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1 Three network analysis methods useful for the design of 
analog circuits.  

1.1 Effects of device parameter change on the network DC solution 

Device parameters are generally different from the nominal values, due to process spread, temperature, 
variations and ageing. It is important to estimate the effect of parameter changes on the network 
response and performance. Here we will focus on the effect of parameter changes on the DC solution of 
a non-linear network. For a more general theory, see Ref.[1]. Typical application of this study is the 
estimation of the offset and offset drift of an amplifier. Other useful applications are in the world of 
sensors, where it is very common that the quantity to be sensed is detected through the variation of a 
device parameters (e.g. a resistance variation in resistive sensors). It should be pointed out that this 
study requires that the parameter variations are small. We will refer to the case shown in Fig.1.1, where 
we are considering the effect of changes in the electrical parameter of a non-linear two-port network 
(Q) connected to a non linear sub-network (N).  

 

Sub-Network (N)

Two port net. 
(Q)

Network 

 

 

Fig. 1.1 Extraction of a two-port network (Q) from the original network. 

 

The solution complete network is determined by the following equation sets 
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where the sets Q and N are related to the two port network and sub-network, respectively. Functions f 
and g are generally non-linear. Furthermore, we have considered that the behavior of Q is affected by a 
parameter indicated with P. Generalization to a larger number of parameters is straightforward. We will 
try to understand what happens to the network solution when parameter P changes from P0 to P0+P. 
We will suppose that P is small enough that, when P changes from P0 to P0+P the voltage and 
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current variations induced in the network are so small that a linearization of both Q and N equation sets 
is possible. In other words, we can use the small signal equivalent circuits to study the effect of P.  

Then we can write: 
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where, as customary, lowercase symbols (i.e. i1, v1 etc.) indicates small signal quantities. Since P is a 
known quantity, the linear equation set has four unknowns and, except for degenerate cases, since we 
have also four equations, there is only a single solution. Eqns. (1.2) show that the effect of the 
parameter variation is that of adding constant terms that, in the Yparameters schematization of the two 
port network, are constant currents. In different models of the two port network, such as Z or H 
(hybrid) parameters, the constant terms can be represented either as currents or voltages.  

 

grv1

gfv2gi go
i1P i2P

i1 i2





v1





v2

Original small signal 
equivalent circuit  

 

Fig. 1.2 Small signal equivalent circuit of the two-port network (dc y-parameters) 

 

The effect, for the Y parameter schematization, is shown in Fig.1.2, where two independent current 
sources i1p and i2p are added to the original small signal equivalent circuit. Considering Eqns. (1.2), the 
value of the current sources is: 
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where the derivatives are calculated at the rest point.  



P. Bruschi:  Notes on Mixed Signal Design   App. 3.2 

 

3 

 

Example 1: ideal resistor.  

Let us consider a resistor of value R. Suppose that the resistor changes from its nominal value (R) to 
R+R. Let us calculate the effect on the DC solution of the rest of the network.  

The resistor can be considered a reduced case of two-port network, with f1=V1/R and f2=0, represented 
in Fig. 1.3 (left). 

The equivalent Y parameters small signal circuit of the ideal resistor is that of Fig.1.2, where only the 
conductance gi=1/R and the current i1P are present. From Eqns. (1.3) we obtain: 
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Therefore, in order to obtain the variations induced on the whole network by the resistance variation 
(R), we can add a current i1P  in parallel to resistor R and use for the subnet its small signal equivalent 
circuit (Fig.1.3, middle). Alternatively, it is possible to obtain a Thevenin equivalent of the R/i1P 
parallel, where the Thevenin voltage is  -i1PR= RV1/R = IR, where I is the rest point current flowing 
through R (Fig.1.3, right).  
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Fig. 1.3 Application of the method to a two-port network consisting of a single resistor 

 

Example 2: MOSFET.  

In this example, we are interested in calculating the effects of variations of MOSFET parameters on the 
DC solution of the network where the MOSFET is included. Using the square law approximation of the 
MOSFET drain current in saturation region and neglecting the effect of the VDS we have the following 
analytical representation of the MOSFET as a non-linear two-port network: 
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As a consequence of variation of both  and Vt (parameters) we obtain that the effects on the network 
can be calculated using small signal circuits for both the MOSFET and the rest of the network and 
adding a current in parallel to port 2 (Drain-Source) equal to: 
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By simple transformations, it is possible to obtain the compact formula: 
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where ID is the quiescent drain current of the nominal circuit.  

Example 3: Matched devices. 

Equations (1.4) and (1.7) give the value of the current sources to be added to a resistor and a MOSFET, 
respectively, in order to take into account the effects produced by parameter variations. The latter may 
have different origins, for example temperature variations or process spread. Parameter variations can 
be very large when a single device is considered. In the case of a MOSFET, the relative variation of the 
parameter  can be as large as ±20 % of the nominal value while the threshold voltage Vt may vary of 
up to ± 100 mV. Clearly, the effects on the DC solution can be very large, resulting, for example, on 
very large amplifier offset voltages. In order to prevent this to occur, a proper design should be based 
on matched devices. For the sake of simplicity, we will consider here that matched devices satisfy the 
following conditions: 

 

1. the two device are nominally identical; 

2. the bias conditions (quiescent currents and voltages) are identical  

3. the transfer functions that tie the quantity of the interest for the circuit (for example the output 
voltage of an amplifier) to the parametric currents of the two devices (iP1 and iP2) are opposite.  

 

For example, if the two matched devices are MOSFET they should be nominally identical and be 
biased with same nominal VGS, VDS and VBS). The important characteristics of matched devices is the 
fact that their parameter variations are very similar.  
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Let us indicate a generic parameter (R, , Vt in the two previous examples) with P, and use the 
following conventions: 

 PN=nominal value of matched devices 1 and 2 

 P1; P2: real value of parameter P for device 1 and 2, respectively.    

Then: 

     2,1121212 PPPPPPPPP NN   (1.8) 

This obvious expression shows that the difference between the parameter variations P2 and P1 of 
two devices that share the same nominal value (PN) is equal to the parameter difference between the 
two devices (P1,2). In matched devices, although P1 and P2 can be singularly large, the difference 
P1,2 (commonly indicated with “parameter mismatch”, or “matching error”) is generally much smaller 
(of the order of 1% for many quantity of interest). Due to the third condition of matched devices, the 
two parametric currents ID1 and ID2 produce effects on the quantity of interest through two opposite 
transfer functions, which have indicated with -F and F, respectively, in Fig.1.4 In the example of 
Fig.1.4, the quantity of interest is Vout.  
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Fig. 1.4. Graphical representation of a matched pair 

 

The variation produced by the combination of parameter variations of both matched devices is then 
given by: 

   2,112 DDDout IIIFV   (1.9) 

Using (1.8) and (1.9), we easily find: 
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where ID and VGSVt refer to the nominal solution of the network, while the following definitions have 
been used:  
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As we have seen, the difference between the parameters of two matched devices (i.e., the matching 
error) is much smaller than the individual parameter variations with respect to the nominal value. Then, 
on average, the following relationships apply: 

 

 
122,1

112,1

,

,

ttt VVV 


 (1.12) 

Considering (1.9) and (1.10), which include only matching error, we can easily understand that the 
simultaneous effect on the output voltage of two matched devices is much smaller than the effect of 
parameter variations of the individual devices. Then, in a good design, all critical devices (i.e. those 
devices whose parameter variations has large effects on the output voltage) should appear in the circuit 
as matched pair, instead as single devices. In a differential amplifier, this is the case of the input 
devices (source coupled differential pair) and their load devices.  

 

1.2 Generalized Norton equivalent circuit obtained by probing a nonlinear 
network by means of an ideal voltage source. 

Consider a network that may include non-linear elements and DC sources (currents and voltages). For 
example, such a network may represent the rest point for an amplifier, or a situation of the same 
amplifier in presence of a constant DC input. Let us consider two nodes of the network, indicated with 
H and K in Fig.1.5. For simplicity, we will indicate these nodes as “output nodes” of the network. We 
probe the network by connecting an ideal voltage source (V) across H and K, as symbolically indicated 
in Fig.1.5.  

 

 

Fig. 1.5. Probing a non-linear network by connecting a test voltage source (V) across a pair of nodes.  
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As a first test we set voltage V to a constant value VB and we measure the current ISC (short circuit 
current) flowing from the source to the network, as shown in Fig.1.6 (a). Note that voltage VB can be 
substantially different from the voltage present across H and K before the application of the source V. 
Clearly, in the particular case that VB is equal to the rest point voltage, the current ISC is zero. If VB is 
different from the rest point voltage, a non-zero current ISC would probably flow as a reaction for 
forcing the voltage VHK to assume the value VB.  

 

 

Fig.1.6. (a) Short circuit current definition; (b) voltage increment used to evaluate the output resistance.  

 

After that, we modify VB by applying an increment VB, as shown in Fig.1.6(b), producing an 
increment of the current ISC, indicated with ISC. If, for a certain interval of voltages of the source V, 
the relationship between ISC and VB is linear, than the network seen from nodes K and H can be 
modeled by the circuit in Fig.1.7, where Rout is equal to: 
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Note the output resistance Rout coincides with the differential (i.e. small signal) resistance seen by the 
source V, around the rest point of the network obtained by connecting the voltage source V=VB, as in 
Fig.1.6(a). The minus sign in front of the term ISC in (1.13), derives from the conventional sign of 
current ISC in Figs.1.6(a) and 1.6(b).   
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Fig. 1.7. Generalized Norton equivalent of the network.  

 

This point can be easily demonstrated by repeating the tests of Fig.1.6(a) and 1.6(b) using the 
equivalent circuit of Fig.1.7. In the first case, the voltage across Rout is zero so that no current flows 
through the resistor. Then the current flowing from the source is just ISC. In the case of the second test, 
depicted in Fig.1.6(b), the increment VB is applied across Rout, so that the total current is: 
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Thus, the equivalence has been demonstrated to be valid for all voltages VHK for which the differential 
resistance seen across terminal H,K (Rout) is a constant. 

Removing the voltage source (terminals H-K open), the output voltage VH-VK becomes: 

 

 SCoutBHK IRVV   (1.15) 

 

If the VHK value found in this way is within the range of output voltages where Rout is constant, then this 
is an acceptable approximation of the real solution. Otherwise, the estimate obtained with (1.15) can 
still be useful to understand if the output voltage exceeds the lower or higher bound of the linearity 
range. In the case of an amplifier, this means that the output is saturated (high or low). Furthermore, if 
the short circuit current can be controlled by some design parameters, it is possible to use (1.15) to 
calculate the ISC value required to obtain a certain output voltage that belongs to the output linearity 
range.  
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1.3 Application of the cut-insertion theorem to the design of closed loop, op-amp 
based networks. 

Ideal block diagrams of feedback systems. 

Figure 1.8 shows a typical block diagram used in control theory to model feedback systems. All blocks 
are ideal and unidirectional. The names inside the block symbols (e.g. “A”) identifies both the block 
name and transfer function. By simple calculations: 
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When |A| tends to infinity, Vout/Vs tends to -/. In order to obtain a reliable overall transfer function, 
individual transfer functions  and  must be reliable, i.e. they should be designed to have as small as 
possible temperature coefficients, reduced dependence on process variations and high time stability. On 
the other hand, block A (amplifier) should exhibit high gain (to guarantee an high |A| value, since 

generally 1 ), and provide the required power to drive the load.  
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Fig. 1.8. Typical block diagram used in control theory 

 

Equation (1.16) can be re-written as: 
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where the rightmost approximation holds when |A|>>1. Eq.(1.17) gives an estimate of the relative 
error with respect to the ideal transfer function (-/): 
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For example, if we need to design a closed loop transfer function such that AL=1 (unity gain amplifier 
or buffer), we simply can make =1, =1. Then, if we require an accuracy better than 1%, we simply 
have to guarantee that A>100. Similarly, it can be shown that to get the same accuracy (1%) but with 
an overall gain of 100 (e.g. =1, =0.01), we need a block “A” with at least a gain of 104. The 
requirement onA| deriving from the relative error specification through (1.18) should clearly hold 
over the whole frequency interval of interest.  

 

Feedback systems in the electrical domain. 

 

When dealing with real electrical networks, the analysis is more complicated, since signals are 
embodied by voltages and/or currents that should satisfy Kirchhoff laws: blocks are often bidirectional 
and loading effects occur when blocks are connected. Figure 1.9(a) shows a typical implementation of 
the system of Fig.1.8 using electrical blocks.  

 

 

 

Fig. 1.9. (a) Implementation of the block diagram of Fig.1.8 in the electrical domain; (b) definition of the Feedback network 
transfer functions.   

 

In Fig.1.9(b), the amplifier have been disconnected from the feedback network in order to measure the 
individual transfer functions of the blocks. Let us indicate with N and N the transfer functions from 
the input and output ports, I and O, respectively, to the error port (E) of the feedback network and with 
AOL the amplifier gain. These transfer functions, illustrated in Fig.1.9(b), are defined by:  
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It would be desirable to model the circuit of Fig.1.9(a) with the block diagram of Fig.1.8, where =N, 
=N and A=AOL, so that Eqns. (1.16)-(1.18) would be applicable. Unfortunately, such a simple 
schematization is not correct since: 

 

 The amplifier gain depends on the loading effect of the feedback network. 
 The feedback network transfer functions, calculated with the amplifier unconnected as in 

Fig.1.9(b), are different from the actual transfer functions occurring in the closed loop circuit of 
Fig.1.9(a).  

 Blocks are not unidirectional.  
 

A possible approach is given by the method introduced by B. Pellegrini and described in Refs.[2], [3], 
denominated also Pellegrini’s cut-insertion theorem [4],[5] by which it is possible to obtain the network 
of Fig.1.10, where the following network transfer functions can be defined: 
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It can be shown that the network of Fig.1.10 is equivalent to the original network in Fig.1.9(a)  

if vr=vp and ir=ip , which require that the following conditions hold true [2],[3]: 
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Fig. 1.10. Application of the cut-insertion method to the network of Fig.1.9.  
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In these conditions, the overall closed loop transfer function of the network is given by: 
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Equation (1.22)  is very similar to (1.16) except for the term , which represents a feed-forward path for 
the signal vs. This approach constitutes a powerful method for the analysis of the network, since it 
allows splitting the overall transfer function into simpler network functions. The study of the system 
stability is also much facilitated. Complications might arise from the calculation of Zp, but, in most 
practical cases, the amplifier can be generally approximated as a unidirectional block, so that =0, and 
Zp is simply the input impedance of the amplifier.  

In order to exploit the significant simplification offered by the cut-insertion theorem also for design 
purposes, the following conditions would be desirable: 

 

 the feed-forward term  should be negligible, since it introduces an error, with respect to the 
nominal –/ transfer function, whose magnitude is not affected by the A term.  

 the network functions  and  should coincide with N and N, respectively, calculated as in 
Fig.1.9(b), in order to greatly simplify the design of the feedback network and make it as 
independent as possible of the amplifier characteristics.  

 

Both requirements are met if =0 and the following conditions hold true: 

 

 ei ZZ   (1.23) 

 

 oout ZZ   (1.24) 

 

where, with reference to Fig.1.9: 

 Zout and Zi are the output and input impedances of the amplifier, respectively; 
 Zo is the impedance seen across port O when port I is shorted and port E is loaded by ZP (=Zi); 
 Ze is the impedance seen across port E when port I is shorted and port O is loaded by Zout. 

 

While Eq.(1.23) can be assumed to be verified, at least as a first approximation, (1.24) is difficult to 
fulfill with modern, low voltage operational amplifier, where, in order to maximize the output swing, 
common drain output stages are used, with output resistances in the range of several tens of k. In this 
case,  is often non-negligible and  strongly depends on the amplifier output resistance, which is a 
parameter that is difficult to control in the design phase.  
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Nevertheless, it is interesting to observe that, according to (1.22), if |A| tends to infinity, the closed 
loop transfer function tends to: 
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where * is vr/vs calculated with vp=0 and the output port short-circuited. Note that * does not depend 
on the amplifier output impedance and coincides with N in the case that the input impedance of the 
amplifier is much larger than port E output impedance, i.e. condition  holds.  

With this alternative definition of , the closed loop transfer function tends to a simple expression just 
as in the case of the ideal block diagram of Fig.1.8. In particular, Eqn.(1.25) is not affected by the 
feed-forward term .   

 

In order to demonstrate Eqn.(1.25) let us start by defining the two quantities * and *, using the 
network of Fig.1.11, which is more general with respect to that of Fig.1.10, since it does not specify 
whether or not an unilateral block as the amplifier “AMP” is present. The network in Fig.1.11 is a 
generic network in which a cut has been applied to a couple of nodes, as in the general application of 
the cut-insertion theorem.  

 

 

 

Fig. 1.11. Network used for calculation of the definition of * and *. 

We keep vp turned off and place an ideal voltage source vo across the output terminations. This is 
clearly possible only if the impedance seen across the output terminals is not zero, which is true in all 
real cases. Then: 

 

 
0,

*

0,

* ;





















spop vvo

r

vvs

r

v

v

v

v
    (1.26) 

 



P. Bruschi:  Notes on Mixed Signal Design   App. 3.2 

 

14 

 

Now, let us consider Fig.1.12 that shows the network used for determining parameters  and , 
according to original definitions (1.20) of the cut-insertion theorem. According to the substitution 
theorem, if we place an ideal voltage source of value vs across the output termination, (leaving vs 
turned on), the network shown in Fig. 5 is not altered and thus the value of vr does not change. We can 
then consider the network of Fig.1.12 as a particular case of Fig.1.11, with vo=vs. Then:  

 

 ssvvvrvrs vvvvv
spp




**

,0

'

0
0

 (1.27) 

 

Since this expression must hold true for whatever value of vs, then the following relationship can be 
found: 

 

  **  (1.28) 

 

 

 

 

Fig. 1.12. Network used for calculation of  and .  

 

Substituting this expression of  into (1.22) we get: 

 

 
   

A

A

AA

A

A

A

v

v

s

out





























1111

****

 (1.29) 

 

In order to find a further simplification, it is useful to find the relationship between  and *.  
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First, we refer to Fig. 1.13, where the voltage vr (indicated here with vr’’) is expressed as a function of 
vp and vo (with vs=0). Clearly, when only vo is on, we are in the same conditions of Fig.1.11 with vs=0, 
then the transfer function from vo to vr is *.  

 

We introduce a new transfer function between vp and vr with vs=0 and vo=0 (i.e. output termination 
short circuited): 

 

 

0, 
















os vvp

r

v

v
 (1.30) 

 

 

 

Fig. 1.13. Network used for calculation of the dependence of vr on vp and vo for vs=0 

 

Then, let us consider Fig.1.14, showing the original configuration used to calculate parameter . 
Clearly, according to the substitution theorem, vr does not change if a voltage source of value Avp is 
placed across the output termination. This corresponds to setting vo=Avp in Fig. 1.13, therefore: 

 

 ppAvvvrvrp vAvvvAv
pps




*

,0

''

0
0

 (1.31) 

From equality (1.31), we find: 

 
A


*  (1.32) 

 



P. Bruschi:  Notes on Mixed Signal Design   App. 3.2 

 

16 

 

 

 

Fig. 1.14.  Network used for definition of A and  

 

So far, we have considered a very general case, with no restrictions on the network to which the cut-
insertion theorem is applied. Now, let us come back to the case of interest for op-amp applications, 
represented by Fig.1.10, i.e. a circuit with =0 and full separation between the amplifier and the 
feedback network. We observe that, in this condition, voltage vp can affect vr only through the output 
termination. Since definition of , given by (1.30), requires that the output termination is short-
circuited, then  must be zero.  

As a result: 

 *  (1.33) 

It should be observed that, Eq. (1.33) can be directly obtained from the definitions (1.20) and (1.26) of 
 and *, respectively, by simple inspection of Fig.1.10.  

  

With (1.33), Eq. (1.29) becomes: 

 

 
AA

A

v

v

s

out















11

*

 (1.34) 

 

It can be easily shown that the block diagram corresponding to (1.34) is that of Fig.1.15: 
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

*
vout

ve

Feedback 
Network

vS A


 

Fig. 1.15. Block diagram equivalent to Eqn.(1.34).  

 

If we calculate the limit of (1.34) for |A| that tends to infinity, we just obtain Eqn.(1.25). For |A|>>1, 
the relative error with respect to the ideal transfer function (-*/) is given by: 

 

 











 












LL

L
AL

A
AA

A

A
11

1

*

1
  (1.35) 

Using Eq. (1.35) it is possible to estimate the minimum value of the gain loop |A| to make the error 
smaller than specified by the design constraints. Clearly, the value of  should be known to obtain a 
precise estimate of the error using (1.35). In practice, considering the typical implementations of the 
network in fig.1.10,  is due to passive components, so that || ≤.1. Considering also that, for the 
frequencies of interest, generally |AL|≥1, the term |/AL| is generally ≤.1. Then, |A|-1 is an acceptable 
approximation of the relative error, at least in terms of order of magnitude.  

 

Finally, it is possible to remove the dependence of the amplifier input impedance from the asymptotic 
(ideal) transfer function (-*/). To do this, let us start by considering that, due to (1.33), * = . Then, 
note that functions * and * are obtained by stimulating the feedback network from port I and port O, 
respectively, considering as output quantity the voltage at port E. The definition of N and N is just the 
same as * and *,  respectively, but for N and N port E is open, while for * and * port E is closed 
on the amplifier input impedance (Zp=Zin). Then we can write the following relationships:  

 

 
















ine

in
N

ine

in
N

ZZ

Z
ZZ

Z

*

*

 (1.36) 

From (1.36), the following property can be immediately derived:  
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N

N













 *

*

*

 (1.37) 

A possible practical design flow based on the cut-insertion theorem is summarized by the following 
two steps 

 

1. Design the feedback network in such a way that the target design function is given by –N/N.  
2. Design (or choose) the amplifier in such that, once loaded by the feedback network, its gain is 

still large enough to obtain a |*A| product that makes the relative error, given by (1.35), smaller 
than the maximum allowed value;  Note that * , differently from the */* ratio, is affected by 
the input impedance of the amplifier.  
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