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1 Fully differential circuits: system-level view 

1.1 Fully differential systems: motivations.  

Figure 1.1 illustrates the difference between a unipolar and fully differential architecture. In a unipolar 
system, signals consists in voltages between single nodes and ground. Ground is a special node of the 
circuit, which coincides with one of the power rails (i.e. one of the terminals of the power supply). 
Each input and output port of the various blocks coincides with a single terminal.  

In a fully differential circuit, signals are represented by voltage differences between couples of nodes, 
none of which is ground. Clearly, a ground is still necessary for conveying the supply currents of all 
blocks. Thus, as usual, for each node pair we can define a differential voltage (which carries the 
information) and a common mode voltage. In single supply systems, a non-zero dc component is 
generally required for the common mode voltage, in order to meet the input common mode range of the 
blocks and maximize the signal swings.  

 

Fig.1.1. Unipolar (top) and fully differential (bottom) architectures. 

In a fully differential architecture, all inputs and outputs consists of a couple of terminals. For example, 
an amplifier will have two input terminals and two output terminals.  

The advantages of fully differential architectures can be divided into three categories: 

1) Excellent immunity to interferences  

2) Wider output ranges 

3) Improved linearity 
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Immunity to interferences.  

 

We will analyze four different causes of interference: 

 

a) Non-uniform ground voltage 

b) Non-uniform Vdd voltage 

c) Capacitive coupling 

d) Substrate noise 

 

The problem deriving from non-uniform ground voltage is illustrated by Fig. 1.2 (a), showing a 
unipolar system. Impedance ZG is due to unavoidable distributed inductances and resistances of the 
ground line. The supply current of block B and other blocks, not shown in the picture for simplicity, 
flows in the ground line, producing the voltage drop ZGIG across the ground line impedance.  

 

 

Fig.1.2. Non-uniform ground voltage for a unipolar (a) and differential (b) architecture.  

As a result, block B receive an input voltage given by: 

 GGoAiB IZVV   (1.1) 

while, it was expected to receive only VoA. In other words, the ground assumes different potentials 
across the system due to the current that flows through it. The blocks that form the system are 
connected to ground line at different points, so that they sense different ground potentials. In a unipolar 
system, these potential differences are summed up to the signal, as (1.1) clearly shows. This problem 
can be particularly serious when the ground current includes high frequency components. Examples of 
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blocks that inject high frequency components into the ground line are oscillators and digital sub-
systems, which, due to continuous commutations, absorb an impulsive current through the power rails. 
This is always the case in mixed signal integrated circuits.  

In a differential system, the potential differences present on the ground line affect the two voltages that 
form the signal in the same way, so that they produce only a common mode disturbance. On the other 
hand, the voltage difference is not altered, since no current flows through the lines that carry the signal 
and thus no voltage drop is produced across them. Clearly, all blocks should be marked by a good 
CMMR, which means that the magnitude of the transfer function from the input common mode to the 
output differential mode should be as small as possible.  

Since the supply current flows also in the Vdd line, the supply voltage will also be non-uniform across 
the chip and subjected to impulsive variations. Furthermore, even if the Vdd could be uniformly 
distributed across the chip, its value would vary with time, as the result of the voltage drop occurring 
across the bonding wire that connects the Vdd pad to the case terminal. This voltage drop is, again, 
proportional to the current absorbed by the various blocks present in the chip and, as a result, may 
include high frequency components. The extent by which a variable Vdd affects the output of a giveb 
sub-circuit depends on its PSSR. Again, thank to symmetry, a Vdd variation produces mostly common 
mode errors in the output terminals of a fully differential block. As a result, the PSRR of fully 
differential systems is much better than the PMMR of unipolar systems. This is particularly notable at 
high frequencies, where parasitic components (mainly capacitances) cause a strong degradation of the 
PSSR of unipolar circuits. On the other hand, also parasitic components are symmetric in a fully 
differential circuit, so that the high PSSR is maintained even at high frequencies. Symmetry is also the 
reason of the excellent CMRR of fully differential circuits. In an ideal circuit, symmetry is perfect, 
leading to infinite CMRR and PSSR. In a real circuit, matching errors will introduce small asymmetries 
resulting in finite CMRR and PSSR. However, since matching errors are generally very small in 
integrated circuits, very high CMRR and PSSR can be easily obtained with fully differential 
architectures.   

In a mixed signal integrated circuit, a method to reduce interferences from non-uniform ground and Vdd 
potentials can be the use of different ground and Vdd conductors for the analog (sensitive) and digital 
(noisy) sub-systems, as shown in Fig. 1.3. These strategies are essential in unipolar architectures, due to 
their higher sensitivity to ground and Vdd non-uniformity. In a fully differential circuit, such techniques 
can be used to reduce coupling of disturbances between analog and digital circuits even further.   
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Fig.1.3. Typical architecture of a mixed signal integrated circuit, with separate ground and Vdd rails and pads. 

Connection between the two power-line distributions can be made in a single point of the chip, so that 
the supply current of the digital system does not flow into the rails of the analog ones. A further 
improvement can be using different pads for the analog and digital rails and make the connections out 
of the chip, in a convenient place of the printed circuit board (PCB) that hosts the integrated circuit. 
Indeed, many mixed signal integrated circuits have distinct pins for both the analog and digital ground 
and Vdd, as shown in Fig. 1.3.  

The case of interferences deriving from capacitive coupling is shown in Fig. 1.4 (a) for the unipolar 
architecture. The disturbing signal VD, typically with high frequency components, is applied to a line 
(depicted in red in the figure), which is coupled with the signal line through capacitance Ca. The signal 
line has a path to ground through the output impedance (ZoA) of the transmitting block (A) and the 
input impedance (ZiB) of the receiving block (B). The interference picked-up by the signal line is given 
by: 

 
// // 1

with ; //
//
oA iB oA iB

iB D D a a oA iB

oA iB a a a

Z Z Z Z
V V V Z Z Z Z

Z Z Z Z j C
   


 (1.2) 

where Za is the impedance of capacitor Ca at the frequency of the interference source VD. Clearly, for a 
given coupling impedance Za, the interference will be smaller if the parallel of ZoA and ZiB is much 
smaller than Za. In many cases, the residual interference term is still large enough to degrade the system 
performances. On the other hand, due to its symmetry property, a fully differential circuit is much more 
immune also to this type of interference, since the nodes of the pair that carries the differential signal 
are affected in a similar way, so that the disturbance is mainly a common mode signal. Clearly, the two 
wires of the pairs cannot be coincident, thus they will exhibit different coupling capacitances towards 
the interfering line. As a result, a small differential component can still be produced. To avoid this, it is 
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possible to improve the symmetry by replicating the interfering line on both sides of the circuit, as 
shown in Fig. 1.4 (b).  

 

Fig.1.4. Equivalent circuit showing the mechanism of capacitive interference coupling (a); Duplication of the disturbing line 
in order to improve symmetry and enhance interference rejection.    

Finally, let us consider substrate noise [1]. This expression is used to indicate the presence of 
fluctuations in the substrate potential, induced by interfering signals. The mechanism is illustrated in 
Fig. 1.5.  

 

Fig.1.5. Cross-section illustrating generation and propagation of the substrate noise. 

The device indicated as “digital mosfet” represents an electronic device that is subjected to large and 
fast voltage swing. Typical examples are transistors belonging to logical gates that perform frequent 
commutations. The square wave represent a possible signal present on the drain (or source) of the 
digital mosfet. This disturbing signal propagates into the substrate through the drain/body (or 
source/body) junction capacitance Cp1. Since any point of the substrate has a resistive path to ground 
(represented by the substrate tap in Fig. 1.5), the effect, in the proximity of the drain (source) diffusion, 
is high pass filtering, producing the impulsive signal shown in Fig. 1.5. This signal propagates along 
the resistive substrate, represented as a resistor mesh. Propagation is accompanied by strong 
attenuation, but voltage oscillations of several millivolts can be observed at relatively high distance 
from the digital mosfet. These oscillations can reach sensitive devices, represented by the “analog 
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mosfet”. The disturbance affects the analog mosfet in two ways: first, it can be injected into the 
drain/source through the junction capacitance Cp2. Second, since the substrate forms the body of all 
n-type mosfets, substrate potential fluctuations produce variations of the threshold voltage, causing 
drain current fluctuations.  

A possible remedy is enclosing the digital subsection into a ring of substrate taps, all tied to ground. 
This reduces the propagation of the disturbing signals produced by the numerous digital gates forming 
the digital circuit, since the contact ring short-circuits the currents injected into the substrate, making 
them flow to ground. A further improvement is obtained by enclosing also the analog circuits into a 
contact ring, as schematically shown in Fig. 1.6.  

Fully-differential systems are also less prone to substrate noise. The reason is that, at a sufficient 
distance from the digital (noisy) devices, substrate noise is almost uniform over relatively large die 
portions, so that it produces practically only common mode effects, leaving differential signals almost 
unaltered.  

 

 

Fig.1.6. Substrate noise mitigation by means of substrate contact rings.    

 

Wider signal ranges.  

Consider a unipolar signal that can vary between two voltages, namely VMIN and VMAX, with VMIN<VMAX. 
The total full scale excursion will be VFS=( VMAXVMIN). In a single supply configuration (i.e. when the 
power supply is a single voltage source = Vdd), clearly VFS<Vdd.   

For a differential signal, we can consider that each node of the pair has the same range of a unipolar 
signal. Therefore, indicating with vop and von the voltages of the nodes of the pair, we will have the 
following situations, summarized in table 1.1: 
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Voltage Maximum positive signal  Maximum negative signal VFS 

vop VMAX VMIN (VMAXVMIN) 

von  VMIN VMAX (VMAXVMIN) 

vod= vop  von (VMAXVMIN) (VMAXVMIN) 2(VMAXVMIN) 

Table 1.1: Excursion of von, vop and vod 

It can be easily seen that the differential signal has a double range with respect to the individual 
voltages that represent it. Thanks to this property, in the case of single supply operation, a differential 
signal can achieve a full-scale range of at nearly 2Vdd.  

Improved linearity.  

If we consider a dc trans-characteristic Vout (Vin), in the case of a fully-differential circuit we will have 
the following condition: Vout(Vin)=Vod(Vin)=Von(Vin)-Vop(Vin). For the symmetry property of a fully 
differential circuit, inverting the input signal is equivalent to swapping the positive and the negative 
halves, so that Vop and Von are simply swapped.   

Thus: 

 )()()()()()( inoutinopinoninoninopinout VVVVVVVVVVVV   (1.3) 

Therefore, an inversion of the input signal produce the inversion of the output signal (odd symmetry). 
This property is valid in the general case, i.e. also if the characteristic cannot be considered linear. This 
means that a Taylor expansion includes only odd terms, and then the characteristic is generally more 
linear than the two unipolar components Vop(Vin) and Von(Vin) that form it, which, on the contrary, can 
include both odd and even terms.  

In terms of harmonic distortion, if Vin(t) is a sinusoidal waveform, the output differential voltage Vout 
will include only odd harmonics, and this is another indication of lower distortion, i.e. improved 
linearity.  

These arguments are illustrated by Fig. 1.7, showing the possible dependence of the output unipolar 
voltages von and vop on the input signal vin, together with their difference vod. Note that the individual 
signal von and vop are generally not symmetrical with respect to the axis vin=0, while, due to the 
symmetry of the fully-differential circuit, von(vin)= vop(vin). This property is used in (1.3) to 
demonstrate the symmetry of vod. Furthermore, Fig. 1.7 well shows how the differential signal achieves 
a double range with respect to the individual unipolar signals von and vop that form it.  
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Fig.1.7. Possible dc transfer characteristics of a fully differential block, including both the differential signal vod and the two 
unipolar signals von and vop that form it.    

 

Requisites for a correct fully differential transfer characteristic.  

In a fully differential architecture, it is important that all the signals (i.e voltage pairs) present in the 
circuit have a constant common mode voltage. This is necessary to guarantee that the input common 
mode range of all blocks that receive those signals is not violated. As a result, the output common 
mode voltage of all block should be stabilized to a given value. This value can vary from block to 
block, but should be constant against process and temperature variations as well as input signal  

 

Fig.1.8. Ideal characteristic (a), misplaced output common mode voltage (b), presence of an input offset (c).  
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Figure 1.8 shows three possible d.c. transfer characteristics. The ideal characteristic is shown in 
Fig. 1.8 (a) where the output common mode voltage has been placed in the middle of the output range 
of the individual signals vop and von. In this way, the output range where both outputs are in a linear 
region is maximized, i.e. the output linear range is maximized. In Fig. 1.8 (b), the output common 
mode voltage is set to a value that is too close to VoMAX. The consequence is that the outputs have little 
room to increase and they saturate too early to VoMAX. When one of the two outputs saturates, the 
differential-to-differential gain (Add) is halved and the output common mode voltage cannot be kept 
constant any longer. The third example shows a characteristic where the output common mode voltage 
has been set to an ideal value, but an offset Vio is present. This is a perfectly acceptable characteristic, 
since the maximum output swing is maintained. Since the presence of an offset is unavoidable, 
characteristic (c) is what we generally could aspire to obtain in practice. 

To summarize, what is important is to guarantee that the output common mode voltage can be reliably 
set to a precise value, which is generally placed in the middle of the output range. In most fully 
differential blocks, this result is obtained by means of a proper feedback loop included inside the block 
itself (denominated CMFB: common mode feedback).  

 

1.2 Fully differential operational amplifiers: functional properties and simple 
configurations 

Definitions 

The symbol of a fully differential amplifier is shown in Fig. 1.9. The ideal equation that ties the output 
and input differential mode voltages is: 

  AAVV idod with  (1.4) 

A more realistic relationship that takes into account also the presence of an offset-noise input 
equivalent source (vn) and of the finite gain is the following: 

   1with  AvvAv nidod  (1.5) 

We have to add the following equation for the common mode voltage: 

 constant CMOoc Vv  (1.6) 

This characteristic is indicated in the amplifier symbol by a small reversed triangle placed close to the 
tip of the main triangle, as shown in Fig.  1.9.  
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Fig.1.9. Symbol of the fully differential amplifier  

Generic feedback configuration: differential mode voltage at the input port 

The first case that we will analyze is the generic closed loop configuration shown in Fig. 1.10 (a). We 
consider that the transfer characteristic of network  is the following: 

 kodid Vvv   (1.7) 

We have already seen1 that an equation of this kind, combined with (1.5) leads to the following 
approximation, provided that |A|>>1 and the system is stable:  

 nnid v
A

A
vv

1
'




  (1.8) 

where vn’ is the input referred noise filtered by the A/(A-1) transfer function (generally of low pass 
type). In the following discussion, we will use the symbol vn to indicate also vn’, for simplicity, but it 
must be remembered that we are actually dealing with a filtered version of the input referred noise. In 
other words, we will assume that in the frequency band of interest.  

 nn vv '  (1.9) 

 

 

Fig.1.10. Generic feedback connection (a) and “unity gain” connection (b).  

 
1 see the chapter on sensor interfaces, section on switched capacitor circuits. 
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The “unity gain” configuration for a fully-differential op-amp 

As a particular case, we consider the “unity gain” configuration shown in Fig. 1.10 (b). This is not 
properly a unity gain system, since there are no terminals available to apply an input signal. 
Nevertheless, it is an important configuration for switched capacitors circuits, where it represents a 
reset situation, where voltages across all capacitors assume a known value. This configuration is 
characterized by the following equations: 

 ocicodid vvvv  ;  (1.10) 

The first equation regards the differential voltages and is equivalent to (1.7) with = -1 and Vk=0. Then: 

 nodnid vvvv   (1.11) 

Using the second of (1.10) and (1.6), we easily find: 

 
2

;
2

21
n

CMOi
n

CMOi

v
Vv

v
Vv   (1.12) 

and: 

 
2

;
2

21
n

CMOo
n

CMOo

v
Vv

v
Vv   (1.13) 

Note that, without (1.6), only the differential voltages would have been determined, while the 
individual voltages at the input and output terminals would have been uncertain. This highlights once 
more the necessity of stabilizing the output common mode voltage to a known value.  

Fully differential amplifier with resistive feedback 

Let us now consider the amplifier of Fig. 1.11 (a), obtained applying a resistive feedback network to a 
fully differential op-amp.  

 

Fig.1.11. Fully differential amplifier with resistive feedback (a). Network used to calculate vi1 (b)  
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Nominally R2A=R2B ≡ R2 and R1A=R2B ≡ R1. In practice, mismatches are present and need to be taken 
into account. Considering the network of Fig. 1.11 (b), we can calculate vi1 as a function of Vs1 and Vo1.  

 1

21

1

21

1
1

21

2
1

21

1
11 1 S

AA

A

AA

A
o

AA

A
S

AA

A
oi v

RR

R

RR

R
v

RR

R
v

RR

R
vv 



















  (1.14) 

With the same principle, we can calculate vi2: 

 














BB

B
S

BB

B
oi

RR

R
v

RR

R
vv

21

1
2

21

1
22 1  (1.15) 

We can introduce the following variables: 

 
BB

B

AA

A

RR

R

RR

R

21

1
2

21

1
1 ;





  (1.16) 

Clearly, in the nominal circuit 1=2  ≡ =R1/(R1+R2).  

Then we can decompose 1 and 2 into a mean component, m and a mismatch error :  

 
2

;
2

21





 mm  (1.17) 

Then, we can re-write (1.14) and (1.15) using (1.16) and (1.17): 

 






 








 


2
1

2
111 mSmoi vvv  (1.18) 

 






 








 


2
1

2
222 mSmoi vvv  (1.19) 

Subtracting  (1.18) from (1.19), we obtain. 

  2 1 1i i od m oc Sd m Scv v v v v v            (1.20) 

where vSd and vSc are the differential and common mode voltages of the source VS, defined as: 

 2 1
2 1 ;

2
S S

Sd S S Sc

v v
v v v v


    (1.21) 

From (1.8), vid=vi1vi2=vn. Thus (1.20) becomes: 

  1n od m oc Sd m Scv v v v v            (1.22) 

Solving (1.22) for vod, we get: 
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 

 
1 mn

od Sd Sc oc

m m m

v
v v v v

 

  

 
      (1.23) 

Where vn/m is the output noise. From (1.23) we find that the differential-to-differential gain Add is: 

 
    2

nominal 1

1 1m
dd

m

R
A

R

 

 

 
      (1.24) 

Due to mismatch  between the upper (R1A, R2A) and lower (R1B, R2B) part of the feedback network, 
the output differential voltage includes also a term that depends on the difference between the source 
common mode voltage (vsc) and the output common mode voltage (voc). Since voc is fixed to the 
constant VCMO, this means that the output differential voltage is sensitive to the source common mode 
voltage. Therefore, the common-to-differential mode gain (Acd) will be given by /m and the 
CMRR turns out to be [2]: 

 

1

dd
dd

cd m

A
CMRR A

A








   (1.25) 

Sincem is going to be independent of the resistance values (it is a matching error that depends 
only on relative resistance mismatches), the higher Add, the higher the CMRR.  

Equations (1.24) and (1.25) describe the behavior of the amplifier with respect to the output differential 
voltage. In a fully differential circuit, it is important also to study the behavior of the common mode 
component. Clearly, the output common mode voltage is known, since it is fixed to VCMO by the 
internal CMFB circuit. Then, the quantity that has to be determined is the input common mode voltage 
of the operational amplifier, Vic. In general, the reason of analyzing the common mode components is 
verifying that they do not exceed the corresponding ranges. Therefore, when analyzing the common 
mode components, the required degree of precision is usually much lower than for differential 
components. Then we will neglect the matching error , and we will use the average components m 
that we will consider equal to the nominal value . Summing up (1.18) and (1.18) and dividing the 
result by 2, we obtain: 

   ScCMOic vVV  1  (1.26) 

where vSc is the common mode voltage of the signal source, given in (1.21). For amplifications Add>>1, 
<<(1), so that Vic is nearly equal to vSc. It is then important to check that for every possible value of 
vSc (that depends on the type of signal sources), Vic stays inside the input common mode range of the 
amplifier.  

Fully differential instrumentation amplifier based on the 3-op-amp architecture 

A limitation of the amplifier of Fig. 1.11 (a) is its low input resistance. The differential mode input 
resistance is equal to 2R1, which cannot be made larger than a few M, due to limitation on the 
feasible resistance values. Very often, noise and bandwidth considerations impose much smaller values 
for R1, resulting in input resistances of a few k. These values are definitely too small for an 
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instrumentation amplifier. A possible solution is using the two-stage architecture shown in Fig. 1.12, 
representing the fully differential version of the well know three-opAmp architecture.  

 

Fig.1.12. A three-OpAmp fully differential instrumentation amplifier.  

The first stage, formed by the two single/ended op-amps, amplifies the input differential signal by 
(1+2RG2/RG1) but leaves the input common mode voltage unchanged. In ideal conditions (=0), the 
second stage, formed by the fully differential amplifier, amplifies only the differential signal and reject 
the common mode one. The output common mode voltage is fixed to VCMO and it does not depend on 
the input common mode voltage. It can be easily shown that this stage offers also a very high input 
resistance.  

The difference differential amplifier (DDA) 

We have obtained this result by adding two additional OpAmps of single-ended type. A possible 
question is whether it is possible to obtain a high resistance fully differential amplifier with precise gain 
using only a single fully differential amplifier. Note that in unipolar systems, a single-ended OpAmp 
can be used to build the non-inverting configuration, which has a high input resistance. Such a 
possibility does not exist for the in the fully differential domain, since the fully differential OpAmp 
does not perform the same function that the single-ended op-amp does in the unipolar domain. As 
Fig. 1.13 shows, in the unipolar domain, the single-ended op-amp accepts two distinct input signals, 
namely the inverting and non-inverting inputs. On the other hand, in the fully differential domain, each 
signal requires two connections, thus the op-amp accepts only one input signal. If we use that input for 
the feedback network, then there is not a free high resistance insertion point for connecting the 
amplifier to the signal source.  
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Fig.1.13. Equivalent block diagrams of the single ended (left) and fully differential (right) amplifier in the unipolar and fully 
differential domain, respectively.  

In the fully differential domain, the equivalent of a differential amplifier is the DDA (Differential-
Difference Amplifier) shown in Fig. 1.14.  

 

 

Fig.1.14. Symbol of the differential difference amplifier. The amplifier sums up signals VA and VB or, if the different 
convention of VB’ is used, subtracts VB’ from VA.  

The DDA is characterized by the following input/output ideal characteristic: 

    'BABAod VVAVVAV   (1.27) 

A DDA with a very high gain (ideally infinite) constitutes the DDA-OpAmp. It can be easily shown 
that, in terms of input and output signal, the DDA-OpAmp is the direct equivalent of the single-ended 
OpAmp: it is capable of amplifying the difference of two distinct signals (VA and VB’), and the input 
resistance at the two inputs can be made high by design (i.e. using a MOSFEF differential pair). An 
example of use of the DDA-op-amp is shown in Fig.1.15, where the architecture of an instrumentation 
amplifier is shown. Considering that no current flows into the input terminals, due to the very high 
resistance, then: 

 1

1 2

; with
2

A S B od

R
V V V V

R R
    


 (1.28) 

Substituting (1.28) into (1.27) we get: 
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  (1.29) 
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Fig.1.15. A DDA-based instrumentation amplifier 

Since A>>1, the gain of this instrumentation amplifier is then 1+2R2/R1. This architecture is frequently 
used in modern fully-differential integrated instrumentation amplifiers.  

A switched capacitor, fully differential amplifier. 

The switched capacitor approach can be used to obtain a fully differential amplifier capable of 
performing offset cancellation and flicker noise reduction by means of correlated double sampling 
(CDS). The schematic view of the amplifier is shown in Fig. 1.16.  

 

Fig.1.16. A fully differential switched capacitors amplifier. 

The operating cycle is divided into two phases. Position of the switches in phase 1 and 2 is indicated by 
the numbers close to the terminals. VRO and VRI are constant voltages. In the following analysis we will 
assume that C1A=C1B≡C1, C2A=C2B≡C2. We will analyze the amplifier by first considering the situation 
in phase 1, shown in Fig. 1.17.  
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Fig.1.17. Switch configuration in phase 1.  

It is a closed loop configuration already analyzed, for which: 
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Voltages of the various capacitors can be easily found: 
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 (1.31) 

In phase 1, the output differential voltage is given by: 

 )1(
noAoBod vVVv   (1.32) 

Then, only input referred noise voltage (including also the offset component) is present at the input.  

At the end of phase 1, all the switches are first open, so that the voltage across all capacitors are 
sampled (sampling instant). The sampling operation involve the addition of kT/C noise contributions to 
all the capacitors. We will neglect these errors in the following analysis for simplicity. To see how 
kT/C noise affects the output voltage of a switched capacitor circuit, refer to the charge amplifier 
(interface for capacitive sensors) discussed in Chap. 2. Then, we will assume that the voltages in (1.31) 
are sampled. When the amplifier get into phase 2, the situation shown in Fig. 1.18 occurs.  
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Fig.1.18. Switch configuration and charge transfer in phase 2.  

 

First, note that the input common mode voltage of the amplifier is not immediately known as in phase 
1. Its value will be calculated later; now, we will simply indicate it as Vic. Then: 
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(2) (2) (2) (2);
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The voltage across capacitors C1A and C1B is given by: 
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In phase 2, it is not possible to directly write the voltage across capacitors C2A and C2B, since they have 
one terminal connected to the output voltage, which is an unknown as well. We have to consider the 
charges Q2A and Q2B transferred into capacitors C2A and C2B, respectively and write: 
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 (1.35) 

Due to the extremely high input resistance of the amplifier, the charges into C2A and C2B are the sum of 
the charges that flows into the corresponding amplifier input terminals. These charges come mainly 
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from capacitors C1A and C1B, due to the voltage change they experience in the transition from phase 1 
to phase 2. Additional charges, which we have represented in Fig. 1.18 by QJA and QJB, derive from 
charge injection phenomena that will analyzed later.  

Then, we can write: 
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 (1.36) 

Using (1.31) and (1.35), we find: 
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 (1.37) 

Finally, we can calculate the output voltages as: 
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Then, using (1.37) and (1.33) we finally get the complete expression of the output voltages: 
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   (1.39) 

Output differential voltage. Subtracting voA from voB, with simple algebraic passages, we find the 
following expression for the output differential voltage: 
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The ideal behavior is that of an amplifier with gain A=C1/C2. A programmable gain can be easily 
obtained by using digitally programmable capacitors for C1 and C2. An example of programmable 
capacitor is shown in Fig. 1.19. Capacitor C is always connected since a configuration with zero 
capacitance is meaningless. The other capacitors, namely C00, C01 and C02 can be added to the total 
capacitance by closing the corresponding switches, controlled by digital lines b02.  
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Fig.1.19. A digitally programmable capacitor.  

In addition to the ideal output signal, we have two error contributions. One is due to the noise / offset 
voltage of the amplifier, vn, which appears as the difference between two samples taken at two different 
instants, and then undergoes correlated double sampling (CDS). The other error term, is due to charge 
injection. It is useful to refer both contribution to the amplifier input, by simply dividing the output 
error by gain A. The result is summarized in table 1.2:  
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A
vv nn
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Charge injection 
2C

QQ JBJA   
1C

QQ JBJA   

Table 1.2. Output and input referred error contribution for the switched capacitors amplifier 

It is important to state two points: 

-) For large values of A, the input referred noise of the amplifier coincides with the input referred noise 
of the OpAmp, after application of correlated double sampling.  

-) The charge injection contribution depends on the difference of the charges injected on the negative 
and positive side of the differential structure. Due to symmetry, the two charge components tend to 
compensate each other and the residual component will be only a matching error of the charges.  

 

Input common mode voltage. In a fully differential system, it is important to analyze also the common 
mode value of every node pair that represents the signals. This analysis is aimed to check that the 
common mode voltages do not experience variations that could exceed the input or output ranges of the 
block involved in the system. Therefore, no particular precision is required and broad approximations 
can be used 

In the case of the switched capacitor amplifier, the output common mode voltage is fixed to VCMO, 
while the source common mode voltage, VSC, is fixed by the characteristics of the source itself. 
Therefore, the only unknown is the common mode voltage of the operational amplifier inputs, i.e. Vic.  

Summing up the expressions of voA and voB given in (1.39) and dividing the result by two, we obtain:  
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Neglecting the charge injection term, which is not important due the low precision requirements, and 
solving (1.41), we get: 
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Note that in phase 1, Vic was equal to VCMO. It is desirable that this value is maintained also phase 2, or, 
at least, small variations with respect to VCMO are produced by the transition. To obtain this result VRO 
is set equal to VCMO and VRI as close as possible to VSC. In the case that it is not possible to predict the 
common mode voltage of the signal source, it is important to guarantee that, for none of the possible 
VSC values, Vic goes out of the input common mode range of the Op-Amp.  

The origin of charges QjA and QjB. 

Charges QjA and QjB have two main origins: 

 Charge injection from the switches 

 Charge induced by variation of the input common mode voltage of the amplifier (Vic).  

In this section, we will simply describe the second of the two causes, since the first one, namely charge 
injection from the switches, is a much more general problem for switched capacitor circuits, which has 
been already described in a previous chapter. As stated earlier, due to the symmetry of the circuit, 
injected charges on the viA and viB terminal can be expected to equal. Then, their contributions to QA 
and QB will be very close to each other and the finale effect on the differential output voltage should be 
negligible. However, component mismatch and the presence of a differential signal, will break the 
perfect symmetry, resulting in slight difference between the two injected charges. The effect is offset 
and signal dependent effects visible as harmonic distortion.  

The effect of a change in the input common mode voltage in the transition between phase 1 and phase 2 
is depicted in Fig. 1.20. The figure represent the amplifier with the parasitic capacitances between the 
input terminals and ground (common mode input capacitances). The other elements of the circuit, and, 
in particular, the feedback network have been omitted for the sake of simplicity.  

 

Fig.1.20. Input charges deriving from input common mode variation across phase 1 and 2  
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If the common mode undergoes a variation Vic, then the following charges flows through the 
parasitic capacitors Cp1 and Cp2: 

 pBicBpAicA CVQCVQ  ;  (1.43) 

Since there will be an unavoidable mismatch between Cp1 and Cp2, charges QA and QB will be 
slightly different, and the effect of this difference will introduce a contribution to the charge injection 
error reported in table 1.2. To minimize this effect it is important to keep Vic variation across phase 1 
and phase 2 transition as small as possible.  
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