Offset compensation using an additional input port

$$V_{i1} = V_{out} = A (V_{i1} - v_n) + BV_{i2}$$

AZ compensation:

 V_{i1} is the input signal port, V_{i2} is the offset calibration port

(offset and noise are referred to the input signal port)

1

 $\frac{V_{out}}{V_{out}} V_{out}(t) = -Av_n(t) - BV_{out}(t) \implies V_{out}(t) = -\frac{A}{1+B}v_n(t)$ $V_{C_H}(t) = V_{out}(t)$ $v_{n-eff}(t)$ Phase 2: $V_{out}(t) = A \left(V_{in}^{+}(t) - V_{in}^{-}(t) - v_{n}(t) \right) - B V_{C_{II}}^{(1)} \implies V_{out}(t) \simeq A \left(V_{in}^{+}(t) - V_{in}^{-}(t) - \left(v_{n}(t) - v_{n}^{(1)} \right) \right)$

Continuous-time AZ amplifiers

Commercial Zero-Drift Operational Amplifiers based on AZ (AD8551, TLC2654, OPA335...)

a. Auto-Zero Phase A: null amplifier nulls its own offset.

b. Output Phase B: null amplifier nulls the main amplifier offset.

Commercial Zero-Drift Operational Amplifiers based on AZ (AD8551)

 $f_{AZ} = 4 \text{ kHz}$

Commercial Zero-Drift Operational Amplifiers based on AZ (AD8551, TLC2654, OPA335...)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
POWER SUPPLY	ĺ	1				
Power Supply Rejection Ratio	PSRR	Vs = 2.7 V to 5.5 V	120	130		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	115	130		dB
Supply Current/Amplifier	ISY	$V_{\rm O} = 0 V$		850	975	μA
		-40°C ≤ T _A ≤ +125°C		1000	1075	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 k\Omega$		0.4		V/µs
Overload Recovery Time				0.05	0.3	ms
Gain Bandwidth Product	GBP			1.5		MHz
NOISE PERFORMANCE					•	
Voltage Noise	en p-p	0 Hz to 10 Hz		1.0		μV p-p
	en p-p	0 Hz to 1 Hz		0.32		µV р-р
Voltage Noise Density	en	f = 1 kHz		42		nV/√Hz
Current Noise Density	İn	f = 10 Hz		2	_	fA/√Hz

Chopper Amplifier

$$v_{n-out} = A_1 A_2 v_{n1} + A_2 v_{n2}$$

$$v_{n-eff} = v_{n1} + \frac{v_{n2}}{A_1}$$

RTI offset of the second stage is attenuated by A_1

We can apply CHS only to the first stage and use the second stage as 1° order LPF (e.g. Miller Compensation)

Offset ripple is too large to be rejected by a 1° order LPF

* Y. Jusuda, "Auto Correction Feedback for Ripple Suppression in a Chopper Amplifier" – IEEE JSSC 2010

Auto-Correction Feedback for Ripple Suppression*

* Y. Jusuda, "Auto Correction Feedback for Ripple Suppression in a Chopper Amplifier" – IEEE JSSC 2010

Commercial Zero-Drift Operational Amplifiers based on CHS (ADA4051)

P. Bruschi – Microelectronic System Design

Commercial Zero-Drift Operational Amplifiers based on CHS (ADA4051)

Commercial Zero-Drift Operational Amplifiers based on CHS (ADA4051)

Symbol	rest Conditions/Comments	Min	Тур	Max	Unit
			·		
PSRR	$1.8 \text{ V} \leq \text{V}_{\text{SY}} \leq 5.5 \text{ V}$	110	135		dB
	$-40^{\circ}C \le T_A \le +125^{\circ}C$	106			dB
Isy					
	Vout = Vsy/2		13	17	μA
	$V_{OUT} = V_{SY}/2$		15	18	μA
	$-40^{\circ}C \le T_A \le +125^{\circ}C$			20	μA
SR+	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $G = 1$		0.04		V/µs
SR–	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}, G = 1$		0.03		V/µs
ts	To 0.1%, V _{IN} = 1 V p-p, RL = 10 kΩ, CL = 100 pF		120		μs
GBP	$C_L = 100 \text{ pF}, \text{G} = 1$		115		kHz
Фм	C _L = 100 pF, G = 1		40		Degrees
CS	$V_{IN} = 1.7 V$, f = 100 Hz		140		dB
-		-		-	-
e _n p-p	f = 0.1 Hz to 10 Hz		1.96		uV p-p
	f = 1 kHz		95		nV/ _v /Hz
İn	f = 1 kHz		100		fA/√Hz
	PSRR Isy SR+ SR- ts GBP ØM CS en p-p en in	$\begin{array}{c c} PSRR & 1.8 \ V \leq V_{SY} \leq 5.5 \ V \\ -40^{\circ}C \leq T_A \leq +125^{\circ}C \\ \hline V_{OUT} = V_{SY}/2 \\ V_{OUT} = V_{SY}/2 \\ -40^{\circ}C \leq T_A \leq +125^{\circ}C \\ \hline SR+ & R_L = 10 \ k\Omega, \ C_L = 100 \ pF, \ G = 1 \\ SR- & R_L = 10 \ k\Omega, \ C_L = 100 \ pF, \ G = 1 \\ To \ 0.1\%, \ V_{IN} = 1 \ V \ p-p, \\ R_L = 10 \ k\Omega, \ C_L = 100 \ pF \\ GBP & C_L = 100 \ pF, \ G = 1 \\ \hline \Phi_M & C_L = 100 \ pF, \ G = 1 \\ \hline CS & V_{IN} = 1.7 \ V, \ f = 100 \ Hz \\ \hline e_n & f = 1 \ kHz \\ i_n & f = 1 \ kHz \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $