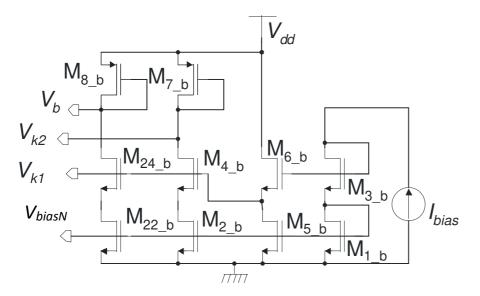
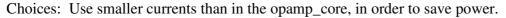

Description of the schematics

1) Opamp_core

Bias choices:


 $I_0=100 \ \mu A$, $I_2=50 \ \mu A$ thus: $I_1=100 \ \mu A$


 $W_{10}/L_{10} = 20u/2u$, $W_{01}/L_{01} = 40u/2u$ In order to have nearly V_{GS} -Vt=200 mV

 $W_1/L_1=50u/2u$: in order to have nearly $V_{GS}-Vt = 100 \text{ mV}$

 $W_3/L_3=150u/2u$, in order to have V_{GS} -Vt nearly 250 mV

2) Bias generator.

$$I_{bias} = 10 \ \mu A$$

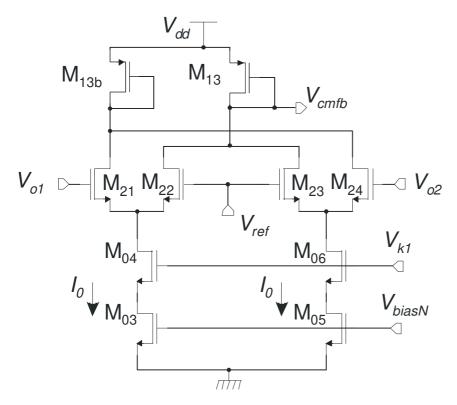
$$M_{24_b} = M_{4_b} = M_{6_b}$$

$$M_{1_b} = M_{5_b} = M_{2_b} = M_{22_b}$$

$$I_{D5_b} = I_{D2_b} = I_{D22_b} = I_{bias} = 10 \ \mu A$$
Then: (W/L)_{2_b} = (W/L)₀₁ I_{D2_b}/I₀ = (W/L)₀₁ I_{bias}/I₀ = (W/L)₀₁/10 = (W/L)₈ b = (W/L)₃I_{bias}/I₁ = (15u/2u)

V_{k1} :

In order to maintain M_{2_b} , M_{22_b} (and then M_{01} , M_8 , M_{10} in the opamp) with $V_{DS}=V_{DSAT}$ (condition for mirror wide dynamic), we need to make:


4u/2u

$$V_{DS2_b} = (V_{GS}-V_t)_{1_b} + V_{t1_b} + (V_{GS}-V_t)_{3_b} + V_{t3_b} - (V_{GS}-V_t)_{6_b} - V_{t6_b} - (V_{GS}-V_t)_{4_b} - V_{t4_b} = (V_{GS}-V_t)_{2_b}$$
$$(V_{GS}-V_t)_{3_b} = (V_{GS}-V_t)_{6_b} + (V_{GS}-V_t)_{4_b}.$$

Since we chose to make $M_{4_b}=M_{2_b}$, this would require: $(W/L)_{3_b}=(W/L)_{2_b}/4$. We chose to make $(W/L)_{3_b}=(W/L)_{2_b}/10$ in order to have more margin and keep V_{DS2_b} far from saturation.

 V_{k2} : The condition is: $(V_{GS}-V_t)_{7_b}=V_{DS3}+(V_{GS}-V_t)_5$. In order to make $V_{DS3}=(V_{GS}-V_t)_3=V_{DSAT3}$, we would need to make $(W/L)_{7_b}=(W/L)_{8_b}/4$ (because M_{8_b} is used to bias M_3), so that $V_{GS8}=V_{GS3}$ and we chose $(V_{GS}-V_t)_5=(V_{GS}-V_t)_3$ in the op-amp. In this case we made $(W/L)_{7_b}=(W/L)_{8_b}/4.5$.

3) CMFB control

The CMBF control has been implemented using the conventional static approach. We have chosen to make the circuit work with the same currents as the core op-amp. In particular, the two differential pairs $M_{21}-M_{22}$ and $M_{23}-M_{24}$ are biased by the same nominal current flowing into M_3 and M_4 of the op-amp (I₁). For the choices made in the op-amp design, these currents are equal to I₀. M_{13} (and M_{13b}) are identical to M_3-M_4 of the op-amp. $M_{21}-M_{24}$ have been designed to have a large $V_{GS}-V_t$, in order to provide enough differential input range to the pairs, to guarantee a large enough output swing for the opamp.

In particular: $W_{21}=8u$, $L_21=2u$. The resulting $V_{GS}-V_t$ is nearly 300 mV.