

Sensor Interface: directly connected to the sensor. Detects the typically small variations of the electrical quantity E_X and convert it into a voltage, if required.

Sensors that produce a voltage

Output electrical quantity	Sensor type	Input physical or chemical quantity to be sensed.					
		Temperature difference					
		Temperature					
	Thermoelectric sensors	Fluid flow rate					
		Infrared radiation (bolometers)					
		Gas concentration (catalytic sensors)					
	Electrochemical sensors	Ion concentration in electrolytes					
Voltage		Gas concentration (e.g "lambda					
		probes")					
		Magnetic Field					
	Hall sensors	Position (Proximity)					
		Current measurement					
	Diazo al astria son sons	Force (ac detection)					
		Acoustical pressure, acceleration.					

Sensors that produce a current or a charge

Output electrical quantity	Sensor type	Input physical or chemical quantity to be sensed.					
Current	Optical sensors (photodiodes)	Infrared,visibleandUltraviolet radiationImagersProximityOpacity (e.g. smoke detectors)					
	CCD imagers	Visible radiation					
Charge	High energy particle detectors	Ionizing radiation and particle detection					

Resistive sensors

Output electrical quantity	Sensor type	Input physical or chemical quantity to						
		be sensed						
Resistance	Thermistor and RTDs (Resistive Temperature Detectors)	TemperatureFluid flow ratesFluid velocity (e.g. hot wireanemometers)Gas concentration (catalytic sensors)Proximity						
	Piezo-resistors	Strain (strain gauges)Force (e.g. electronic scales)Pressure (barometers)AltitudeAcceleration						
	Chemi-resistors	Gas or vapor concentration						
	Magneto-resistors	Magnetic fieldProximityOrientation (e.g. electronic compass)						
	Photo resistors	Visible radiation						

Capacitive sensors

Output		Input physical or chemical quantity to be						
electrical	Sensor type	sensed.						
quantity								
Capacitance		Acceleration						
	Capacitive sensors (mechanical)	Angular velocity (gyroscopes)						
		Pressure						
	Capacitive sensors (chemical)	Gas concentration (e.g. humidity sensors)						

Frequently used sensor interfaces

Output quantity	Type of Interface	Notes
Voltage	Instrumentation Amplifier (In-Amp)	
Resistance	Instrumentation Amplifier	Resistors should be mounted in a Wheatstone bridge configuration or biased by a current.
	Trans-Impedance Amplifier (TIA)	Resistor must be biased with a voltage in order to produce a current
Current	Trans-Impedance Amplifier (TIA)	
Capacitance	Trans-Impedance Amplifier (TIA)	Converting capacitance into a current by means of a periodic voltage waveform
	Charge amplifier (switched capacitor)	
Charge	Charge amplifier (switched capacitors)	

Instrumentation Amplifiers (In-Amps)

Required features:

- Precise gain
- High input resistance

Other important features

- Differential input
- Low input referred offset voltage
- Low bias currents
- Low input referred voltage and current noise
- High CMRR (for differential amplifiers)
- Large bandwidth

In-amps: errors due to the input noise/offset voltage and currents

Total voltage noise expressions

Balanced source case ($R_{S1}=R_{S2}=R_{S}$)

$$v_{nt} = v_n + R_S(i_{B1} - i_{B2})$$

DC components:

 $v_{iot} = v_{io} + R_S I_{io}$

$$v_n = v_{io}$$
 $i_{b1} = I_{B1}; i_{b2} = I_{B2}; (i_{B1} - i_{B2}) = I_{B1} - I_{B2} = I_{io}$

Noise components: $v_n \Rightarrow S_{vn}$; $\begin{cases} i_{b1} = i_{n1} \Rightarrow S_{I1}(f) \\ i_{b2} = i_{n2} \Rightarrow S_{I2}(f) \end{cases} S_{I12}(f)$

$$S_{vnt} = S_{vn} + R_S^2 (S_{I1} + S_{I2} - 2S_{I1I2})$$

If i_{n1} and i_{n2} are uncorrelated and $S_{I1} = S_{I2} = S_I$:
$$S_{vnt} = S_{vn} + 2R_S^2 S_I$$

Discrete monolithic In-Amps

In-Amp with variable gain: Input and Output offset and noise

$$v_{n1} \qquad v_{n2} \qquad v_{n2} \qquad v_{out}$$

$$GAIN \qquad FD TO S/E$$

$$Typical two-stage architecture of In-amps \qquad G = A_1A_2$$

$$v_{n-out} = v_{n1}A_1A_2 + v_{n2}A_2 \qquad v_{nRTI} = \frac{v_{n-out}}{G} = v_{n1} + \frac{v_{n2}}{A_1}$$

$$Generally, A_2 = 1, \text{ thus:} \quad A_1 = G \qquad v_{nRTI} = v_{n1} + \frac{v_{n2}}{G} \qquad v_{n1} : \text{ input noise}$$

$$v_{n2} : \text{ output noise}$$

Three-Op-Amp Instrumentation Amplifier

AD 620

Figure 9. Current Noise Spectral Density vs. Frequenc

AD 620

AD620

GBW does not increase much beyond the G=10 case: BW affected by second stage Nearly constant GBW product: BW determined by first stage

AD620S1 AD620A AD620B Min Model Conditions Typ Max Min Typ Max Typ Max Units Min DYNAMIC RESPONSE Small Signal -3 dB Bandwidth G = 11000 1000 1000 kHz G = 10800 800 800 kHz Slew -Rate G = 100120 kHz 120 120 G = 1000kHz 12 1212 0.75 V/µs Slew Rate 1.2 0.75 1.21.2 0.7510 V Step Settling Time to 0.01% G = 1 - 10015 15 15 Us Settling times 150 G = 1000150 150 Us NOISE Output noise >> input noise Total RTI Noise = $\sqrt{(e^2_{ni}) + (e_{no}/G)^2}$ Voltage Noise, 1 kHz Broad-Band Noise: $\sqrt{S_{BB}}$ nV/\Hz Input, Voltage Noise, eni 9 13 0 13 13 nV/\Hz Output, Voltage Noise, eno 72 100 72100 72 100 RTI, 0.1 Hz to 10 Hz G = 13.0 μV p-p 3.0 3.06.0 6.0 G = 100.55 0.55 0.8 μV p-p 0.8 Broad-Band Noise: $\sqrt{S_{BB}}$ uV p-p G = 100 - 10000.280.280.4 fA/\Hz f = 1 kHzCurrent Noise 100 100 100 10 0.1 Hz to 10 Hz 10 pA p-p Current 10 Low Frequency Noise Low Frequency Noise Integrated over 0.1-10 Hz Integrated over 0.1-10 Hz P. Bruschi – Design of Mixed Signal Circuits 14

The effective input refe is a combination of the	rred offset (RTI) input and output off	set		AD 6	20		Input	offset					
VOLTAGE OFFSET Input Offset, V _{OSI} Over Temperature Average TC Output Offset, V _{OSO} Over Temperature Average TC	$ \begin{array}{l} (Total \ RTI \ Error = V_{OSI} + V_{OS$	oso/G)	30 0.3 400 5.0	125 185 1.0 1000 1500 2000 15		15 0.1 200 2.5	50 85 7.6 500 750 1000 7.0	Output o	30 12 30 1 22 2 0.3 1 400 10 12 20 5.0 15	25 25 0000 500 5	μV μV/°C μV/°C μV μV μV		
Offset Referred to the Input vs. Supply (PSR) G = 1 G = 10 G = 100 G = 100 G = 1000	$V_{S} = \pm 2.3 \text{ V}$ to $\pm 18 \text{ V}$	80 95 110 110	100 120 140 140	Tł su	ne input bi ich a sma ⁸⁰ 100 120 120	as cu II bias 100 120 140 140	rrent and current is	input offs s the resu 95 110 110	et curre It of int 100 120 140 140	ent are ernal b	similar ias cur dB dB dB dB dB	r, since rent car	ncellation
INPUT CURRENT Input Bias Current Over Temperature Average TC Input Offset Current Over Temperature Average TC			0.5 3.0 0.3 1.5	2.0 2.5 1.0 1.5		0.5 3.0 0.3 1.5	1.0 15 0.5 0.75		0.5 2 4 8.0 0.3 1. 2. 8.0	.0 .0	nA nA pA/°C nA nA pA/°C	_	
POWER SUPPLY Operating Range ⁴ Quiescent Current Over Temperature	$V_{\rm S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$	±2.3	0.9 1.1	±18 1.3 1.6	±2.3	0.9	±18 9 1.3 1 1.6	±2.3	0.9 1.1	±18 1.3 1.6	V n n	nA nA	

The AD 620 in-amp represents a good trade-off between input noise voltage, input bias currents and supply current (quiescent current)

Interfacing a sensor whose output is a current

(Norton equivalent circuit)

$$v_{out} = Z \cdot i_s$$

Goal: to obtain a voltage proportional to the sensor current

Z is a property of the interface and must be accurate. In many cases *Z* is a resistance

 $I_{\rm S}$ is the quantity to be read, since it contain the useful information

 $Z_{\rm S}$ is the unavoidable output impedance of the sensor. The ideal case is an infinite $Z_{\rm S}$ (ideal current source) The simplest solution

For sensor marked by small values of the Z_S impedance, finding a value of Z that satisfies both requirements is often impossible

A better interface: the Trans-Impedance Amplifier (TIA)

The op-amp based TIA

Ideal case (perfect virtual gnd)

$$V_{IN} = 0 \Longrightarrow Z_{IN} = 0$$
$$I_Z = i_S$$
$$v_A = -Z \cdot I_Z = -Z \cdot i_S$$

Sensitivity of the TIA stage (transimpedance)

$$k_{TIA} = \frac{v_{An}}{i_s} = -Z$$

TIA non-idealities

• Finite gain

'Z_s

Z_s

 π

 π

Í_s

 Z_T

I_s

• Finite input impedance

Typical dominant-pole frequency response

P. Bruschi – Microelectronic System Design

 V_A

 V_A

 \overline{m}

Ζ

1 + j - j $= \frac{Z}{1+A_0} \frac{f_p}{1+j\frac{f}{c}}$

$$f_0 \cong A_0 f_p \cong \left(1 + A_0\right) f_p$$

 f_0 is defined as the frequency at which the amplifier gain magnitude is unity (0 dB)

TIA input impedance

Error due to the finite input impedance: (1) error on I_z

Ideal case: $V_A = -Z \cdot I_S$

Error due to the finite input impedance: (2) error due to $V_{IN} \neq 0$

TIA non-ideality: Noise and offset

Effect of i_n and V_{nR}

Effect of the voltage source

Total output noise voltage and input referred noise current

TIA used to read capacitive sensors

Differential capacitive sensor

physical quantity to be sensed $C_X = C_0 + f(X)$ Balanced differential sensor $C_R = C_0 - f(X)$ (e.g. MEMS accelerometer) $C_X = C_0 + f(X)$ Pseudo differential sensor (e.g. pressure sensor) $C_R = C_0$

C₀ is typically a large capacitance which does not vary with X, but is widely affected by process spread and often depends on temperature

The interface must read: $\Delta C = C_X - C_R$

Transformation of ΔC into a current

Use of the TIA to read current I_{s}

Substituting the Norton equivalent circuit to the sensor, we have the usual TIA configuration, with Z=R

$$v_A(t) = -R \cdot i_S(t) = -\Delta C(t) \cdot RV_{SM} \omega_S \sin(\omega_S t)$$

The useful signal $\Delta C(t)$ is modulated by sin($\omega_{s}t$):

Demodulation is required to extract $\Delta C(t)$

Synchronous demodulation allows detecting also the sign of $\Delta C(t)$

A few general considerations

Brief mention to TIA stability issues

P. Bruschi – Microelectronic System Design