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1 Three network analysis methods useful for the design of 

analog circuits.  

1.1 Effects of device parameter change on the network DC solution 

Device parameters are generally different from the nominal values, due to process spread, temperature, 

variations and ageing. It is important to estimate the effect of parameter changes on the network 

response and performance. Here we will focus on the effect of parameter changes on the DC solution of 

a non-linear network. For a more general theory, see Ref.[1]. Typical application of this study is the 

estimation of the offset and offset drift of an amplifier. Other useful applications are in the world of 

sensors, where it is very common that the quantity to be sensed is detected through the variation of a 

device parameters (e.g. a resistance variation in resistive sensors). It should be pointed out that this 

study requires that the parameter variations are small. We will refer to the case shown in Fig.Error! 

Use the Home tab to apply Titolo 1 to the text that you want to appear here..1, where we are 

considering the effect of changes in the electrical parameter of a non-linear two-port network (Q) 

connected to a non linear sub-network (N).  

 

Sub-Network (N)

Two port net. 
(Q)

Network 

 

 

Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..1 Extraction of a two-port 

network (Q) from the original network. 

 

The solution complete network is determined by the following equation sets 

 

 
 
 

 
 
















2122

2111

2122

2111

,

,
:N

,,

,,
:Q

VVgI

VVgI

PVVfI

PVVfI
 (1.1) 

 

where the sets Q and N are related to the two port network and sub-network, respectively. Functions f 

and g are generally non-linear. Furthermore, we have considered that the behavior of Q is affected by a 

parameter indicated with P. Generalization to a larger number of parameters is straightforward. We will 



P. Bruschi:  Notes on Mixed Signal Design   App. 3.2 

 

2 

 

try to understand what happens to the network solution when parameter P changes from P0 to P0+P. 

We will suppose that P is small enough that, when P changes from P0 to P0+P the voltage and 

current variations induced in the network are so small that a linearization of both Q and N equation sets 

is possible. In other words, we can use the small signal equivalent circuits to study the effect of P.  

Then we can write: 
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where, as customary, lowercase symbols (i.e. i1, v1 etc.) indicates small signal quantities. Since P is a 

known quantity, the linear equation set has four unknowns and, except for degenerate cases, since we 

have also four equations, there is only a single solution. Eqns. (1.2) show that the effect of the 

parameter variation is that of adding constant terms that, in the Y parameters schematization of the two 

port network, are constant currents. In different models of the two port network, such as z or h (hybrid) 

parameters, the constant terms can be represented either as currents or voltages.  

 

 

 

Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..2 Small signal equivalent 

circuit of the two-port network (dc y-parameters) 

 

The effect, for the Y parameter schematization, is shown in Fig.Error! Use the Home tab to apply 

Titolo 1 to the text that you want to appear here..2, where two independent current sources i1p and 

i2p are added to the original small signal equivalent circuit. Considering Eqns. (1.2), the value of the 

current sources is: 
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where the derivatives are calculated at the rest point.  

Example 1: ideal resistor.  

Let us consider a resistor of value R. Suppose that the resistor changes from its nominal value (R) to 

R+R. Let us calculate the effect on the DC solution of the rest of the network.  

The resistor can be considered a reduced case of two-port network, with f1=V1/R and f2=0, represented 

in Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..3 (left). 

The equivalent Y parameters small signal circuit of the ideal resistor is that of Fig.Error! Use the 

Home tab to apply Titolo 1 to the text that you want to appear here..2, where only the conductance 

gi=1/R and the current i1P are present. From Eqns. (1.3) we obtain: 
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Therefore, in order to obtain the variations induced on the whole network by the resistance variation 

(R), we can add a current i1P  in parallel to resistor R and use for the subnet its small signal equivalent 

circuit (Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..3, 

middle). Alternatively, it is possible to obtain a Thevenin equivalent of the R/i1P parallel, where the 

Thevenin voltage is  -i1PR= RV1/R = IR, where I is the rest point current flowing through R 

(Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..3, right).  
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Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..3 Application of the method to 

a two-port network consisting of a single resistor 
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Example 2: MOSFET.  

In this example, we are interested in calculating the effects of variations of MOSFET parameters on the 

DC solution of the network where the MOSFET is included. Using the square law approximation of the 

MOSFET drain current in saturation region and neglecting the effect of the VDS we have the following 

analytical representation of the MOSFET as a non-linear two-port network: 
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MOSFET  (1.5) 

As a consequence of variation of both  and Vt (parameters) we obtain that the effects on the network 

can be calculated using small signal circuits for both the MOSFET and the rest of the network and 

adding a current in parallel to port 2 (Drain-Source) equal to: 
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By simple transformations, it is possible to obtain the compact formula: 
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where ID is the quiescent drain current of the nominal circuit.  

Example 3: Matched devices. 

Equations (1.4) and (1.7) give the value of the current sources to be added to a resistor and a MOSFET, 

respectively, in order to take into account the effects produced by parameter variations. The latter may 

have different origins, for example temperature variations or process spread. Parameter variations can 

be very large when a single device is considered. In the case of a MOSFET, the relative variation of the 

parameter  can be as large as ±20 % of the nominal value while the threshold voltage Vt may vary of 

up to ± 100 mV. Clearly, the effects on the DC solution can be very large, resulting, for example, on 

very large amplifier offset voltages. In order to prevent this to occur, a proper design should be based 

on matched devices. For the sake of simplicity, we will consider here that matched devices satisfy the 

following conditions: 

 

1. the two device are nominally identical; 

2. the bias conditions (quiescent currents and voltages) are identical  

3. the transfer functions that tie the quantity of the interest for the circuit (for example the output 

voltage of an amplifier) to the parametric currents of the two devices (iP1 and iP2) are opposite.  
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For example, if the two matched devices are MOSFET they should be nominally identical and be 

biased with same nominal VGS, VDS and VBS). The important characteristics of matched devices is the 

fact that their parameter variations are very similar.  

 

Let us indicate a generic parameter (R, , Vt in the two previous examples) with P, and use the 

following conventions: 

 PN=nominal value of matched devices 1 and 2 

 P1; P2: real value of parameter P for device 1 and 2, respectively.    

Then: 

     2,1121212 PPPPPPPPP NN   (1.8) 

This obvious expression shows that the difference between the parameter variations P2 and P1 of 

two devices that share the same nominal value (PN) is equal to the parameter difference between the 

two devices (P1,2). In matched devices, although P1 and P2 can be singularly large, the difference 

P1,2 (commonly indicated with “parameter mismatch”, or “matching error”) is generally much smaller 

(of the order of 1% for many quantity of interest). Due to the third condition of matched devices, the 

two parametric currents ID1 and ID2 produce effects on the quantity of interest through two opposite 

transfer functions, which have indicated with -F and F, respectively, in Fig.Error! Use the Home tab 

to apply Titolo 1 to the text that you want to appear here..4 In the example of Fig.Error! Use the 

Home tab to apply Titolo 1 to the text that you want to appear here..4, the quantity of interest is 

Vout.  

 

VOUTMatched
Devices

Transfer Function F

Transfer Function F

I
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I
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  2,112 DDDOUT IFIIFV 

 

 

Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..4. Graphical representation of 

a matched pair 

 

The variation produced by the combination of parameter variations of both matched devices is then 

given by: 
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   2,112 DDDout IIIFV   (1.9) 

Using (1.8) and (1.9), we easily find: 
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where ID and VGS-Vt refer to the nominal solution of the network, while the following definitions have 

been used:  
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As we have seen, the difference between the parameters of two matched devices (i.e., the matching 

error) is much smaller than the individual parameter variations with respect to the nominal value. Then, 

on average, the following relationships apply: 
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 (1.12) 

Considering (1.9) and (1.10), which include only matching error, we can easily understand that the 

simultaneous effect on the output voltage of two matched devices is much smaller than the effect of 

parameter variations of the individual devices. Then, in a good design, all critical devices (i.e. those 

devices whose parameter variations has large effects on the output voltage) should appear in the circuit 

as matched pair, instead as single devices. In a differential amplifier, this is the case of the input 

devices (source coupled differential pair) and their load devices.  

 

1.2 Generalized Norton equivalent circuit obtained by probing a nonlinear 

network by means of an ideal voltage source. 

Consider a network that may include non-linear elements and DC sources (currents and voltages). For 

example, such a network may represent the rest point for an amplifier, or a situation of the same 

amplifier in presence of a constant DC input. Let us consider two nodes of the network, indicated with 

H and K in Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..5. For simplicity, we will indicate these nodes as “output nodes” of the network. We probe the 

network by connecting an ideal voltage source (V) across H and K, as symbolically indicated in 

Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..5.  
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Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..5. Probing a non-linear 

network by connecting a test voltage source (V) across a pair of nodes.  

 

As a first test we set voltage V to a constant value VB and we measure the current ISC (short circuit 

current) flowing from the source to the network, as shown in Fig.Error! Use the Home tab to apply 

Titolo 1 to the text that you want to appear here..6 (a). Note that voltage VB can be substantially 

different from the voltage present across H and K before the application of the source V. Clearly, in the 

particular case that VB is equal to the rest point voltage, the current ISC is zero. If VB is different from 

the rest point voltage, a non-zero current ISC would probably flow as a reaction for forcing the voltage 

VHK to assume the value VB.  

 

 

Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..6. (a) Short circuit current 

definition; (b) voltage increment used to evaluate the output resistance.  

 

After that, we modify VB by applying an increment VB, as shown in Fig.Error! Use the Home tab to 

apply Titolo 1 to the text that you want to appear here..6(b), producing an increment of the current 

ISC, indicated with ISC. If, for a certain interval of voltages of the source V, the relationship between 

ISC and VB is linear, then the network seen from nodes K and H can be modeled by the circuit in 

Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..7, where 

Rout is equal to: 
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Note the output resistance Rout coincides with the differential (i.e. small signal) resistance seen by the 

source V, around the rest point of the network obtained by connecting the voltage source V=VB, as in 

Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..6(a). The 

minus sign in front of the term ISC in (1), derives from the conventional sign of current ISC in 

Figs.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..6(a) and 

Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..6(b).   

 

 

 

Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..7. Generalized Norton 

equivalent of the network.  

 

This point can be easily demonstrated by repeating the tests of Fig.Error! Use the Home tab to apply 

Titolo 1 to the text that you want to appear here..6(a) and Error! Use the Home tab to apply 

Titolo 1 to the text that you want to appear here..6(b) using the equivalent circuit of Fig.Error! Use 

the Home tab to apply Titolo 1 to the text that you want to appear here..7. In the first case, the 

voltage across Rout is zero so that no current flows through the resistor. Then the current flowing from 

the source is just ISC. In the case of the second test, depicted in Fig.Error! Use the Home tab to apply 

Titolo 1 to the text that you want to appear here..6(b), the increment VB is applied across Rout, so 

that the total current is: 
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Thus, the equivalence has been demonstrated to be valid for all voltages VHK for which the differential 

resistance seen across terminal H,K (Rout) is a constant. 

Removing the voltage source (terminals H-K open), the output voltage VH-VK becomes: 
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 SCoutBHK IRVV   (1.15) 

 

If the VHK value found in this way is within the range of output voltages where Rout is constant, then this 

is an acceptable approximation of the real solution. Otherwise, the estimate obtained with (1.15) can 

still be useful to understand if the output voltage exceeds the lower or higher bound of the linearity 

range. In the case of an amplifier, this means that the output is saturated (high or low). Furthermore, if 

the short circuit current can be controlled by some design parameters, it is possible to use (1.15) to 

calculate the ISC value required to obtain a certain output voltage that belongs to the output linearity 

range.  

1.3 Application of the cut-insertion theorem to the design of closed loop, op-amp 

based networks. 

Ideal block diagrams of feedback systems. 

Figure Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..8 

shows a typical block diagram used in control theory to model feedback systems. All blocks are ideal 

and unidirectional. The names inside the block symbols (e.g. “A”) identifies both the block name and 

transfer function. By simple calculations: 
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When |A| tends to infinity, Vout/Vs tends to -/. In order to obtain a reliable overall transfer function, 

individual transfer functions  and  must be reliable, i.e. they should be designed to have as small as 

possible temperature coefficients, reduced dependence on process variations and high time stability. On 

the other hand, block A (amplifier) should exhibit high gain (to guarantee an high |A| value, since 

generally 1 ), and provide the required power to drive the load.  
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Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..8. Typical block diagram used 

in control theory 

 

Equation (1.16) can be re-written as: 
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where the rightmost approximation holds when |A|>>1. Eq.(1.17) gives an estimate of the relative 

error with respect to the ideal transfer function (-/): 

 

 
1
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AL   (1.18) 

 

For example, if we need to design a closed loop transfer function such that AL=1 (unity gain amplifier 

or buffer), we simply can make =1, =1. Then, if we require an accuracy better than 1%, we simply 

have to guarantee that A>100. Similarly, it can be shown that to get the same accuracy (1%) but with 

an overall gain of 100 (e.g. =1, =0.01), we need a block “A” with at least a gain of 104. The 

requirement onA| deriving from the relative error specification through (1.18) should clearly hold 

over the whole frequency interval of interest.  

 

Feedback systems in the electrical domain. 

 

When dealing with real electrical networks, the analysis is more complicated, since signals are 

embodied by voltages and/or currents that should satisfy Kirchhoff laws: blocks are often bidirectional 

and loading effects occur when blocks are connected. Figure Error! Use the Home tab to apply 

Titolo 1 to the text that you want to appear here..9(a) shows a typical implementation of the system 

of Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..8 using 

electrical blocks.  
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Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..9. (a) Implementation of the 

block diagram of Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..8 in the 

electrical domain; (b) definition of the Feedback network transfer functions.   

 

In Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..9(b), 

the amplifier have been disconnected from the feedback network in order to measure the individual 

transfer functions of the blocks. Let us indicate with N and N the transfer functions from the input 

and output ports, I and O, respectively, to the error port (E) of the feedback network and with AOL the 

amplifier gain. These transfer functions, illustrated in Fig.Error! Use the Home tab to apply Titolo 1 

to the text that you want to appear here..9(b), are defined by:  
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It would be desirable to model the circuit of Fig.Error! Use the Home tab to apply Titolo 1 to the 

text that you want to appear here..9(a) with the block diagram of Fig.Error! Use the Home tab to 

apply Titolo 1 to the text that you want to appear here..8, where =N, =N and A=AOL, so that 

Eqns. (1.16-1.18) would be applicable. Unfortunately, such a simple schematization is not correct 

since: 

 

 The amplifier gain depends on the loading effect of the feedback network. 

 The feedback network transfer functions, calculated with the amplifier unconnected as in 

Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..9(b), are different from the actual transfer functions occurring in the closed loop circuit of 

Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..9(a).  

 Blocks are not unidirectional.  

 

A possible approach is given by the method introduced by B. Pellegrini and described in refs.[2,3], 

denominated also Pellegrini’s cut-insertion theorem [4,5], by which it is possible to obtain the network 

of Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..10, 

where the following network transfer functions can be defined: 
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It can be shown [2-4] that the network of Fig.Error! Use the Home tab to apply Titolo 1 to the text 

that you want to appear here..10 is equivalent to the original network in Fig.Error! Use the Home 

tab to apply Titolo 1 to the text that you want to appear here..9(a)  

if vr=vp and ir=ip , which require that the following conditions hold true: 
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Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..10. Application of the cut-

insertion method to the network of Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..9.  

In these conditions, the overall closed loop transfer function of the network is given by: 

 

 







1A
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v

v

s

out    (1.22) 

 

Equation, (1.22) is very similar to (1.16), except for the term , which represents a feed-forward path 

for the signal vs . This approach constitutes a powerful method for the analysis of the network, since it 

allows splitting the overall transfer function into simpler network functions. The study of the system 

stability is also much facilitated. Complications might arise from the calculation of Zp, but, in most 
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practical cases, the amplifier can be generally approximated as a unidirectional block, so that =0, and 

Zp is simply the input impedance of the amplifier.  

In order to exploit the significant simplification offered by the cut-insertion theorem also for design 

purposes, the following conditions would be desirable: 

 

 the feed-forward term  should be negligible, since it introduces an error, with respect to the 

nominal –/ transfer function, whose magnitude is not affected by the A term.  

 the network functions  and  should coincide with N and N, respectively, calculated as in 

Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..9(b), in order to greatly simplify the design of the feedback network and make it as 

independent as possible of the amplifier characteristics.  

 

Both requirements are met if =0 and the following conditions hold true: 

 

 ei ZZ   (1.23) 

 

 oout ZZ   (1.24) 

 

where, with reference to Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to 

appear here..9: 

 Zout and Zi are the output and input impedances of the amplifier, respectively; 

 Zo is the impedance seen across port O when port I is shorted and port E is loaded by ZP (=Zi); 

 Ze is the impedance seen across port E when port I is shorted and port O is loaded by Zout. 

 

While Eq.(1.23) can be assumed to be verified, at least as a first approximation, (1.24) is difficult to 

fulfill with modern, low voltage operational amplifier, where, in order to maximize the output swing, 

common drain output stages are used, with output resistances in the range of several tens of k. In this 

case,  is often non-negligible and  strongly depends on the amplifier output resistance, which is a 

parameter that is difficult to control in the design phase.  

 

Nevertheless, it is interesting to observe that, according to (1.22), if |A| tends to infinity, the closed 

loop transfer function tends to: 
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where * is vr/vs calculated with vp=0 and the output port short-circuited. Note that * does not depend 

on the amplifier output impedance and coincides with N in the case that the input impedance of the 

amplifier is much larger than port E output impedance, i.e. condition (1.23) holds.  

With this alternative definition of , the closed loop transfer function tends to a simple expression just 

as in the case of the ideal block diagram of Fig.Error! Use the Home tab to apply Titolo 1 to the text 

that you want to appear here..8. In particular, Eqn.(1.25) is not affected by the feed-forward term .   

 

In order to demonstrate Eqn.(1.25) let us start by defining the two quantities * and *, using the 

network of Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..11, which is more general with respect to that of Fig.Error! Use the Home tab to apply Titolo 1 

to the text that you want to appear here..10, since it does not specify whether or not an unilateral 

block as the amplifier “AMP” is present. The network in Fig.Error! Use the Home tab to apply 

Titolo 1 to the text that you want to appear here..11 is a generic network in which a cut has been 

applied to a couple of nodes, as in the general application of the cut-insertion theorem.  

 

 

 

Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..11. Network used for 

calculation of the definition of * and *. 

We keep vp turned off and place an ideal voltage source vo across the output terminations. This is 

clearly possible only if the impedance seen across the output terminals is not zero, which is true in all 

real cases. Then: 
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0,

* ;





















spop vvo

r

vvs

r

v

v

v

v
    (1.26) 

 

Now, let us consider Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to 

appear here..12 that shows the network used for determining parameters  and , according to original 

definitions (1.20) of the cut-insertion theorem. According to the substitution theorem, if we place an 

ideal voltage source of value vs across the output termination, (leaving vs turned on), the network 

shown in Fig. 5 is not altered and thus the value of vr does not change. We can then consider the 
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network of Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..12 as a particular case of Fig.Error! Use the Home tab to apply Titolo 1 to the text that you 

want to appear here..11, with vo=vs. Then:  
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 (1.27) 

 

Since this expression must hold true for whatever value of vs, then the following relationship can be 

found: 

 

  **  (1.28) 

 

 

 

 

Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..12. Network used for 

calculation of  and .  

 

Substituting this expression of  into (1.22) we get: 
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 (1.29) 

 

In order to find a further simplification, it is useful to find the relationship between  and *.  

 

First, we refer to Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to 

appear here..13, where the voltage vr (indicated here with vr’’) is expressed as a function of vp and vo 

(with vs=0). Clearly, when only vo is on, we are in the same conditions of Fig.Error! Use the Home 
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tab to apply Titolo 1 to the text that you want to appear here..11 with vs=0, then the transfer 

function from vo to vr is *.  

 

We introduce a new transfer function between vp and vr with vs=0 and vo=0 (i.e. output termination 

short circuited): 

 

 

0, 












os vvp

r

v

v
 (1.30) 

 

 

 

Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..13. Network used for 

calculation of the dependence of vr on vp and vo for vs=0 

 

Then, let us consider Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to 

appear here..14, showing the original configuration used to calculate parameter . Clearly, according 

to the substitution theorem, vr does not change if a voltage source of value Avp is placed across the 

output termination. This corresponds to setting vo=Avp in Fig. Error! Use the Home tab to apply 

Titolo 1 to the text that you want to appear here..13, therefore: 

 

 pp
Avvv

rvrp vAvvvAv
pps




*

,0

''

0
0

 (1.31) 

From equality (1.31), we find: 

 
A


*  (1.32) 
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Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..14.  Network used for 

definition of A and  

 

So far, we have considered a very general case, with no restrictions on the network to which the cut-

insertion theorem is applied. Now, let us come back to the case of interest for op-amp applications, 

represented by Fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..10, i.e. a circuit with =0 and full separation between the amplifier and the feedback network. 

We observe that, in this condition, voltage vp can affect vr only through the output termination. Since 

definition of , given by (1.30), requires that the output termination is short-circuited, then  must be 

zero.  

As a result: 

 *  (1.33)  

It should be observed that, Eq. (1.33) can be directly obtained from the definitions (1.20) and (1.26) of 

 and *, respectively, by simple inspection of Fig.Error! Use the Home tab to apply Titolo 1 to the 

text that you want to appear here..10.  

  

With (1.33), Eq. (1.29) becomes: 

 

 
AA

A

v

v

s

out












11

*

 (1.34) 

 

It can be easily shown that the block diagram corresponding to (1.34) is that of Fig.Error! Use the 

Home tab to apply Titolo 1 to the text that you want to appear here..15: 
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v
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v
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Fig. Error! Use the Home tab to apply Titolo 1 to the text that you want to appear here..15. Block diagram equivalent 

to Eqn.(1.34).  

 

If we calculate the limit of (1.34) for |A| that tends to infinity, we just obtain Eqn. (1.25). For |A|>>1, 

the relative error with respect to the ideal transfer function (-*/) is given by: 

 

 








 











LL

L
AL

A
AA

A

A
11

1

*

1
   (1.35) 

Using Eq. (1.35) it is possible to estimate the minimum value of the gain loop |A| to make the error 

smaller than specified by the design constraints. Clearly, the value of  should be known to obtain a 

precise estimate of the error using (1.35). In practice, considering the typical implementations of the 

network in fig.Error! Use the Home tab to apply Titolo 1 to the text that you want to appear 

here..10,  is due to passive components, so that || ≤.1. Considering also that, for the frequencies of 

interest, generally |AL|≥1, the term |/AL| is generally ≤.1. Then, |A|-1 is an acceptable approximation 

of the relative error, at least in terms of order of magnitude.  

 

Finally, it is possible to remove the dependence of the amplifier input impedance from the asymptotic 

(ideal) transfer function (-*/). To do this, let us start by considering that, due to (1.33), * = . Then, 

note that functions are obtained by stimulating the feedback network from port I and port O, 

respectively, considering as output quantity the voltage at port E. The definition of  is just the same as, 

respectively, but for N and N port E is open, while for * and * port E is closed on the amplifier 

input impedance (Zp=Zin). Then we can write the following relationships:  

 

 
















ine

in
N

ine

in
N

ZZ

Z
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Z

*

*

 (1.36). 

From (1.36), the following property can be immediately derived:  
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N

N










 *

*

*

 (1.37) 

A possible practical design flow based on the cut-insertion theorem is summarized by the following 

two steps 

 

1. Design the feedback network in such a way that the target design function is given by –N/N.  

2. Design (or choose) the amplifier in such that, once loaded by the feedback network, its gain is 

still large enough to obtain a |*A| product large enough to make the relative error, given by 

(1.35), below the maximum allowed value;  Note that * , differently from the */* ratio, is 

affected by the input impedance of the amplifier.  
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