
Low frequency disturbances: offset and flicker noise
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• The offset strongly affects the accuracy of most sensor 

interfaces and their detection limit

• When the quantity estimation require integration operations, 

such as dead reckoning (position from acceleration or speed), 

the offset result in a drift of the final quantity. 

• The flicker noise, with its power accumulation at low frequency, 

make the problem worse, reducing resolution. 



State of art of amplifier offset
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The best amplifiers use BJTs and resistor trimming, to achieve offsets as 

low as 15 µV with 0.1 µV/°C drift (typical) and low frequency noise < 0.5 

µV pp in the 0.1-10 Hz frequency band. 

• It is obtained with very large area and a non-CMOS technology, resulting 

non suitable for modern SoCs. 

• Trimming of the individual amplifiers is required

• In many examples of sensor interfacing, offsets as low as 1 µV are required. 

This option is often not convenient: 



Calibration
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One-time calibration is typically performed at the start-up to the whole 

DAS, providing a reference input (e.g.: 0 V) and storing the result in a 

digital memory, then subtracted in the digital domain.  

Not effective against offset drift and low-frequency noise.

Calibration can be repeated to track the offset drift, but:

• there is a loss of data during the calibration routine

• rejects the offset of the whole system, not of the individual amplifier

• still not effective against low-frequency noise



Dynamic techniques for the offset and noise flicker reduction
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• Auto-zero (AZ)

• Correlated Double Sampling (CDS)

• Chopper modulation (CHS = Chopper stabilization)

Three main techniques

We are interested in understanding the principle of operation, 

the residual noise spectrum and possible limitations of the 

various techniques.

The three techniques are not limited to pure electronic circuits, but 

can in general be applied to other physical systems and, in particular, 

in a DAS, may involve also the sensor. 



Premise
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In all cases, in order to simplify the formalism, we will refer to the case 

of a voltage amplifier: 

( )out in nV A V v= −

where vn includes both the input referred noise and offset voltage. 

out n
V Av= −

If we remove the signal from the amplifier input, the output becomes:

Voltage - input
Current - input

Nulling the input

signal in:



Auto – Zero (AZ)
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Two phases: AZ and NO (Normal operation)

Principle: 

1. In the AZ phase the signal is removed and the effect of vn (noise/offset) is 

stored in a memory (typically an analog memory, i.e. a capacitor)

2. In the NO phase, the signal is connected and the vn value stored in 

previous phase is subtracted. 

memory

element

−Avn

−Avn(t )c

memory
element

A(v -vns )

−Avn(t )c

vs

vs

A[v -(vns n c-v (t )]

vout

Auto-Zero Phase

Normal operation

Example, for an 

amplifier with 

voltage input



Signals and noise during the AZ cycle 
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clock

ts

AZ

NO

( ) ( )
out n

V t Av t= −

[ ] [ ]( ) ( ) ( ) ( )out in n n SV t A V t v t Av t= − − −

[ ]( ) ( ) ( ) ( )out in n n SV t A V t v t v t= − +

( ) ( ) ( )out in n effV t A V t v t−
 = − 

( ) ( ) ( )n eff n n Sv t v t v t− = −



Auto-Zero: phases and signal diagrams 
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Auto-Zero simplified noise model
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We consider that the duration of the 

AZ phase is negligible (ideally zero), 

then the amplifier is in NO phase 

during the whole period.

T 2T 3T nT (n+1)T

( ) ( ) ( )n eff n n Sv t v t v t− = −

( ) ( ) ( )n eff n nv t v t v nT− = −

vn(t)

for each clock cycle, tS
coincides with the 

beginning of the cycle 

tS instants form a discrete set

(a sequence  nT)

AZ AZAZ AZ AZ



Calculation of the spectrum of the residual noise vn-eff
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( )n effV f−

We consider a single realization of the noise random process

Vn(f)
Fourier Transform

fS 2fS-2fS

-fS
0

( )sincj fTe fTπ π−

+
−

( ) ( ) ( )n eff n nv t v t v nT− = −



Calculation of the spectrum of the residual noise vn-eff
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( ) ( ) ( ) ( )







−π−= 

∞

−∞=

π−

−

k

ckn

fTj

neffn kffVfTefVfV sinc

( ) ( ) ( ) ( ) ( ) ( )
0

cs ninc sij fT

n

j fT

n eff

k

n n ck

k

V f e fT V ff V e fT V f kf
ππ π π

∞
−

−

=

−

≠
−∞
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( ) ( ) ( ) ( ) ( )
0

1 sinc sincj fT j fT

n eff n n ck

k
k

V f e fT V f e fT V f kf
π ππ π

∞
− −

−

=−∞
≠

 
  = − − −   
  


H0(f) H1(f)

Zero-order replica extracted from the sum
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Calculation of the spectrum of the residual noise vn-eff

( )
∞

−∞=

− −=
k

cknkeffn kffVfHfV )()(

( )

( )
0

1

( ) 1 sinc 0
( )

( ) sinc 0

j fT

k j fT

H f e fT for k
H f

H f e fT for k

π

π

π

π

−

−

 = − =
= 

= − ≠

Now, remember that this transformation is applied to the 

rendom process vn(t) with spectral density Svn(f):

( )
∞

−∞=

− −=
k

ckvnkeffvn kffSfHfS
2

)()(
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Calculation of the spectrum of the residual noise vn-eff
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Contribution of 0-th replica

|H0(f)|
2

The 0-th replica is weighted by H0(f):

• The offset is cancelled

• The flicker noise is strongly reduced

• For f>>fck (fS) the spectrum is 

nearly unchanged

fS-fS

( )0
( ) 1 sincj fTH f e fTπ π−= −

1γ ≅



Contribution of replicas other than 0-th one
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For f<fck (fS), several 

contribution equal to SVBB

are added together. For 

f<<fck the sinc leaves the 

sum unchanged

The offset delta functions 

and the flicker regions of 

each replica fall over one 

of the zeros (at fck) of the 

sinc and are deleted or 

strongly reduced

for f>>fck: 

large 

attenuation

( )1
( ) sincj fT

H f e fT
π π−= −



In Summary:
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fck

2fck

3fck

B

fck

SBB

0-order replica
(no effect for f<<f )ck

f

SBB

SBB

B

2B
fck

fck

Contribution of replicas different from 0-th 

for f<<fck

ckBB

ck

effvn ffS
f

B
fS <≅− for 

2
)(

Region f<<fck

Approximate effective noise 

PSD

( )vn effS f−



Example: LTC 1051, a commercial auto-zero operational amplifier
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Correlated Double Sampling (CDS) 
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• CDS is a sampled data approach. Both the signal and the noise are 

discrete-time signals.

• It involves two clock phases: phase 1 and phase 2

phase 1 phase 2

(n-1)T (n+1)TnTnT-td

at nT the signal is sampled 

(together with noise/offset )

at nT-tD the signal is removed

and the noise/offset is sampled

[ ]2 ( ) ( )
in n

s A V nT v nT= −[ ]1 ( )
n D

s A v nT t= − −

clock cycle



Correlated Double Sampling
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[ ] [ ]{ }2 1( ) ( ) ( ) ( )
out in n n D

V nT s s A V nT v nT A v nT t= − = − − − −

The output voltage at instant NT of the system that adopts the 

CDS technique is the difference between the two samples:

[ ]( ) ( ) ( ) ( )
out in n n D

V nT A V nT v nT v nT t= − + −

We have the subtraction of two samples 

(hence "Double Sampling"). 

If the sample are similar ("Correlated") they 

cancel each other effectively

Differently from the autozero, 

also the signal is sampled.

Then, all limitation coming 

from the Shannon theorem 

applies 



CDS: effective noise
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( ) ( ) ( )
n eff n n D

v nT v nT v nT t− = − −

( ) ( ) ( )
2

n eff n n

T
v nT v nT v nT− = − −

Generally,  tD = 
�

�
, thus:

The operation applied to the noise involve sampled data and should be 

analyzed using the typical approaches of this domain, such as the 

Z-transform. 

Problem: not all samples are sampled at instants that are multiple of T
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CDS: effective noise

It is then preferred to use a mixed continuous-time / discrete-time 

approach, that does not represent the actual operations but that gives the 

same final result.  

Σ

T
2

delay= clock

sampler
vn(t)

vtc(t)

vtc(nT)

Equivalent model of the operations 

applied to the original noise by the 

CDS approach.

CT DT
( ) ( ) ( )

2
tc n n

T
v t v t v t= − −

Sampling at intervals nT

we obtain the CDS effective

noise

( ) ( ) ( )
2

n eff n n

T
v nT v nT v nT− = − −

nT nT( )n effv nT−=
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CDS: effective noise

Σ

T
2

delay= clock

sampler
vn(t)

vtc(t)

vtc(nT)

( ) ( ) ( )
2

tc n n

T
v t v t v t= − −

2
2( ) ( ) ( )
T

j f

tc n n
V f V f V f e

π−

= −

2
2( ) ( ) 1
T

j f

tc n
V f V f e

π− 
= − 

 

H(f)

2 2 2( )
T T T

j f j f j f

H f e e e
π π π− + − 

= − 
 

2 2 sin
2

T
j f T

e j f
π

π
−  

= ⋅  
 

We are interested in the transfer 

function from the input of the model 

to the input of the sampler. In the 

frequency domain: 
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CDS: effective noise

Noise spectral density:

Σ

T
2

delay= clock

sampler
vn(t)

vtc(t)

vtc(nT)

( )
2

( ) ( )Vtx VnS f S f H f=

( ) 2 2 sin
2

T
j f T

H f e j f
π

π
−  

= ⋅  
 

( )( ) ( )
tc n

V f V f H f=

( )
2 2

4sin
2

T
H f fπ

 
=  

 

1

ck

T
f

=

( )
2

H f

4

fck 2fck

( )
2 2

4sin
2

ck

f
H f

f

π 
 =  
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CDS: effective noise

Σ

T
2

delay= clock

sampler
vn(t)

vtc(t)

vtc(nT)

=

X

2
4sin ( ) for  

2

0                                 for    or  or 

BB

T
f S f - B f B

f -B f B

π
  

< <  
 

 ≤ ≥

( )
Vtx

S f



Effect of sampler
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Σ

T
2

delay= clock

sampler
vn(t)

vtc(t)

vtc(nT)

fck

2fck

( )2 2 2sin sin cos
2 2 2 2

ck

T T T
f f f f

π
π π π
     

− = − =         

( )2 2 2sin 2 sin sin
2 2 2

ck

T T T
f f f fπ π π π

     
− = − =         

24 sin
2

BB

T
S fπ

 
 
 

+

=1



CDS: Residual noise in the DT frequency domain

P. Bruschi – Microelectronic System Design 26

2kfck

(2k+1)fck

2

ckf

2

ckf
−

4
BB

S

Every two replicas (an odd and 

an even replica) we have a 

contribution equal to 4SBB.

even

odd

f
DT domain

2
ck

f
odd + even replica

Total number of replica pairs:
ck

B

f

4Vn eff BB

ck

B
S S

f
− =Total PSD in 

the DT domain:



Chopper modulation: basic principle
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( )out in n
V A V v= −

Ex.: A=10, vio=10 mV

Vin1 =Vin= 100 mV  Vo1 = 900mV

correct value (without offset): 1V

Average of Vo1

and –Vo2

Vin

Vin2

Vin1

Vin2

Vo1

Vo2

Vo1

Vo2

Vo1

-Vo2

Vo1

-Vo2

AVin

Vin1

Vin2 =-Vin= -100 mV  Vo2 = -1.1V

correct value

Square Wave
Modulation

Amplification Square Wave Demodulation
+ Low-Pass Filtering



Sinusoidal modulation
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A

V sin( t)M ω

vs
voutLPF

Signal Demodulation

-f0 f0

A2

A2

-f0 f0f0-f0 BS-BS

Amplification

Signal Modulation

+ Low-Pass Filtering

Input Signal



Problems of the sinusoidal modulation
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A

V sin( t)M ω

vs
voutLPF

• Sinusoidal modulation requires a 

real analog multiplier (i.e a 

Gilbert Cell), that is marked by a 

very large equivalent input offset 

and noise. 

• Generation of sinusoidal 

waveform with precise magnitude 

is not simple using only on-chip 

components



Chopper modulation
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Dimensionless square waveform

with unity magnitude and strictly 

50 % duty-cycle

Modulator and demodulator can 

be implemented by switch 

matrices: virtually free from 1/f 

noise and offset

Square Wave Modulation



A simplified analysis in the time domain
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Hypothesis: 

• The amplifier has infinite 

bandwidth and zero delay

• The input signal (VS) is 

constant 

• Zero noise and offset



Simplified time-domain analysis: how the offset is processed
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0 0S IAV V=  =

constantOA ioV Av= − =
Vdm

OFFSET RIPPLE: frequency = fck

fH

The offset ripple is completely deleted if:

• LPF: fH<fck

• <m(t)>=0  (requires duty-cycle=50%)

ioA v⋅

ioA v− ⋅



Chopper modulation: analysis in the frequency domain 
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The simplified analysis in the time domain is useful to gain an 

intuitive understanding of the CHS principle of operation but can 

give quantitative prediction for non-constant signal and noise 

components   

In order to model the effect on non-constant signal and noise 

components it is necessary to perform the analysis in the 

frequency domain. 







π
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∞
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ck

Fourier series of the m(t) waveform
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Effect of modulation 
on the signal
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VS(f)

B → ∞

2

3 3 3AC C A C− =

LPF



Effect of modulation on the signal
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( ) ( )
2 2

( )
out k S S k

k k

V f A C V f V f A C
∞ ∞

=−∞ =−∞

 
= =  

 
 

Power of the modulating 

waveform m(t)

Power = 2 ( ) 1m t =
( ) ( )out S

V f AV f=
Application of chopper modulation in the 

case of INFINITE bandwidth and null 

delay does not alter the function and 

gain of the original amplifier



2

3C−

2

3C

Effect of CHS on the noise spectrum
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B → ∞B−∞ ←

2

1C
2

1C−

( )2
( )

VOA Vn
S f A S f=

( )Vdm
S f

LPF

22 2( )vout k BB BB

k

S f A C S A S
∞

=−∞

= =



Effective noise PSD referred to the input 
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2

2

BB
BB

A S
S

A
= =

n out
n eff

v
v

A

−
− =

2

( )
( ) vout

vn eff

S f
S f

A
− =

Application of chopper modulation in the case of INFINITE bandwidth 

result in cancellation of the flicker noise and in a residual noise in the 

signal bandwidth just equal to the broadband noise PSD of the original 

amplifier 

No Noise foldover occurs!



Effect of finite amplifier bandwidth

P. Bruschi – Microelectronic System Design 38

1C
1C− 3C−3C



Effect of finite amplifier bandwidth
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ck

B
N

f

 
=  
 

2
( ) ( )

N

out k s

k N

V f A C V f
=−

 
=  

 


Summation is now 

limited to a finite 

number of terms

Let us consider only 

positive vaules of index k

B

2
1

N

k

k N

C α
=−

 
= < 

 
( ) ( )out sV f A V fα= ⋅ effA A Aα= <



Minimum amplifier bandwidth
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S CkB f+

SBSB−

( )SV f

f

f

Minimum amplifier 

bandwidth to 

amplify at least one 

signal replica

Case N=1

amplifier frequency response



Effect of phase delays
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simple delay

typical amplifier 

phase response

j
Ae

θ−j
Ae

θ

kC
kC−

kC
kC−

( ) ( )
2 j j

S k
V f A C e e

θ θ−+ = ( ) ( )
2

2 cosS kV f A C θ⋅ ⋅

Replicas that undergo a phase shift are attenuated when 

they are brought back to baseband.

For θ=90° total cancellation of the contribution

For  θ=180° the sign of the contribution is reversed



Time domain analysis with finite aplifier bandwidth
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out S
V AV<

effA A Aα= <



Effect of the amplifier finite bandwidth on the output noise PSD
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LPF

Maximum order of replica that still 

gives a contribution in the baseband:  
ck

B
N

f

 
=  
 

( )
22 2

N

Vout BB k BB

k N

S f S A C S Aα
=−

 
= = 

 




Finite bandwidth: effective input referred noise density
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Amplifier effective gain: effA A Aα= <

( )

2

2

BB BBA S S

A

α

αα
= =

2

( )
( ) vout

vn eff

eff

S f
S f

A
− =

( ) 2

Vout BB
S f S Aα=

2
1

N

k

k N

C α
=−

 
= < 

 


ck

B
N

f

 
=  
 

Output noise PSD:

BB
S>

N 1 3 5 15

� 0.8106 0.9006 0.9331 0.9747

1/� 1.234 1.110 1.072 1.026
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AZ, CDS and CHS compared

Residual noise at low frequencies 

BB

ck

S
f

B4

2
BB

ck

B
S

f

BBS≅

AZ:

CDS:

CHS:

The CHS technique gives the 

lower residual noise in the 

signal bandwidth, for the 

same broadband SBB of the 

original amplifier

The AZ and CDS techniques 

suffer from noise foldover, 

which is represented by the 

ratio B/fck. The minimum 

value of this ratio is not the 

same for the two techniques



B/fck ratio requirements  for AZ
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tAZ

T

c
lo

ck
v
o

u
t

AZ
t T<<

In the AZ phase the amplifier passes 

from full output signal to a small value 

(-Avn). At the end of the AZ phase, the 

residual error should be small, 

otherwise part of the output signal is 

sampled together with the noise/offset

set AZ
t t T≤ <<

1
set

t
B

≅

1 1
ck

set

f
t T

>> =

ckB f>> 100 1000
ck

B

f
≈ −E.g.:



B/fck ratio requirements  for CDS
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2

T

2

T

In the CDS the amplifier must settle 

to the final value in a period equal to 

half the clock cycle (T/2). 

2
set

T
t <

1 2
2 ck

set

f
t T

> =1
set

t
B

≅

2 ckB f> 2
ck

B

f
>

In practice, the requirement for 

small residual error (high 

accuracy) and the occurrence 

of the slew rate phenomenon 

impose larger value for B/fck. 

Generally: 

min 3
ck

B

f

 
≅ 

 



AZ, CDS and CHS compared
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Method

Signal 

bandwidth 

(BS)

Residual 

baseband noise 

(f<fck/2)

fck

constraints

Particular 

characteristics

AZ BS=B fck<<B

Maintains the original 

time continuous 

frequency response of 

the amplifier. 

CDS BS< fck/2 fck<B/3 Fully sampled data 

system. 

CHS BS<fck SBB

fck+BS<B

BS<fCK

Requires fully-

differential architecture 

and the presence of an 

effective low pass filter. 

BB

ck

S
f

B2

BB

ck

S
f

B4



Simple example of circuital implementations: 
Open-Loop Offset Compensation 
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A

S1

S2

S3
C1

2

1

vs vout

voA

• AZ Amplifier

A
C

vout

A
C

vs vout

-Avn

(1)

Phase 1

Phase 2

-Avn

(1)



The ping-pong approach to reduce the B/fck ratio in AZ systems
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Simple example of circuital implementations: 
Closed-Loop Offset Compensation 
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• AZ Amplifier

Phase 1:

Phase 2:
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• CDS Amplifier

A

S1

S2

S3
C1

2

1

vs vout

voA

φ2-S

Vout
φ2-S

Simple example of circuital implementations: 
Open-Loop Offset Compensation 
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• CDS Amplifier

φ2-S

Vout

φ2-S

Simple example of circuital implementations: 
Closed-Loop Offset Compensation 

Vout



Simple example of circuital implementations 
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1

1

2

2

1

1

2

2
A voutLPF

vs

modulator demodulator

vin

• Chopper Amplifier

• A differential input and differential output facilitate the implementation 

of the modulator and demodulator, respectively (fully-differential 

amplifier)

• The amplifier gain cannot be arbitrarily high, otherwise the amplified 

offset could saturate the amplifier.  Typical values of A are < 1000



Finite input resistance of chopper amplifiers
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Input modulator Amplifier input
capacitance

Let us start from phase 1 …

Phase 2

Phase 1 again 

( ) 2
end start in in in

Q V V C V C∆ = − =

2
in in

Q V C∆ =

2
in in

Q V C∆ = 2
in in

Q V C∆ =

4
tot in in

Q V C∆ =

4
4in in

eq in in ck

V C
I V C f

T
= =

1

4

in

eq

eq in ck

V
R

I C f
= =(one period)



Residual offset
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1

1

2

2

1

1

2

2
A voutLPF

vs

modulator demodulator

vin

Residual: 
offset

2fckτVspike


