Exercise: Opamp Design

Process parameters

Parametro	$\mathrm{n}-\mathrm{MOS}$	$\mathrm{p}-\mathrm{MOS}$
$\mu_{\mathrm{n}} \mathrm{Cox}, \mu_{\mathrm{p}} \mathrm{Cox}$	$240 \times 10^{-6} \mathrm{~A} / \mathrm{V}^{2}$	$50 \times 10^{-6} \mathrm{~A} / \mathrm{V}^{2}$
$\mathrm{~V}_{\mathrm{tn}}, \mathrm{V}_{\mathrm{tp}}$	0.43 V	-0.56 V
γ (effetto body)	$0.44 \mathrm{~V}{ }^{1 / 2}$	$0.59 \mathrm{~V} \mathrm{~V}^{1 / 2}$
k_{λ}	$50 \mathrm{~V} / \mu \mathrm{m}$	$50 \mathrm{~V} / \mu \mathrm{m}$
α (coeff. termico della Vt)	$-1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{N}_{\mathrm{ff}}, \mathrm{N}_{\mathrm{fp}}$ (fattore rumore flicker)	$6 \times 10^{-10} \mathrm{~V}^{2} \mu \mathrm{~m}^{2}$	$2 \times 10^{-10} \mathrm{~V}^{2} \mu \mathrm{~m}^{2}$
$\mathrm{C}_{\mathrm{V}_{\mathrm{t}}}$ (matching Vt)	$8.5 \mathrm{mV} \cdot \mu \mathrm{m}$	$8.5 \mathrm{mV} \cdot \mu \mathrm{m}$
C_{β} (matching beta)	$0.03 \mu \mathrm{~m}$	$0.03 \mu \mathrm{~m}$
C_{ox}	$6.2 \mathrm{fF} / \mu \mathrm{m}^{2}$	$6.2 \mathrm{fF} / \mu \mathrm{m}^{2}$
$\mathrm{~L}_{\mathrm{C}}$ (lunghezza minima D/S)	$1.2 \mu \mathrm{~m}$	$1.2 \mu \mathrm{~m}$
C_{J}	$1.8 \mathrm{fF} / \mu \mathrm{m}^{2}$	$1.8 \mathrm{fF} / \mu \mathrm{m}^{2}$
Cgdo	$0.6 \mathrm{fF} / \mu \mathrm{m}$	$0.6 \mathrm{fF} / \mu \mathrm{m}$
t_{ox}	5.6 nm	5.6 nm

Specifications

- An offset voltage (absolute value) smaller than $\mathbf{3} \mathbf{~ m V}$
- A GBW of $10 \mathbf{~ M H z}$ for a load capacitance (C_{L}) up to $\mathbf{1 0} \mathbf{~ p F}$.
- A phase margin around 70° in unity gain configuration

Offset specification

- An offset voltage (absolute value) smaller than 3 mV

$$
\begin{gathered}
3 \sigma_{v i o}=3 \mathrm{mV} \Rightarrow \sigma_{v i o}=1 \mathrm{mV} \\
\sigma_{v i o}^{2}=\frac{A}{W_{1} L_{1}}+\frac{B}{W_{3} L_{3}} \quad A=C_{V t p}^{2}+\left[\frac{\left(V_{G S}-V_{t}\right)_{1}}{2} C_{\beta p}\right]^{2} \quad B=F^{2} C_{V t n}^{2}+\left[\frac{\left(V_{G S}-V_{t}\right)_{1}}{2} C_{\beta n}\right]^{2} \\
C_{V t p}=C_{V t n}=8.5 \mathrm{mV} \cdot \mu \mathrm{~m} \quad \\
\begin{aligned}
C_{\beta p}=C_{\beta n}=0.03 \mu \mathrm{~m} & \text { In order to reduce A and B and then the }
\end{aligned} \\
\quad \begin{array}{l}
\text { total area, we choose: }
\end{array} \\
\qquad \begin{array}{l}
\left|V_{G S}-V_{t}\right|_{1}=100 \mathrm{mV}
\end{array} \\
\qquad=\frac{g_{m 3}}{g_{m 1}}=\frac{\left|V_{G S}-V_{t}\right|_{1}}{\left(V_{G S}-V_{t}\right)_{3}}=\frac{1}{3}
\end{gathered}
$$

P. Bruschi - Design of Mixed Signal Circuits

Offset specification

$$
\begin{aligned}
& \left|V_{G S}-V_{t}\right|_{1}=100 \mathrm{mV} \\
& F=\frac{g_{m 3}}{g_{m 1}}=\frac{\left|V_{G S}-V_{t}\right|_{1}}{\left(V_{G S}-V_{t}\right)_{3}}=\frac{1}{3} \\
& \left(V_{G S}-V_{t}\right)_{3}=\left(V_{G S}-V_{t}\right)_{5}=300 \mathrm{mV} \\
& A=C_{V t p}^{2}+\left[\frac{\left(V_{G S}-V_{t}\right)_{1}}{2} C_{\beta p}\right]^{2} \quad B=\left(F C_{V I n}\right)^{2}+\left[\frac{\left(V_{G S}-V_{t}\right)_{1}}{2} C_{\beta n}\right]^{2} \\
& C_{V i p}=C_{V / n}=8.5 \mathrm{mV} \cdot \mu \mathrm{~m} \\
& F C_{V t n}=2.83 \mathrm{mV} \cdot \mu \mathrm{~m} \\
& {\left[\frac{\left|V_{G S}-V_{t}\right|_{1}}{2} C_{\beta p}\right]=\left[\frac{\left|V_{G S}-V_{t}\right|_{1}}{2} C_{\beta n}\right]=1.5 \mathrm{mV} \cdot \mu \mathrm{~m}} \\
& C_{\beta p}=C_{\beta n}=0.03 \mu \mathrm{~m} \\
& \mathrm{~A}=74.5 \times 10^{-6} \mathrm{~V}^{2} \mu \mathrm{~m}^{2} \\
& \mathrm{~B}=10.3 \times 10^{-6} \mathrm{~V}^{2} \mu \mathrm{~m}^{2}
\end{aligned}
$$

Offset specification

$$
\begin{aligned}
& \mathrm{A}=74.5 \times 10^{-6} \mathrm{~V}^{2} \mu \mathrm{~m}^{2} \\
& \mathrm{~B}=10.3 \times 10^{-6} \mathrm{~V}^{2} \mu \mathrm{~m}^{2}
\end{aligned}
$$

Optimum area distribution between differential pair $\quad a_{o p t}=\left(\frac{W_{3} L_{3}}{W_{1} L_{1}}\right)_{o p t}=\sqrt{\frac{B}{A}}=0.37$
and current mirror

$$
\begin{aligned}
& W_{1} L_{1}=\frac{1}{\sigma_{v i o}^{2}}\left(A+\frac{B}{a_{\text {opt }}}\right) \cong 102 \mu \mathrm{~m}^{2} \\
& W_{3} L_{3}=a_{\text {opt }} W_{1} L_{1} \cong 38 \mu \mathrm{~m}^{2}
\end{aligned}
$$

With only the offset specification, we cannot determine other amplifier parameters.
Adding the GBW - phase margin specification we can go further into the amplifier design

GBW and phase margin

- A GBW of 10 MHz for a load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ up to 10 pF .
- A phase margin around 70° in unity gain configuration

$$
\square \sigma=\frac{\omega_{2}}{\omega_{0}}=3
$$

$$
\begin{aligned}
& \text { Hypotheses: }\left\{\begin{array}{l}
C_{1} \ll C_{c}, C_{2} \\
C_{2}=C_{2}^{\prime}+C_{L} \cong C_{L}
\end{array}\right. \\
& g_{m 5}=2 \pi \sigma C_{L} \cdot G B W \cong 1.88 \mathrm{mS}
\end{aligned} \quad \begin{aligned}
& g_{m 1}=\frac{1}{\sigma} \frac{C_{C}}{C_{L}} g_{m 5} \quad \begin{array}{l}
\text { Using the rule of } \\
\text { thumb } C_{C}=C_{L}:
\end{array} \\
& g_{m 1}=\frac{g_{m 5}}{\sigma} \cong 0.63 \mathrm{mS}
\end{aligned}
$$

Calculation of device aspect ratios

$$
\begin{gathered}
g_{m 5} \cong 1.88 \mathrm{mS} g_{m 1} \cong 0.63 \mathrm{mS} \\
g_{m 5}=\mu_{n} C_{O X} \frac{W_{5}}{L_{5}}\left(V_{G S}-V_{t}\right)_{5} \Rightarrow \frac{W_{5}}{L_{5}}=\frac{g_{m 5}}{\mu_{n} C_{O X}\left(V_{G S}-V_{t}\right)_{5}}=26.1 \\
\mu_{n} C_{o x}=240 \times 10^{-6} \mathrm{~A} / \mathrm{V}^{2} \\
\frac{W_{1}}{L_{1}}=\frac{g_{m 1}}{\mu_{p} C_{O X}\left(V_{G S}-V_{t}\right)_{1}}=126 \\
\mu_{p} C_{o x}=50 \times 10^{-6} \mathrm{~A} / \mathrm{V}^{2} \\
g_{m 3}=F \cdot g_{m 1}=0.21 \mathrm{mV} \\
\hline \frac{W_{3}}{L_{3}}=\frac{g_{m 3}}{\mu_{n} C_{O X}\left(V_{G S}-V_{t}\right)_{3}}=2.92
\end{gathered}
$$

Determination of M1, M3 and M5 size

$$
\left.\begin{array}{l}
W_{1} L_{1}=102 \mu \mathrm{~m}^{2} \\
\frac{W_{1}}{L_{1}}=126
\end{array}\right\} \Rightarrow W_{1}=\sqrt{W_{1} L_{1} \cdot \frac{W_{1}}{L_{1}}} \cong 114 \mu \mathrm{~m} \quad L_{1}=W_{1} \cdot\left(\frac{W_{1}}{L_{1}}\right)^{-1} \cong 0.9 \mu \mathrm{~m}
$$

From offset specs

$$
\left.\longrightarrow \begin{array}{l}
W_{3} L_{3}=38 \mu \mathrm{~m}^{2} \\
\frac{W_{3}}{L_{3}}=2.92
\end{array}\right\} \Rightarrow W_{3}=\sqrt{W_{3} L_{3} \frac{W_{3}}{L_{3}}} \cong 10.5 \mu \mathrm{~m} \quad L_{1}=W_{3} \cdot\left(\frac{W_{3}}{L_{3}}\right)^{-1} \cong 3.6 \mu \mathrm{~m}
$$

From $\mathrm{L}_{5}=\mathrm{L}_{3}$

$$
\left.\longrightarrow \begin{array}{l}
L_{5}=3.6 \mu \mathrm{~m} \\
\frac{W_{5}}{L_{5}}=26.1
\end{array}\right\} \Rightarrow W_{5} \cong 94 \mu \mathrm{~m}
$$

P. Bruschi - Design of Mixed Signal Circuits

Determination of M6 and M7 size

$$
\rightarrow \mu_{p} C_{O X} \frac{W_{6}}{L_{6}}=\mu_{n} C_{O X} \frac{W_{5}}{L_{5}} \Rightarrow \frac{W_{6}}{L_{6}}=\frac{\mu_{n} C_{O X}}{\mu_{p} C_{O X}} \frac{W_{5}}{L_{5}} \cong 125 \quad \begin{aligned}
& \text { In order to introduce no } \\
& \text { penalization in terms of DC }
\end{aligned}
$$

gain we can set:

$$
L_{7}=L_{6}=3.6 \mu \mathrm{~m} \quad \text { (Arbitrary constraint) }
$$

$$
L_{6}=L_{5}=3.6 \mu \mathrm{~m}
$$

$$
\begin{aligned}
& L_{7}=L_{6}=3.6 \mu \mathrm{~m} \\
& \frac{\beta_{6}}{\beta_{7}}=\frac{1}{2} \frac{\beta_{5}}{\beta_{3}} \Rightarrow \frac{\frac{W_{6}}{L_{6}}}{\frac{W_{7}}{L_{7}}}=\frac{\frac{1}{2}}{\frac{W_{5}}{L_{5}}} \frac{W_{3}}{L_{3}}
\end{aligned} \frac{W_{7}}{L_{7}}=2 \frac{W_{6}\left(\frac{W_{6}}{L_{6}} \frac{\frac{W_{3}}{L_{6}}}{L_{5}} \cong 280 \mu \mathrm{~m}\right.}{L_{5}} \cong W_{7}=L_{7}\left(\frac{W_{7}}{L_{7}}\right)=101 \mu \mathrm{~m}
$$

Bias and supply currents

$$
\begin{aligned}
& I_{0}=2 I_{D 1} \cong 2 g_{m 1} V_{T E 1}=2 g_{m 1} \frac{\left(V_{G S}-V_{t}\right)_{1}}{2} \cong 63 \mu \mathrm{~A} \\
& I_{1} \cong g_{m 5} V_{T E 5}=g_{m 5} \frac{\left(V_{G S}-V_{t}\right)_{5}}{2} \cong 282 \mu \mathrm{~A}
\end{aligned}
$$

In order to simplify the design:

$$
I_{B}=I_{0}=63 \mu \mathrm{~A} \leftrightarrows \mathrm{M} 8=\mathrm{M} 7
$$

Total supply current (including I_{B}): $I_{0}+I_{1}+I_{B} \cong 408 \mu \mathrm{~A}$

Check of initial hypothesis validity

Hypotheses: $\left\{\begin{array}{l}C_{1} \ll C_{c}, C_{2}=10 \mathrm{pF} \\ C_{2}=C_{2}^{\prime}+C_{L} \cong C_{L}=10 \mathrm{pF}\end{array}\right.$

$$
C_{2}^{\prime} \ll C_{L}=10 \mathrm{pF}
$$

$C_{1}=C_{G S 5}+C_{D B 2}+C_{D B 4}$
$C_{G S 5}=\frac{2}{3} C_{O X} W_{5} L_{5} \cong 1.4 \mathrm{pF}$
$C_{D B 2}=C_{J_{p}} L_{C} W_{2} \cong 0.246 \mathrm{pF} \Rightarrow C_{1} \cong 1.67 \mathrm{pF}$
$C_{D B 4}=C_{J_{n}} L_{C} W_{4} \cong 0.023 \mathrm{pF}$
$C_{O X}=6.2 \mathrm{fF} / \mu \mathrm{m}^{2}$

$$
C^{\prime}{ }_{2}=C_{D B 5}+C_{D B 6}=C_{j n} L_{C} W_{5}+C_{j p} L_{C} W_{6} \cong 1.17 \mathrm{pF}
$$

$C_{j n}=C_{j p}=1.8 \mathrm{fF} / \mu \mathrm{m}^{2}$
$L_{C}=1.2 \mu \mathrm{~m} \longrightarrow C_{j n, p} L_{C}=2.16 \mathrm{fF} / \mu \mathrm{m} \quad$ The hypotheses are acceptable

Other performance parameters

$$
\begin{aligned}
& \begin{array}{l}
S_{V I h} \cong 2 \frac{8}{3} k T \frac{1}{g_{m 1}}(1+F) \cong 4.5 \times 10^{-17} V^{2} / H_{z}(6.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}) \\
N_{f n}=6 \times 10^{-10} \mathrm{~V}^{2} \mu \mathrm{~m}^{2} N_{f p}=2 \times 10^{-10} \mathrm{~V}^{2} \mu \mathrm{~m}^{2} \\
k_{F}=2\left(\frac{N_{f p}}{W_{1} L_{1}}+F^{2} \frac{N_{f n}}{W_{3} L_{3}}\right) \cong 7.42 \times 10^{-12} \mathrm{~V}^{2} \\
\text { Slew rate: } \\
s_{R}=\frac{I_{0}}{C_{c}}=6.3 \mathrm{~V} / \mu \mathrm{s}
\end{array} \quad \begin{array}{l}
\text { Flicker corner frequency } \\
\text { at } f_{k} \Rightarrow S_{v F}=\frac{k_{F}}{f}=S_{V T h}
\end{array} f_{k}=\frac{k_{F}}{S_{V T h}} \cong 165 \mathrm{kHz}
\end{aligned}
$$

Test-Bench for frequency response

In DC: $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{S}}$. Setting a proper DC value for V_{S} we can set a correct operating point (e.g. $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{dd}} / 2$)

$$
\begin{equation*}
R_{F}=1 \mathrm{G} \Omega \tag{A}
\end{equation*}
$$

Example: $C_{F}=1 \mathrm{~F}$
if, for all frequencies of interest, $|\beta A| \ll 1$, then: we can consider that the feedback is not present, thus in terms of small signal:

$\Rightarrow f_{p \beta}=1.59 \times 10^{-10} \mathrm{~Hz}$

Amplification from the inverting terminal to the output

- The open-loop gain that we have found with the testbench of previous slide was not strictly the differential mode gain.
- That was the gain from the non-inverting input to the output, which is actually a combination of the differential mode and common mode gains.
- Often, the gain that matters for the stability, is the gain from the inverting input and the output, since in most closed-loop circuits the feedback signal stimulates only the inverting input.
- In order to simulate this gain, the following circuit can be used:

Difference between the gains measured from the inverting and non-inverting terminals for the op-amp that we have designed (from simulations)

The difference occurs only at frequencies $\gg f_{0}$.
Then, to study the stability, we can use one or the other gain, indifferently
The difference is due to the different impact of the first-stage singularities (mirror pole, tail pole)

For different designs (different topologies, different specifications, etc.), the differences may be more important.
P. Bruschi - Design of Mixed Signal Circuits

