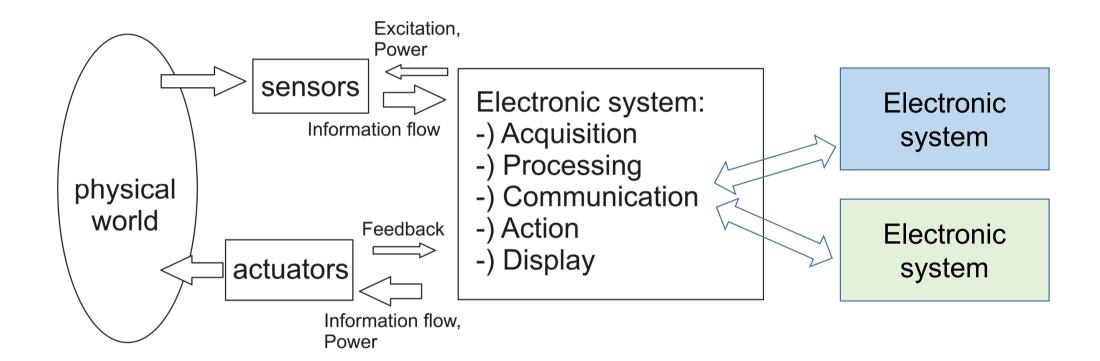
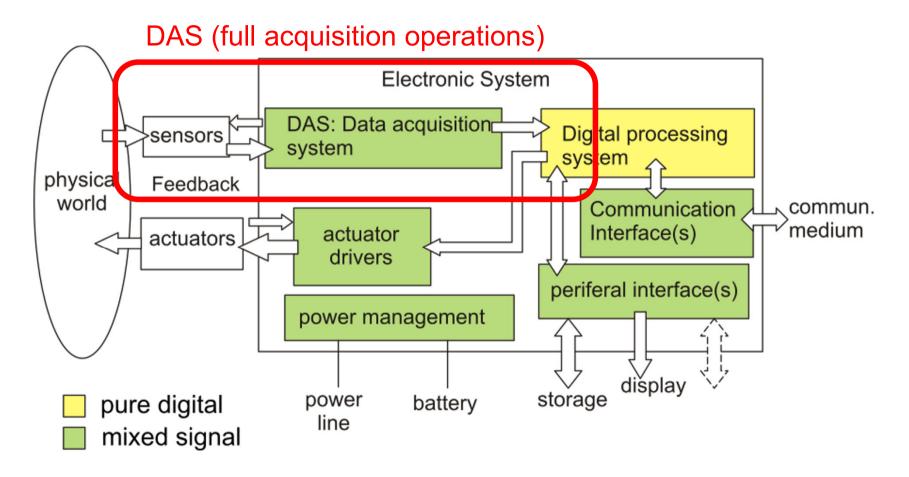
DAS: Data Acquisition Systems

- A DAS is required to allow an electronic system to get information on the external environment
- The development of extremely miniaturized DASs capable of detecting a large number of different and inhomogeneous quantities is currently urged by emerging fields, such as robotics, security and health care.
- This is giving a significant contribution to the request for analog and mixed signal integrated SoCs
- The design of a DAS involve architectures and specifications that recur in many other branches of analog and mixed signal microelectronic circuits.

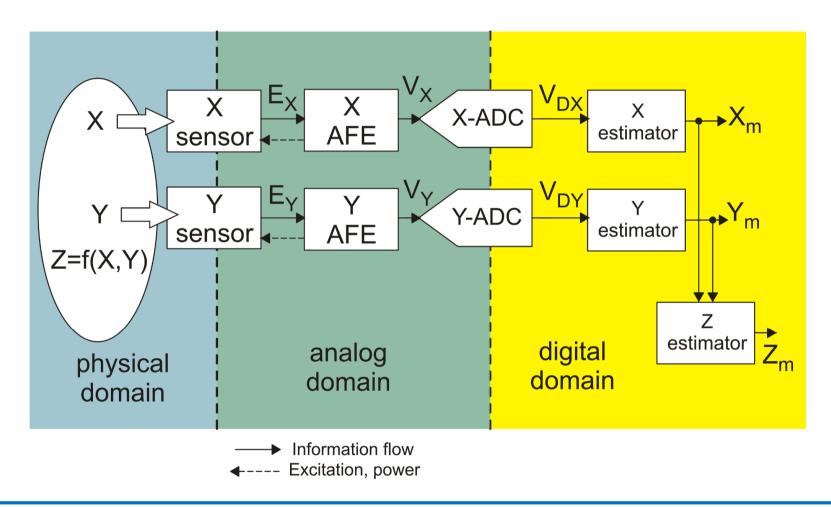
The electronic system and the environment



Main blocks of an Electronic System



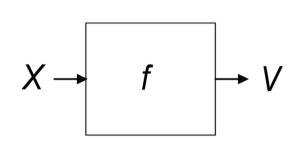
Elements of a DAS: a two-channel case



Signal classification on the basis of quantization

Magnitude	Time	
digital signals	discrete time	
analog signals	discrete time	
	continuous time	

Errors on the ideal transfer function



Nominal (ideal) case: V = f(X)

f Once V is known, X can be known exactly:
$$X = g(V) \quad g(x) = f^{-1}(x) \text{ (inverse function)}$$

Real case: $V = f(X) - V_{\varepsilon}(X)$

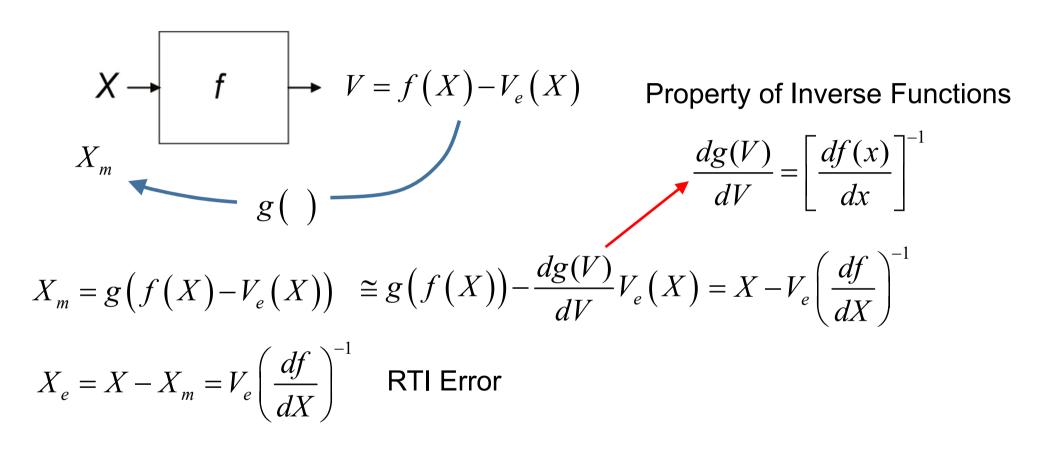
$$V_{\varepsilon}(X)$$
 is the **output error** defined as: $V_{ideal} - V$ $V_{ideal} = f(X)$

In an acquisition system, the error is not known in a deterministic way.

To find the input quantity (X) we can only apply the inverse of the nominal transfer function to the real output quantity (we do not know the real t.f.):

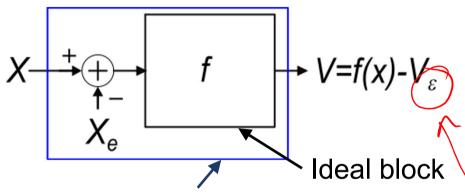
$$X_{m} = g(V) = g(f(X) - V_{\varepsilon}(X))$$

RTI (Referred to Input) Error



RTI Error: Equivalent block diagram for small errors

If the first order approximation that we have seen holds, it is possible to use the following equivalent representation:



Equivalent representation of the real block

 X_e is the value of the if: f(0) = 0 input quantity X that nulls the output

Verification:

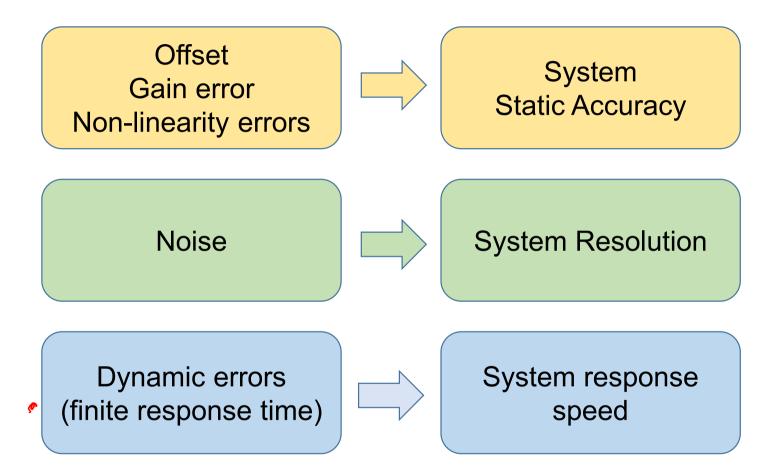
$$V = f(X - X_e) \cong f(X) - \left(\frac{df}{dX}\right) X_e$$
since: $X_e = V_e \left(\frac{df}{dX}\right)^{-1}$

 $V \cong f(X) - V_e$

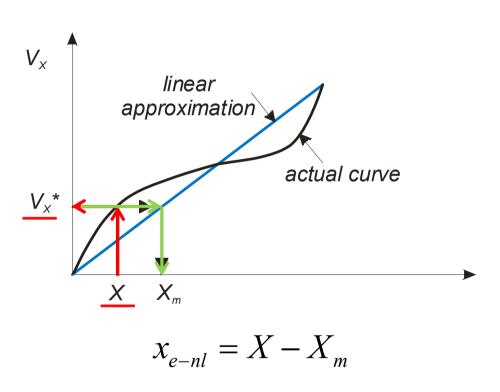
Then, the equivalent block behaves as the real block

In this case, the do value of Xe is the input offset

System performance vs type of errors

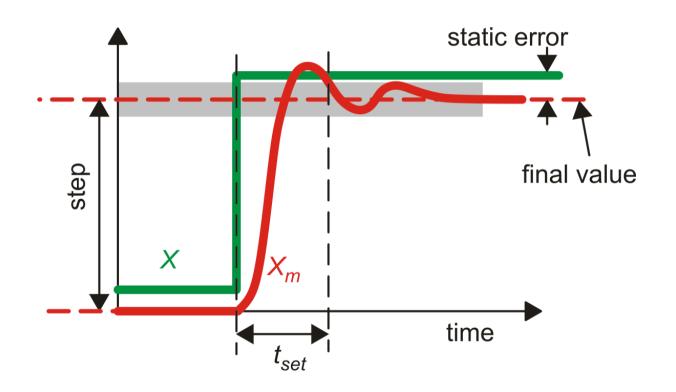


Non-linearity errors



- Generally, the maximum nonlinearity error in the whole range of the input quantity X is indicated in the specifications
- If the non-linear curve is well reproducible, the non-linearity error can be compensated for by means of a non-linear estimator.
- For random non-linearities, individual multi-point trimming is necessary.

Dynamic errors



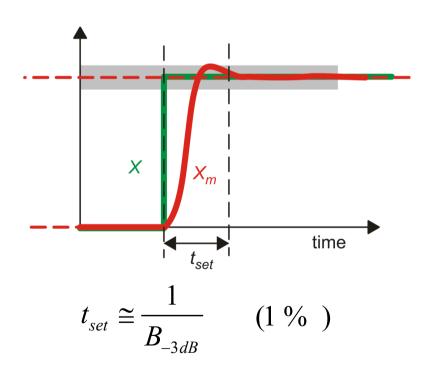
Settling time t_{set}:
Time required to have the output voltage stay close to the final value within a given relative error

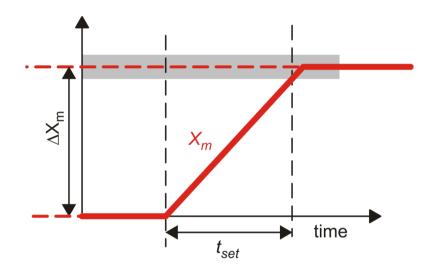
Typical error specs: 1 % (low accuracy) 0.01 % (high accuracy)

Linear time and slew-rate time

Linear-time only (all stages behave linearly)

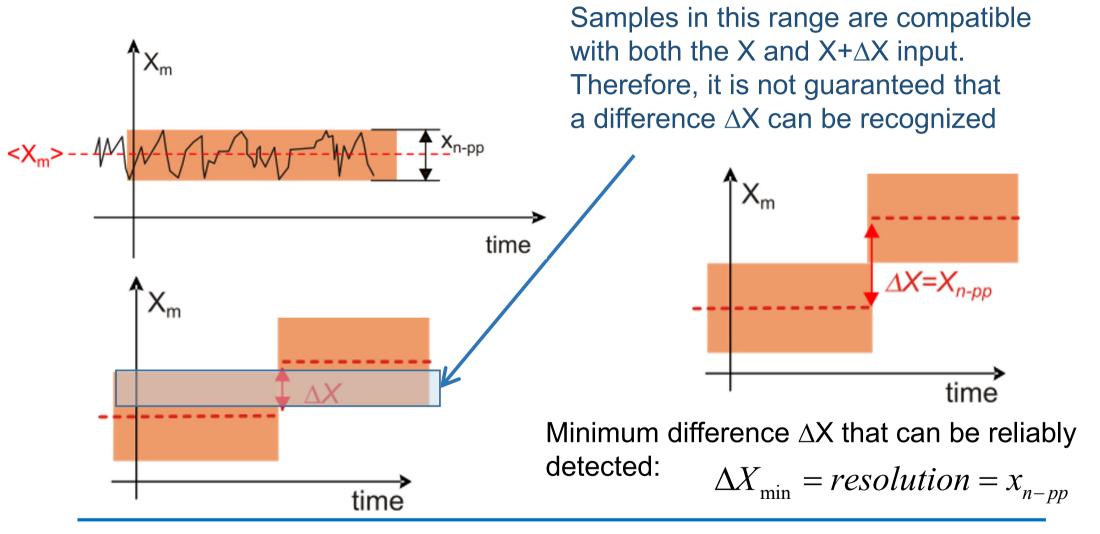
Slew-rate only (most of the transition time at least one stage is saturated)



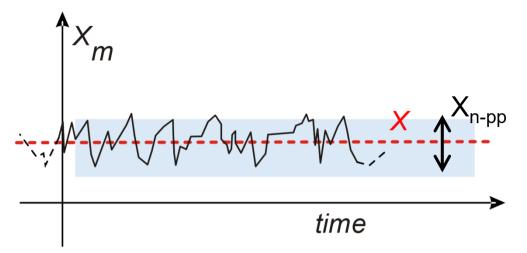


$$t_{set} \cong \frac{0.99 \cdot \Delta X_m}{S_r} \cong \frac{\Delta X_m}{S_r} \cong \frac{\Delta X}{S_r}$$

Noise and resolution



Noise: peak-to-peak, rms and standard deviation



$$x_{n-pp} = 2x_{n-p} = 2c_f x_{n-rms}$$

 C_f = crest factor

$$x_{n-rms} = \sqrt{\langle x_n^2 \rangle} = \sqrt{\int_{f_{\min}}^{f_{\max}} S_{xn}(f) df}$$
 For gaussian noise

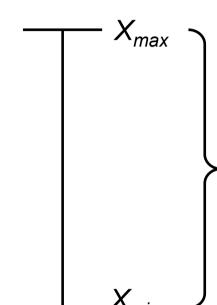
If we sample the noise x_n , then the standard deviation of the samples is:

$$\sigma_X = \sqrt{\left\langle \left(x_n - x_{n-\mu} \right)^2 \right\rangle} = x_{rms}$$

Interval	Total interval width (x_{np-p})	Probability	1 – probability
±σ	2 σ	0.683 (68.3 %)	0.317
±2σ	4 σ	0.954 (95.4%)	0.046
±3σ	6 σ	0.997 (99.7%)	0.003
±4σ	8 σ	0.999936 (99.9936%)	6.4×10 ⁻⁵

Our choice:
$$x_{n-pp} \cong 4\sigma_X = 4x_{rms}$$

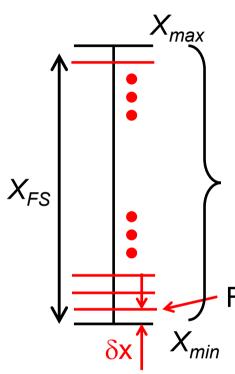
The Dynamic Range (DR)



$$DR \equiv \frac{\Delta X_{FS}}{\delta X}$$

 δx generally is the resolution

DR and maximum number of significant levels



$$DR \equiv \frac{\Delta X_{FS}}{\delta X}$$

Number of distinguishable levels = DR

The presence of noise cause a sort of quantization of the analog signal, at least in terms of usable levels

Fist level that the system can distinguish from X_{min}