
Practical Rules for noise calculations
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Amplifier noise spectrum in logarithmic axes
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Total rms noise in the signal bandwidth
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Flicker noise for signal bands that include dc

P. Bruschi – Microelectronic System Design 4

max

min

max

min

( ) ln
f

XF F
f

f
S f df k

f

 
  

 
 If fmin =0, the integral is infinity

Many signals of interest include dc. This is true 

for practically most signals  produced by sensors 

like temperature, pressure, acceleration etc.

The solution to this paradox is that, in practical cases,  speaking of 

a real dc component is meaningless, since it would be constant 

across an infinite interval of time.

For every practical scenario, there is always a finite “observation 

time period”, across which we require a signal to be constant to 

state that this is a dc component. 
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Flicker noise for signal bands that include dc
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Then, we use the flicker noise expression: 

with

Where Tobs is the observation time.  

If the signal band includes dc, we generally set Tobs = 10s-100s, 

resulting in fmin= 0.1-0.01 Hz. 



Example
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f
S f df k n  Specifications: fmax=1kHz, fmin=0 (dc)

For Tobs=100 s, fmin=0.01 Hz ndec=5

For Tobs=105 s (> 1 day)  s, fmin=10 mHz ndec=8

The flicker 

component to <(xn)
2>

is increased by 60% 

and the rms

component by 26%

In terms of resolution, this is quite a negligible increase. To have an 

increase of 1 unit in the ENOB associated to the DR we need an 

increase of 100 % in xrms , i.e. a factor of 4 in <(xn)
2> . The presence 

of a significant contribution from SXBB makes this flicker increment 

even less important.  

The choice of Tobs (fmin) is not critical !



Something more about the broad-band component
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SXBB has units [X]2/Hz  where [X] are the units of quantity X.

For example if X is a voltage, we have V2/Hz

This is not the specification that is generally used in practical cases

(e.g. amplifier datasheets). 

XS

What is generally given, is the square root of the PSD: 

Units: [ ] /X Hz



Example
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/nV Hz

or nV/sqrt(Hz)

«noise density» 

(instead of :

noise power spectral density)

XS



Practical rms noise calculation: 
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It is sufficient that one of the 

two contribution is 5 times 

smaller than

the other to get practically 

negligible (with a 2 % error)



Example
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Schematic two-sided representation of amplifier noise
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Total additive error: offset + noise

xio is a stationary, non-ergodic

stochastic process.

Noise and offset are independent 

processes 
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Generalized spectrum that 

represents noise and offset 

together



Modulation of a stochastic process
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Stationary 

stochastic process

(e.g. noise)

Modulating signal (e.g. local oscillator)

Modulated

process

If ym is a periodic 

deterministic signal, 

Z(t) is generally no more a 

stationary process

The auto-correlation function

is no more a simple function of

the delay  and a PSD cannot be

calculated 

We can consider ym a stochastic 

process by adding some randomness. 

It is sufficient to introduce a random 

delay to make z(t) stationary. Or we can 

refer to the formalism of cyclostationary

processes  

But ...



Modulation of stochastic processes
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Discrete-time (DT) and continuous-time (CT) signals
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CT signal

…. and their Fourier transform

Even band-limited 

signals have a Fourier 

transform that extends

to infinity

DT signal



DT signals from sampling of CT signals
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Place a replica of 

the original 

spectrum across 

each multiple of fS

Add the replicas 

only across the 

DT frequency 

interval 



CT signals from DT ones
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• Reconstruction with 

delta functions d(t)
• Hold - reconstruction

For our purposes, we are interested in:

Replicas are 

multiplied by 
�

�



DT-CT reconstruction with an arbitrary pulse
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Theoretical (non real) process

( )x t

replicate and 

multiply by 1/T 

multiply by H(f)

H(f)

H(f)



Hold reconstruction
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Reconstruction pulse
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It is the simpler way to convert a 

digital signal (data sequence)  into 

an analog one by means of a DAC
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Hold - reconstruction: summary
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Start from the 

discrete time 

fourier transform

Replicate the spectrum 

(non scaled) across 

any multiple of fs

1

Multiply by:  sincj fTe fT 



Sampling and holding a stochastic process
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The procedure is similar 

to the case of a 

deterministic signal but 

for a stochastic process it 

is the PSD to be involved

PSD of the CT 

stochastic process

The PSD is 

replicated and 

the replicas are 

added

Only the spectrum 

in the –fS/2, +fS/2 

interval is retained 



Reconstruction by hold-operation
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1

 2 2( ) =sincH s fTPSD of the DT 

stochastic process

Replicate 

with fs step

multiply by


