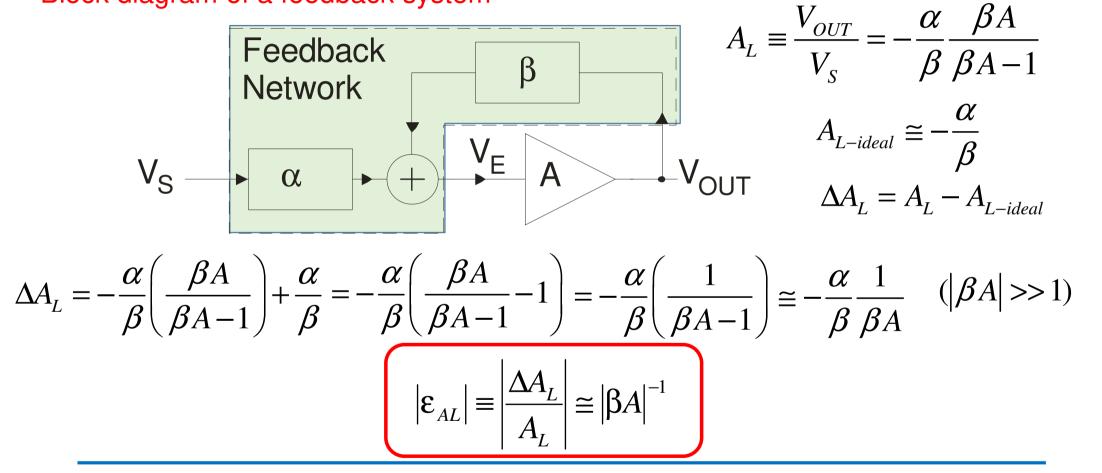
Use of Pellegrini's cut-insertion theorem for the design of feedback systems

Block diagram of a feedback system



P. Bruschi – Microelectronic System Design

Passive network: In a real electronic network: linear and reliable Feedback \ Feedback Network Network v_{out} V_S V_{OUT} **AMP** Desired correspondence $\alpha_{\scriptscriptstyle N} \to \alpha$ Feedback Network out V_{in}

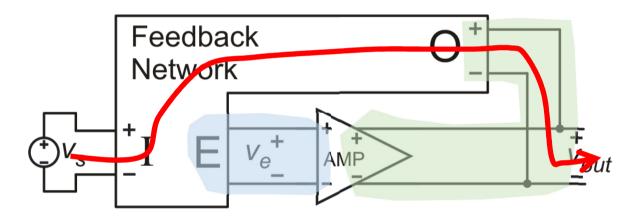
AMP

Separation of feedback network and gain element (AMP)

 $\bar{\alpha}_{\mathsf{N}}$

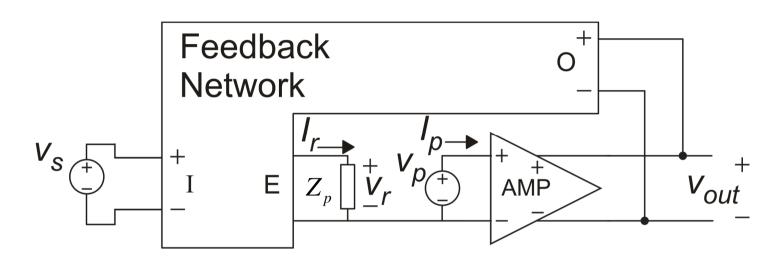
Vout

Problems that prevent a direct correspondence between the electrical circuit and the simplified block diagram of a feedback system



- Loading effects of the feedback network on AMP
- Loading effect of the amplifier input impedance on the feedback network
- Direct signal path from the input signal V_S and the output voltage through the feedback network (occurs if the amplifier has a non-zero output impedance).

Pellegrini's cut-insertion theorem



$$Z_{i} = \left(\frac{v_{p}}{i_{p}}\right)_{v_{s}=0}; \quad \beta \equiv \left(\frac{v_{r}}{v_{out}}\right)_{v_{s}=0}; \quad A = \left(\frac{v_{out}}{v_{p}}\right)_{v_{s}=0} \qquad \frac{1}{Z_{p}} = \frac{1}{Z_{i}} + \frac{\rho}{\alpha}(1-\beta A)$$

$$\underline{\gamma} = \left(\frac{v_{out}}{v_s}\right)_{v_n=0}; \underline{\alpha} = \left(\frac{v_r}{v_s}\right)_{v_n=0} \qquad \rho = \left(\frac{i_p}{v_s}\right)_{v_n=0} \qquad \text{p is zero if the op-amp is unidirectional}$$

$$\frac{1}{Z_p} = \frac{1}{Z_i} + \frac{\rho}{\alpha} (1 - \beta A)$$

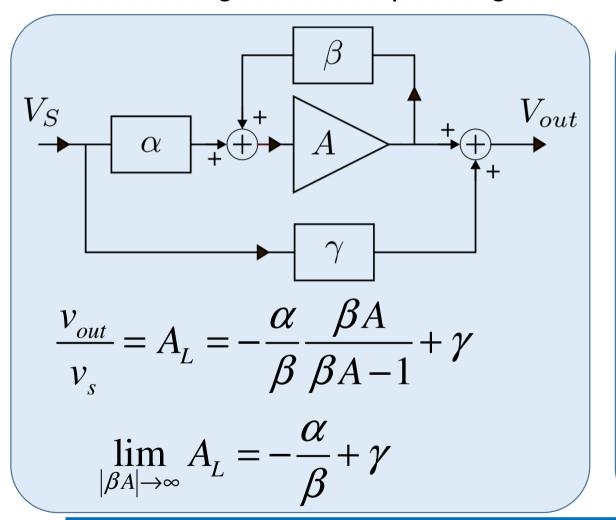
is unidirectional

$$A, \beta, \alpha$$

now are calculated taking into account loading effects

takes into account the feed-forward path through the feedback network

Block diagram corresponding to the cut-insertion schematization



$$\frac{v_{out}}{v_s} = A_L = -\frac{\alpha}{\beta} \frac{\beta A}{\beta A - 1}$$

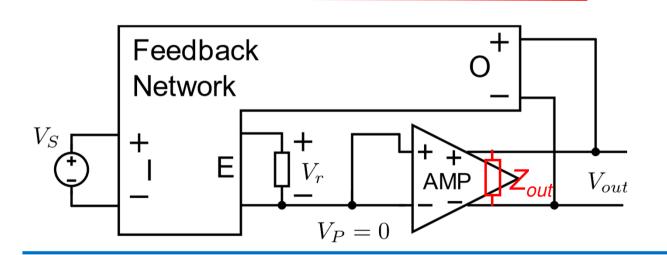
$$A_{L-ideal} = \lim_{|\beta A| \to \infty} A_L = -\frac{\alpha}{\beta}$$

$$V_S \longrightarrow A \longrightarrow V_{out}$$
Ideal feedback system

Problems when using the cut-inserion theorem for design purposes

- 1. I have to design the feedback network for three transfer functions (α , β and γ) instead of only two.
- 2. α and γ depend on the output impedance of the amplifier, Z_{out} , which is a parameter that varies much and cannot be predicted reliably.
- 3. Only in the case that Z_{out} is much smaller than the typical impedances of the feedback network, we can design the network for α , β and γ) with port "O" short circuited (γ =0).

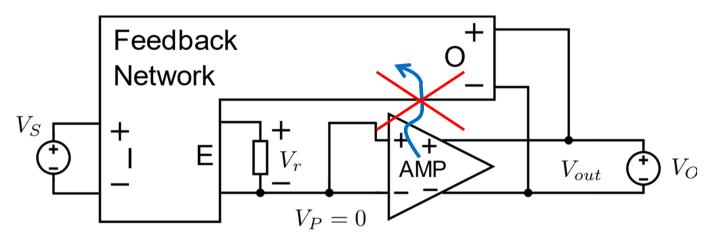
Typically, this does not occur in integrated circuits.



$$\frac{v_{out}}{v_{s}} = -\frac{\alpha}{\beta} + \gamma$$

Configuration for

Cut insertion theorem with modified definition of α



A new definition of α and β (renamed α^* and β^*)

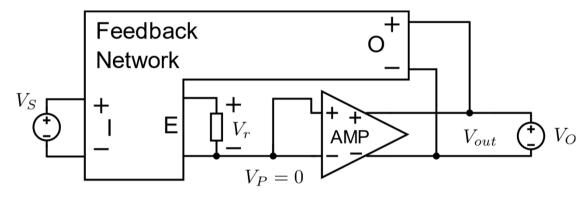
$$\alpha^* \equiv \left(\frac{v_r}{v_s}\right)_{v_p, v_o = 0}; \quad \beta^* \equiv \left(\frac{v_r}{v_o}\right)_{v_p, v_s = 0}$$

If AMP communicates with the feedback network only through the input and output ports (no intermediate signal paths)

then
$$\beta^* = \beta$$
 and:

$$\frac{v_{out}}{v_s} = -\frac{\alpha^*}{\beta} \frac{\beta A}{\beta A - 1} + \frac{\gamma}{1 - \beta A}$$

Cut insertion theorem with modified definition of α



$$\frac{v_{out}}{v_s} = \frac{\alpha^*}{\beta} \frac{\beta A}{\beta A - 1} + \frac{\gamma}{1 - \beta A}$$

Now γ is divided by the loop gain βA

$$\lim_{|\beta A| \to \infty} \frac{v_{out}}{v_{s}} = -\frac{\alpha^{*}}{\beta} = -\frac{\alpha^{*}}{\beta^{*}}$$

The definition of α^* is deeply different from that of α .

Also the definition of β^* is different from that of β . but the two values coincides in most practical cases.

 α^* and β^* are very similar to α_N and β_N that are the functions for which we design the feedback network

Ideal transfer function and network functions

$$\lim_{|\beta A| \to \infty} \frac{v_{out}}{v_s} = -\frac{\alpha^*}{\beta} = -\frac{\alpha^*}{\beta^*}$$
Feedback Network
$$V_s \overset{+}{\bigcirc} + V_r$$

$$V_r = (\alpha_N V_s + \beta_N V_o) \frac{Z_p}{Z_p + Z_e}$$

$$V_r = (\alpha_N V_s + \beta_N V_o) \frac{Z_p}{Z_p + Z_e}$$

$$V_r = (\alpha_N V_s + \beta_N V_o) \frac{Z_p}{Z_p + Z_e}$$

$$V_r = (\alpha_N V_s + \beta_N V_o) \frac{Z_p}{Z_p + Z_e}$$

$$V_r = (\alpha_N V_s + \beta_N V_o) \frac{Z_p}{Z_p + Z_e}$$

$$Q^* = \alpha_N \frac{Z_p}{Z_p + Z_e}$$

$$Q^* = \alpha_N \frac{Z_p}{Z_p + Z_e}$$

$$Q^* = \alpha_N \frac{Z_p}{Z_p + Z_e}$$

$$Q^* = \beta_N \frac{Z_p}{Z_p + Z_e}$$

$$Q^* = \beta_N \frac{Z_p}{Z_p + Z_e}$$

Finite gain error

$$A_{L-ideal} = -\frac{\alpha^*}{\beta^*}$$

$$A_L = -\frac{\alpha^*}{\beta} \frac{\beta A}{\beta A - 1} + \frac{\gamma}{1 - \beta A}$$

$$\Delta A_L = A_L - A_{L-ideal}$$

$$\Delta A_L = -\frac{\alpha^*}{\beta} \frac{\beta A}{\beta A - 1} + \frac{\gamma}{1 - \beta A} - \left(-\frac{\alpha^*}{\beta}\right)$$

$$\Delta A_L = -\frac{\alpha^*}{\beta} \left(\frac{\beta A}{\beta A - 1} - 1\right) + \frac{\gamma}{1 - \beta A}$$

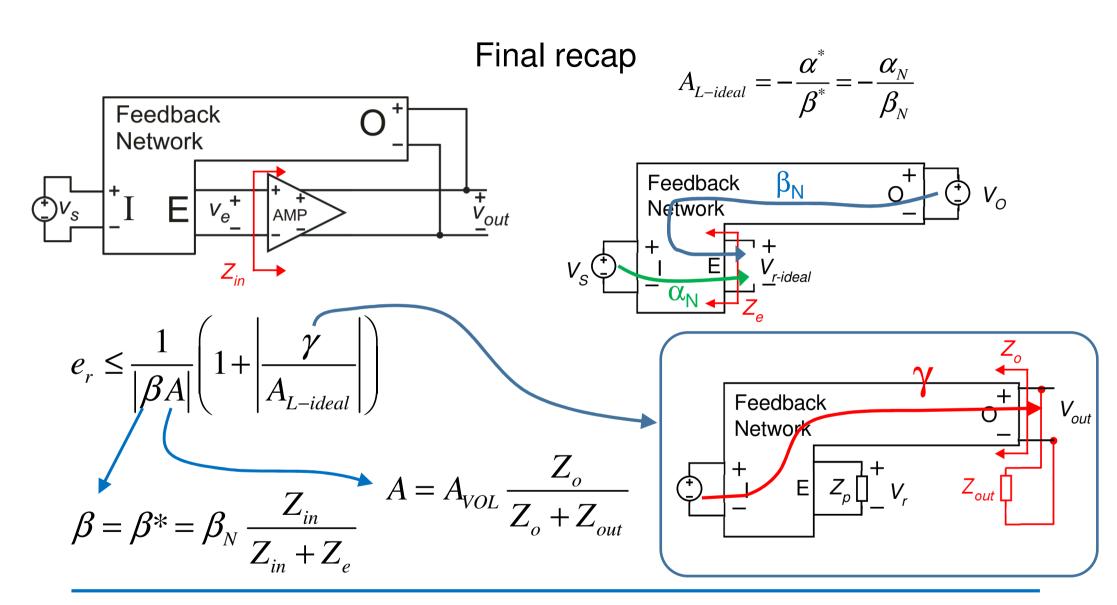
$$\Delta A_{L} = -\frac{\alpha^{*}}{\beta} \left(\frac{1}{\beta A - 1} \right) + \frac{\gamma}{1 - \beta A}$$

$$\frac{\Delta A_{L}}{A_{L-ideal}} = \left(\frac{1}{\beta A - 1} \right) \left(1 + \frac{\gamma}{A_{L-ideal}} \right)$$

$$e_{r} = \left| \frac{\Delta A_{L}}{A_{L-ideal}} \right| \cong \frac{1}{|\beta A|} \left| 1 + \frac{\gamma}{A_{L-ideal}} \right|$$

From the Schwarz inequality:

$$e_r \le \frac{1}{|\beta A|} \left(1 + \left| \frac{\gamma}{A_{L-ideal}} \right| \right)$$



P. Bruschi – Microelectronic System Design