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1 Practical procedures for dealing with noise spectral densities 

1.1 Idealized amplifier noise and rms calculation. 

Figures 1.1(a) and 1.1(b) show a typical noise spectrum in linear and logarithmic coordinates. The 
spectrum includes a 1/f (flicker noise) contribution at low frequency and a region of constant noise 
(broad-band noise, SXBB), at higher frequency. The upper limit of the spectrum is indicated with B. For 
frequencies higher than B the spectral density decreases, tending to zero. For simplicity, in this course 
we will consider that the spectral density drops to zero abruptly for f>B. In real cases, the spectral 
density will gradually decrease, as shown by the dashed line in the figure.  

In terms of total noise power, the approximation of abrupt upper band limit is valid when B coincides 
with the equivalent noise bandwidth. For a frequency response with a dominant pole (first order low 
pass response), the equivalent noise bandwidth is equal to (/2)f-3dB, where f-3dB, is the cut-off 
frequency (frequency at which the response is 3dB below the value in the pass-band).   

The flicker noise component can be written as: 
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where kF is a constant parameter and  an exponent that in many practical cases is close to one. In the 
rest of this document we will consider =1. Thus we can write: 

 )( fSfk XFF   (1.2) 

Eqn. (1.2) allows determining the kF value from an experimental or simulated noise spectrum. In 
particular, if the noise spectrum at 1 Hz is dominated only by the flicker component, then kF coincides 
(only numerically) with the value assumed by the spectrum at 1 Hz. 
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Fig. 1.1. Typical one-sided noise spectral density of an amplifier (a) and its representation in logarithmic scale. A possible 
signal bandwidth [fmin, fmax] is shown.   

An important parameter of the noise spectrum shown in Fig.1.1 is the corner frequency, fk, defined as 
the frequency at which the flicker component is equal to the broad-band (constant) component. 
Applying (1.2) at fk: 

 FXBBk kSf   (1.3) 

Let us consider that the readout channel has a bandwidth extending from fmin to fmax. In all well-
designed acquisition systems, there is a filter, generally placed at the end of the processing chain, that 
limits the channel bandwidth to the minimum required by the signal. Any additional bandwidth with 
respect to this minimum is not only useless, but also harmful, since it increases the rms noise, 
degrading the system resolution. Therefore, we will suppose that the spectral noise superimposed to 
signal X is filtered by an ideal pass-band filter as sketched in the inset of figure 1.1(a). The target is 
calculating the rms noise at the output of the filter.  

 

The rms noise in the signal bandwidth is given by: 
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The integral of the broadband component is simply given by: 
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The integral of the flicker component is given by: 
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where ndec is equal to: 
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A problem with the flicker component could arise if the signal bandwidth extends down to DC, since 
fmin should be set to zero, making the flicker component diverge to infinity. This is a false problem, 
since a real DC component should be constant over an infinite time interval, and therefore it is only a 
theoretical abstraction. In practical cases, we consider a signal to be DC when it stays constant over the 
whole observation time interval, which is a finite interval. If we indicate the observation time with Tobs, 
then we can recognize frequencies as low as:  
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For example, if the observation time is 100 s, then the minimum significant frequency is roughly 
0.01 Hz. If we do not know the observation time, we can arbitrarily assume that it is a few tens of 
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second long (e.g. 100 s as in the example). An error in the determination of the observation time does 
not produce important errors in the estimated rms noise, due to the logarithmic dependence present in 
Eq. (1.6).  

1.2 Inclusion of the offset into the noise power spectral density 

 

Figure 1.2 shows a frequently used simplified representation of noise spectra. This is only a symbolic 
representation since, in real cases, flicker noise diverges to infinity, when f tends to zero; furthermore, 
the upper band limit (B) is not as abrupt as in the figure, but more progressive.  
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Fig. 1.2. Symbolic two-sided amplifier noise spectrum.  

Nevertheless, this bilateral representation can be very useful to understand what happens to noise in 
modulation and sampling operations, where the spectra are replicated and shifted along the frequency 
axis. In order to extend this convenient representation to the other component of additive errors, i.e. 
offset, we can write the total error: 

 ntot n iox x x   (1.9) 

Note that even offset can be considered a stochastic process, consisting in a DC signals with random 
(DC) value.  The autocorrelation function of the total additive error is given by: 
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Thus: 
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Since offset and noise derives from different phenomena, they can be considered independent. 
Therefore we obtain the following result: 
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where RXn() is the noise correlation function, while Xio is the offset standard deviation.  

In terms of spectral density, the offset contribution becomes a Dirac delta function with value 2
Xio . 

Then we obtain the following symbolic representation that takes into account noise and offset together: 
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Fig 1.3. Offset and noise combined symbolic spectrum.  

 


