

We include all possible DOFs of M1 and M5 into 

the selected set
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To complete the set, let us include also L6 into the DOFs
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Derivation of all the op-amp parameters from the 7 DOFs
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M2 is dentical to M1, then M1 DOFs specify also

M2 parameters

M3=M4:
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All conditions will refer to the operating point (Vid=0)
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Derivation of all the op-amp parameters from the 7 DOFs
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Small-signal equivalent circuit
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be used to represent the 

behavior of most two-stage 

topologies, not just the simple 

amplifier of the figure. 



dc gain
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dc gain as a function of the DOFs
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Frequency response of a two-stage op-amp
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This circuit does not include all 

components that affect the frequency 

response:



Frequency response
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These capacitances determine the load 

presented by the amplifier to the signal 

source. We will suppose that vi1 and vi2 are 

produced by ideal voltage sources, thus no 

loading effect will be considered  
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The short circuit output current 
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Frequency response, simplified small-signal circuit
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If the compensation group CC-RC is not present:
We still have Cgd5

parasitic capacitance, 

which is not sufficient to 

produce the 

compensation effect



Uncompensated frequency response
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C
gd5-Miller

Without compensation, we have two poles at 

frequencies fp1, fp2, which are of the same 

order of magnitude and none of them is 

dominant.

The result is a very small or even negative 

(= instability) phase margin.  
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Miller compensation = Pole splitting 
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It is convenient to 

divide the bridge 

impedance RC-CC into 

two impedances by 

means of the Miller 

theorem
To do this, we need to calculate the Miller 

factor K=vout/v1. We force voltage v1 and use 

the Norton equivalent model

of the output port. 
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Miller factor
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Transformation of the bridge impedance ZC by the Miller Theorem
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Miller transformations: shifting the input pole to very low frequencies
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First effect of Miller compensation: a very large capacitor 

Gm2R2CC is brought back to the input mesh, shifting the input 

pole back to low frequencies: 
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Second effect of Pole Splitting: 
shifting the output pole to high frequencies
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We cannot use the Miller theorem 

again, because the resulting pole 

would fall at frequencies where K 

is very different from K(0).

The equivalent circuit 

reduces to:
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Second effect of Miller Compensation: 
shifting the output pole to high frequencies

Then, it is equivalent to a resistance:
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Note: Rv is actually the op-amp output 

resistance at medium and high 

frequencies. It is of the order of 1/Gm2

and is much smaller than the value in dc  

(order of rd).
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Second effect of Miller Compensation: 

shifting the output pole to high frequencies
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Miller Factor and overall transfer function
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The zero introduced by RC-CC
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There is a zero in K(s):

This zero occurs also in the overall transfer-

function of the amplifier (A). It cannot be 

cancelled by an equal zero, since an unstable 

pole (>0) would be required



Effects of the zero in the transfer function
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With this choice for RC, we can 

eliminate the zero and cancel its bad 

effect on the phase delay.

Other possible choices are possible:

for Rc>1/Gm2 it is possible to change 

the positive zero into a negative one 

and use it to compensate fp2. 
Degradation of the 

phase margin
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Summary of pole splitting
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Capacitor CC introduces a feedback across the second stage that:

1. Puts an equivalent large capacitor (CCGm2R2>>C1) across the output 

resistance of the first stage (R1) shifting the first pole back to very low 

frequencies 

2. Reduces the output resistance (RV) at medium/high frequencies from 

R2 to a value close to 1/Gm2. This shifts the output pole to much higher 

frequencies. 

3. Resistor RC is significant only at high frequencies and "shapes" the 

zero, either cancelling it or turning it into a negative zero



Pole splitting, graphical view
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Before compensation After compensation



Summary of singularities
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This third pole (s3= −ω3), can be guessed considering 

that at very high frequencies the whole network 

reduces to the three capacitors and resistor RC. 


