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1 Operational amplifiers. 

1.1 Definition and specifications. 

 

The operational amplifier (op-amp) is an amplifier with the following characteristics: 

 

 Differential input 

 Very large DC gain 

 High input impedance on both inputs  

 Stability over a wide range of negative feedback conditions.  

 

The op-amp is a very versatile cell that can be used to build feedback loops, which, thanks to the large 
gain and high input impedance of the amplifier, perform operations showing low sensitivity to the 
amplifier characteristics.  

 

The operational amplifier shares many of its specifications with generic amplifiers (instrumentation 
amplifiers, low noise pre-amplifiers, power amplifiers etc.) but there are a few that are specific to this 
kind of amplifier and are related to the fact that operational amplifiers are designed to be used in closed 
loop configurations.  

In order to understand these specifications, we can focus on the typical closed loop configuration 
shown in Fig. 1.1 (a). The input signal is indicated with vs, and the output signal is vout. The open loop 
gain (with open output port) of the amplifier, is indicated with AOL, while the amplifier output 
impedance is indicated with Zout.; ZL is the load impedance. The figure refers to the small signal 
equivalent circuit. With such a network, we generally intend to synthesize a transfer function vout/vs that 
depends only on the transfer functions of the feedback network, defined by the following formulas, 
referring to the configuration of Fig. 1.1 (b): 
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If the amplifier is ideal, i.e. its output impedance is zero and its input impedance is infinite, the transfer 
function turns out to be: 
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If the gain AOL of the amplifier is high enough to make |NAOL|>>1, then the transfer function can be 
approximated by 
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In these conditions, the transfer function is set only by the feedback network while the amplifiers 
provides only the required gain to make this result occur and the required power to drive the load and 
the feedback network itself. The latter can be designed with only passive components (no power gain is 
required), that generally provide transfer functions that can be designed to be precise and stable with 
respect to temperature, process variations and time.  

Unfortunately the amplifier is not ideal. While the condition of high input impedance can be generally 
fulfilled, at least in a restricted frequency range, the output impedance is not negligible in most cases.  

 

 

Fig. 1.1. An op-amp based closed loop network (a); definitions of the feedback network transfer functions (b) 

The circuit can be rigorously analyzed using Pellegrini’s cut-insertion theorem [1], cutting the network 
at the amplifier input as in Fig. 1.2 (a). Since the amplifier can generally be assumed to be 
unidirectional, then Zp=Zi, where Zi is the input impedance of the amplifier. Considering appendix 3.2, 
we can write the overall transfer function as: 

 
AA

A

v

v

s

out
**

*

*

*

11 











  (1.4) 

where the transfer function * and * are calculated considering the network of Fig.1.2 (b), which 
differs from Fig. 1.1 (b) only by the presence of the impedance Zp=Zi in parallel to the error port of the 
feedback network: 
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Note that the higher |Zi,|, the closer * and * are to N and N, respectively. 

 

 

Fig. 1.2: Application of the cut-insertion theorem to the network of Fig. 1.1 (a); network used to define * and *.  

 

Parameters A and are calculated on the cut network of Fig. 1.2(a) and are given by: 

 

 

0

0
//

//





































p

s

vs

out

Lout

L

OL

vp

out

v

v

ZZZ

ZZ
A

v

v
A

: (1.6) 

 

where Z is the impedance seen by voltage source vo in Fig. 1.2 (b) and represents the loading effect of 
the feedback network on the amplifier output port. Note that, due to the output impedance Zout and the 
combined loading effect of ZL and Z , |A| is often significantly smaller than |AOL|. If we consider (1.4), 
we can compute the relative error of the transfer function with respect to the asymptotic one, -*/*, 
obtained for |A| that tends to infinity.  
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As stated above, the error given by (1.7) measures the relative discrepancy of the real transfer function 
with respect to the asymptotic function -*/*. However, as it is demonstrated in Appendix 3.2, -*/* 
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is exactly equal to -N/N, which is the ideal transfer function, calculated considering only the 
properties of the feedback network and no loading effects from Zp.  

Expression (1.7) shows that the relative error is the of the order of 1/|*A|. For more details on this 
topics and for a demonstration of  (1.4), see Appendix 3.2.  

 

Gain A, resulting from loading the amplifier with the specified load and with the feedback network, 
should be still high enough to make the relative error, given by (1.7), smaller than the maximum value 
allowed by the target application. This means that a low output impedance is desirable, but not 
mandatory for an op-amp. Many integrated operational amplifiers are marked by output resistances 
(Rout) of the order of several k, or even tens of k. In many applications, the total load resistance is 
much smaller than Rout, so that |A|<<|AOL|. This does not represent a problem as far as the residual |*A| 
value is still >>1.  

Maximum output current 

In the above discussion, we have stated that a low output impedance is not strictly required, provided 
that the resulting loop gain is still high enough. Dealing with the output impedance, we have implicitly 
assumed that we are working with small signal circuits. The scheme of Fig. 1.1 (a) implement the ideal 
transfer function -/ regardless of the value of the load impedance ZL, obviously provided that |ZL| 
does not get so low that |A| drops below the minimum value for keeping the error R negligible.  This 
is equivalent to say that the closed loop circuit has a very low output impedance independently of the 
op-amp open loop output impedance. This is a well-known benefit of negative feedback.  

The situation can be different if we consider large signals. Due to saturation of one or more stages in 
the op-amp, the output stage can be unable to feed the current needed to produce the required voltage 
level in the output load (comprehensive of the feedback network load Z). Then, the real specification 
that we will be obliged to consider is the maximum current that the output stage can feed to the load. 
Generally, it is important to take into account both the maximum positive and negative output currents.  

The maximum output current affects the maximum output swing (at a certain total load RL) according 
to the following conditions: 

 OPLoutONL IRVIR     (1.8) 

where ION and IOP are the maximum currents (absolute values) that the output port can sink (negative 
current) or source (positive current), respectively.  

A maximum output current can be required also if a pure capacitive load has to be driven. In that case, 
the currents ION and IOP determine the limits imposed by the output stage on the falling and rising 
slopes of the output voltage, respectively. 

Stability 

The stability of an op-amp clearly refers to cases where it is used in closed loop configuration to 
implement blocks different from oscillators and latches. The important quantity to be taken into 
consideration is the loop gain A. A general-purpose op-amp should be designed to be stable in a wide 
variety of negative feedback configurations. A typical requirement is that the amplifier is stable when 
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= 1 (conventionally indicated as “unity gain condition”). Figure 1.3 shows a sketch of a possible 
Bode plot of the A magnitude and phase. In order to have dc stability, since |A|>>1 for the reasons 
exposed above, A should be negative at zero frequency, that is the phase diagram asymptotically tends 
to 180° when the frequency tends to zero. Due to the reactive elements present in the circuit (normally 
capacitances), the phase will decrease as the frequency is progressively increased. At the same time, the 
magnitude will also decrease. In order to obtain stability, it is important to guarantee that for no 
frequency the following conditions simultaneously hold: 
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In practice, we have to avoid that the phase becomes zero at a frequency where the magnitude has not 
yet fallen below the zero dB line. The frequency, at which |A|=1 (0 dB), is called the unity gain 
frequency and is indicated with f0. The residual phase at f=f0 is called phase margin (m). A high phase 
margin is required to guarantee stability even in the case of large device parameter variations due to 
temperature and process spread. Large phase margins also reduce unwanted features of the closed loop 
step response, such as overshoot and ringing. Generally, particular techniques are required to shape the 
open loop frequency response of an operational amplifier to obtain the behavior of Fig. 1.3 with a 
sufficient phase margin. These operations are indicated as frequency compensation of the amplifier.  

The frequency response of general-purpose op-amps is generally of dominant pole type, as that shown 
in Fig. 1.3, where the dominant pole frequency is indicated with fp. It should be desirable, when 
possible, to place all non-dominant singularities beyond f0. In the case of unity gain configuration, 
shown in Fig. 1.3, || reaches the maximum value achievable with a resistive feedback network, that is 
||=1. The corresponding magnitude response of A is shown in Fig. 1.3. If we have to design an 
amplifier with a gain > 1, the required || will be < 1. In this case, the phase diagram will be unchanged 
while the magnitude diagram will shift down, as shown in the figure. As a result, f0 will be lower than 
in the unity gain case and the phase margin increases, improving stability. For this reason, the unity 
gain condition is generally considered as a worst case in terms of stability requirements. 

In the case that only a single non-dominant pole (indicated with f2 in the figure) affects the phase at f0, 
the phase margin (in radians) will be given by: 
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In two stage op-amps, it is often possible to assume that only one non-dominant pole exists. By design, 
the frequency f2 is set at a value equal to f0, where  is a sort of safety factor. A typical value is  =3, 
which, according to Eq. (1.10), provides a phase margin of nearly 72°. Phase margins for various 
values of  are given in Table 1.1.  

 0.5 1 2 3 5 

m 26.6° 45° 63.4° 71.6° 78.7° 
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Table 1.1. Phase margin for various =2/0 values. 

The effect of singularities at frequencies higher than f2 will usually further reduce the actual phase 
margin; therefore, this procedure should be used as an approximate method to set the phase margin. 
More precise estimation and refinement of the phase margin has to be performed by means of an 
electrical simulator.  

 

Fig. 1.3. Magnitude and phase diagram of the loop gain for only two singularities.  

As stated earlier, use of the op-amp in closed loop configurations with |<1 facilitates the achievement 
of stability. For this consideration, we have assumed that  is a real, negative number. Examples of 
feedback networks that satisfy this property are either all resistor networks or all capacitor networks 
such those of Fig. 1.4. If an op-amp is designed to be unity gain stable, it will remain stable if used with 

|<1. Op-amps for special applications may be designed to be stable for 1 MAX . In this case, it is 

not guaranteed that the amplifier is stable in unity gain configuration. If such an op-amp is used in non-
inverting configurations, where the closed loop gain is |AV|=|1/|, there will be a minimum gain  
AVMIN =1/MAX  > 1, below which the amplifier may be unstable. For examples, commercial amplifiers 
such as the Analog Devices OP37 are guaranteed stable for AV > 5.  

Speed Specifications. 

For an operational amplifier, speed is expressed by two specifications: the Gain-Band-Width product 
(GBW) and the slew rate. The GBW is a small signal parameter. It is particularly useful if we can 
consider that the amplifier open loop frequency response is characterized by a single pole, i.e. the open 
loop gain AOL is given by: 
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where p =2fp and fp is the pole frequency. In this case, if A0>>1, (which is always true for an op-
amp), the unity gain frequency f0 is practically equal to A0fp, so that f0 coincides with the GBW. An 
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approximate very useful equation that is strictly applicable if fp is the only singularity, but works fine 
also in the case that fp is the dominant pole, is the expression that gives the upper band limit (-3 db) of 
an amplifier built connecting an op-amp in closed loop with an all-resistor network: 
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where fH and AV0 are the upper band limit and dc gain of the closed loop amplifier, respectively. 
Expression (1.12) is valid for the non-inverting amplifier of Fig. 1.1 (b) and can be applied also to the 
typical inverting amplifiers of Fig. 1.4 (a), substituting AV0 in (1.12) with |AV0|+1. It can be shown that 
the validity of (1.12) can be extended to all those cases of feedback network characterized by a pure 
real transfer function () from dc to f0. This is the case of all-capacitors network, such that of Fig. 1.4 
(b), which are commonly used in switched capacitors architectures.  

 

Fig. 1.4. Feedback configuration resulting in a pure real  transfer function.  

The singularities that can be calculated using the GBW are suitable to describe the response to small 
signals. For example, the time constant, which characterizes an inverting or non-inverting amplifier like 
those depicted above, is =(2fH)-1. If a step of small amplitude is applied to those amplifiers, the 
output voltage settles to the finale value after several time constants (e.g. 4.6  for 1 % residual error). 
However, fH (and thus GBW, from which fH is derived) is not sufficient to calculate the response to 
signals as large as to saturate the amplifier input stages. In these cases, the amplifier output voltage 
varies at a fixed rate, which is independent of the input signal.  

The maximum rising and falling rate of the output voltage is indicated as slew rate (sR). If we apply a 
step of large amplitude to an amplifier built using an op-amp in closed loop configuration, the response 
is initially a ramp with a slope equal to the sR. This slope is smaller (even much smaller in the case of 
very large steps) than it would result from a the pure linear response. When the output voltage gets 
close to the final value, the input stages exit from saturation and the response is linear again, so that an 
exponential approach begins. In the case of very large steps, most of the settling time is spent with the 
amplifier in slew rate, so that the settling time itself can be approximated by Vout / sR. where Vout is 
the amplitude of the output step.  

In the particular case of sinusoidal input, the slew rate produces a distortion of the output voltage that 
begins to show at the points of maximum derivative, i.e. at the instants where the sinusoid crosses the 
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zero value. The maximum undistorted output amplitude allowed to a sinusoid of frequency f is given 
by: 

  
f

s
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2

max    (1.13) 

If the amplitude is much higher than the limit given by (1.13), the output voltage approximates a 
triangular waveform.  

 

To summarize, a reasonably complete set of specifications for a CMOS operational amplifier is the 
following: 

 

 DC gain A0 

 Speed: Gain-Band-Width product (GBW) and Slew rate (sR) 

 Closed loop stability: e.g. phase margin in unity gain configuration and particular load 
conditions (typically a maximum load capacitance CL is specified) 

 Input referred voltage noise: Thermal noise density: SvT,  Flicker noise: kF=fSvF(f) 

 Offset (Input offset voltage: io) 

 Static power consumption (Isupply, minimum Vdd) 

 Maximum output current (positive and negative) 

 Ranges: Input common mode range (CMR), output swing.  

 Common mode rejection ratio (CMRR) and power supply rejection ratio (PSRR). 
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1.2 Operational amplifier design: general considerations.  

As for other analog circuits, the design of an operational amplifier can be divided into two well distinct 
steps: 

1. choice of the topology; 

2. device sizing. 

For the first step, it can be useful to consider a small set of different topologies, which can efficiently 
satisfy the most common requirements. It is a good idea to start from the simplest circuit and then 
increase its complexity only if the specifications cannot be met. The most important parameter that 
discriminates operational amplifier topologies is the number of stages. For an operational amplifier, the 
stages to be counted are only the gain stages. The following considerations about the number of stages 
can be drawn: 

 Single stage amplifiers are characterized by only one high resistance node. The 
dominant pole will be associated to that node. Frequency compensation can be achieved 
by simply connecting a capacitor between the high impedance node and ground, 
lowering the pole frequency and, consequently, the unity-gain frequency f0. If the high 
impedance node is the output node, the amplifiers are indicated also as OTAs 
(Operational Transconductance Amplifiers). Relatively high voltage gains (up to 80 dB) 
can be obtained with single-stage cascode OTAs. However, their application is limited 
only to op-amp intended to drive capacitive loads, since the high gain relies on the high 
output resistance that vanishes when resistive loads are applied. Application of source 
follower stages between the high impedance node and the output port may eliminate this 
problem, but its use is discouraged due to the output swing penalty introduced by these 
stages.  

 Two-stage op-amps are characterized by two high impedance nodes. For the same 
reasons of OTAs, source-follower output stages are seldom used, so that the high 
impedance node of the second stage coincides with the output port. With non-cascode 
two-stage amplifiers, it is possible to obtain the same gains of cascode OTAs but 
without the necessity of an extremely high output resistance. Much higher gains can be 
obtained by using a cascode first stage. In this way, it is only the internal high resistance 
node to be boosted, with no effect on the output resistance. Open loop gains up to 
120 dB can be reached with two-stage op-amps. Frequency compensation of two-stage 
op-amps is generally accomplished through Miller compensation.  

 Three or more stage op-amps are necessary when the required gain cannot be achieved 
with two-stage architectures. This occurs when MOSFETs with sub-micron lengths are 
used, for example to achieve very high GBWs. Short lengths increase the MOSFET , 
reducing the device output resistances. Low supply voltages, preventing the use of 
cascode stages, contribute to reduce the maximum gain available with two-stage op-
amps, increasing the demand for multiple stage amplifiers. Compensation is more 
critical in multiple stage amplifiers. Nested Miller schemes are often adopted.    



P. Bruschi:  Notes on Mixed Signal Design   Chap.3, Part 2 

 

10 

 

In the next part of this chapter, we will focus on two stage amplifiers, which still represent the mostly 
used op-amp category. 

1.3 Operational amplifier design: two stage operational amplifiers 

We will analyze the basic two-stage CMOS op-amp, for which we will describe a relatively simple 
sizing strategy, aimed at satisfying important specifications.  

The simplest two-stage CMOS operational amplifier is shown in Fig. 1.5, where the two high resistance 
nodes are indicated with H and O. The circuit is biased by M8, which will be omitted in next figures. 
The bias voltage VBIAS, produced by M8, drives M7 and M6 current sources, providing the bias currents 
of the first and second stage, respectively. The group RC-CC is introduced to perform frequency 
compensation. We have considered that the amplifier is powered by a single supply voltage Vdd. In the 
case of dual power supply, gnd should be replaced with VSS <0. 

 

Fig. 1.5. The simplest two-stage CMOS operational amplifier 

 

Degrees Of Freedom 

Sizing is the operation by which the device parameters (e.g. width / length for MOSFETs) and bias are 
chosen in order to obtain the required performances. Not all parameters are independent, so that it is 
possible to find a restricted set of values, from which all the others can be derived. Parameters in this 
set are called Degrees Of Freedom (DOFs). Clearly, there is not a single set of possible DOFs for a 
circuit but the choice of a proper DOF-set facilitates the sizing operation. If we exclude M8, which can 
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be considered an external element of the cell (a single device can provide VBIAS to several op-amps), 
the circuit has five independent MOSFETs (M1=M2 and M3=M4) and two passive elements (RC, CC). 
Considering that each MOSFET introduces two parameters (W, L), we have an initial set of 12 DOFS 
(including CC and RC), to which I0 has to be added. Note that I1 = I06/7, thus it is not a free parameter. 
The total DOFS are then 13. We can start considering only the DOFs that affect the operating point, 
neglecting for now the compensation network. The resulting set of 11 DOFs can be further reduced 
introducing a few relationships that will be explained in the following paragraph.    

Static equations 

-) Null systematic offset. In the nominal design, we usually require that for null input differential 
voltage (Vid=0), the output voltage is zero. Since no random mismatch errors are present in the nominal 
design, deviation from this condition means that a systematic offset is present. In a single power supply 
circuit, the conventional zero voltage for signals cannot coincide with the gnd potential, otherwise 
negative signals could not be represented, being the output node prevented from getting lower than the 
lowest power supply rail (i.e. gnd). We generally specify an intermediate point between Vdd and gnd as 
the signal zero level. A typical choice fro the zero level is Vdd/2, but also other solutions are possible. In 
same cases, the zero level is chosen to suit the input range of the stage that follows the op-amp. Note 
that it is not possible to precisely determine the output voltage of the op-amp of Fig. 1.5. The reason is 
that M5 and M6 behave as two opposed current sources and, if both are in saturation region, the 
resulting voltage strongly depends on the effect of VDS on the drain current, effect that is not precisely 
predictable. We can impose a much simpler relationship regarding the output short-circuit current 
instead of the output voltage. If we short-circuit the output port by connecting it to a voltage source 
equal to the required zero level (e.g. Vdd/2), which should keep both M5 and M6 in saturation, the 
short circuit current will be: 

 65 DDSCout III     (1.14) 

Considering all MOSFETs in saturation region, the current ID6 is given by: 

 0

7

6
6 IID




    (1.15) 

For zero input differential voltage, currents and voltages in the input stage are symmetrical. Current I0 
is then split into two equal parts flowing through the M1 and M2 branch. Furthermore, in these 
conditions, points K and H in Fig. 1.5 are at the same potential. As a result, M5 and M3 has the same 
VGS (remember that this condition occurs only for null differential voltage) and the current ID5 can be 
written as: 
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    (1.16) 

Substituting ID6 and ID5 from (1.15) and (1.16) into (1.14) and imposing Iout-SC=0, we get a condition 
for the betas: 
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Note that a small Iout-SC is able to produce large output voltage variations, due to the relatively high 
output resistance (equal to the parallel of rd5 and rd6). Even Iout-SC values of a few percent of the 
MOSFET quiescent drain currents can produce output voltage variations as large as to push either M5 
or M6 into triode region (saturation of the output voltage).  

-) Symmetrical output swing. The output voltage can approach the gnd and Vdd rails, but should 
maintain a distance from them equal to M5 and M6 saturation voltage, in order to prevent them from 
getting into triode region. The output swing will then be given by: 

   
65 tGSddOUTtGS VVVVVV     (1.18) 

The output swing is symmetrical if the minimum distances from the gnd and Vdd rails are identical. This 
condition can be useful for general-purpose op-amps and is obtained imposing: 

  
65 tGStGS VVVV     (1.19) 

-) Precise current mirroring. Condition (1.17) is based on the assumption that ID6/ID7 and ID5/ID3 
current ratios coincides with the respective beta ratios. This clearly requires that the threshold voltages 
of the MOSFETs involved in the ratios are equal. Considerable differences in the threshold voltages 
can be caused by using device with different lengths. Note that errors in the current ratios in (1.17) may 
introduce a non-negligible output short circuit current, which would introduce a systematic offset. This 
problem can be mitigated by imposing:  

 76 LL     (1.20) 

 53 LL     (1.21) 

Choice of the static DOF set 

Reducing the number of DOFs may significantly simplify amplifier sizing. Every additional equation 
reduces the DOFs by one unit. Equations regarding the DOFs are called “equality constraints”. This 
distinguishes equations from “inequality constraints”, consisting in inequalities generally related to 
amplifier specifications (e.g. GBW > 10 MHz).  Starting from the initial set of 11 static DOFs, if we 
consider equations (1.17), (1.19), (1.20), and (1.21) we reduce the DOFs to only 7 parameters. We will 
follow this approach in the next part of this chapter. However, it should be observed that only (1.17) is 
strictly mandatory. Adopting also the other three conditions, might results in design limitations that 
completely counterbalance the advantages deriving from precise mirroring and symmetrical output 
swing. In these cases, the designer can selectively remove one or more arbitrary constraint and estimate 
the possible negative effect using proper simulation tools.  

As we have stated earlier, there are several equivalent way to choose the residual 7 DOFs. A possible 
criterion, followed in the rest of this chapter, is that of assigning as much as possible DOFs to the 
device that perform the main operations. In the circuit of Fig. 1.5 these devices are the active 
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MOSFETs of the first and second stage, i.e. M1 (together with M2) and M5. To define M1 and M5 
completely, we have decided to include their dimensions (W and L) and the overdrive voltage (VGS-Vt) 
into the DOF set. In this way also M1 and M5 operating point is fixed. To reach the total number of 7 
(static) DOFs, L6 has also been included into the DOF set. The complete set of static DOFs is then:  

  6555111 ,)(,,,,, LVVLWVVLWDOFs tGStGS     (1.22) 

From these DOFs, it is possible to derive all the other static circuit parameters. We will refer to the case 
of all devices in strong inversion, but extension to the case of moderate/weak inversion is possible by 
using the respective equations of the current in place of the square-law approximation used here. First, 
note that M1 and M5 currents are known, being given by: 
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    (1.23) 

Device M3 is then completely determined by: 
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3135353

2
,,)()(    (1.24) 

As far as M6 is concerned its length L6 belongs to the DOFs. The other parameters can be obtained 
adding condition (1.19) and considering that ID6=ID5: 

  5 6 5 5 66
( ) ,GS t GS t D DV V V V I I           (1.25) 

Finally, M7 is completely determined considering that, using (1.20): 

 176767 2,,)()( DDtGStGS IILLVVVV     (1.26) 

 

Small signal equivalent circuit 

Figure 1.6 shows the small signal equivalent circuit of a two-stage amplifier. This circuit is 
representative of a large class of two stage topologies. In this circuit, with the uppercase letter Gm we 
have indicated the transconductance of a whole stage. Gm1 and Gm2 are then the transconductances of 
the first and second stage, respectively. The transconductance of single devices will be indicated with 
the lowercase symbol gm, as customary. Parasitic capacitances related to the input terminals (M1 and 
M2 gates) are neglected in this analysis.  
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Fig. 1.6. Simplified small signal equivalent circuit of a generic two stage op-amp.  

In the case of the amplifier of Fig. 1.5, the parameters of the small signal circuit are related to the 
device parameters according to the following relationships: 
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where CL is the load capacitance while C2’ is the part of C2 due to the parasitic capacitances, i.e.: 

 652 ' DBDB CCC     (1.30) 

D.C gain. 

The circuit in Fig. 1.6 can be easily solved to calculate the d.c. gain A0=vout/vid : 

 22110 RGRGA mm    (1.31) 

Using the general expressions: gm=ID/VTE and rd=1/(ID) into (1.27) and (1.28) to calculate Gm1.Gm2, 
R1,R2 and considering that ID1=ID3 and ID5=ID6, we get: 

 
   653151

0

1111




TETE VV
A    (1.32) 

This expression indicates that, in order to obtain a large d.c. gain, it is necessary to: 

 Set the VGSVt of the active transistors (M5 and M1) to the minimum level in order to get a 
small VTE value. Note that VTE asymptotically tends to VT when VGSVt gets so low that the 
devices enter weak inversion. Below that point, there is no significant advantage to reduce 
VGSVt any further. 



P. Bruschi:  Notes on Mixed Signal Design   Chap.3, Part 2 

 

15 

 

 Use device lengths considerably greater than the minimum value, since the lambda parameters 
increase as the channel lengths are reduced.  

Frequency response 

Solution of the small signal circuit of Fig. 1.6 in the s domain gives three poles at angular frequencies 
p, 2, 3, and one zero sz. Approximate expressions of these singularities are the following [2]: 
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   (1.33) 

Note that CS is the series of C1 and C2, while CS3 is the series of all three capacitors present in Fig. 1.6. 
The approximations used to obtain expressions (1.33) are valid if p<<2. i.e  when p is really a 
dominant pole. This condition is automatically verified, provided that Cc is of the same order of the 
other capacitors (C1 and C2), R1 and R2 are of the same order of magnitude and Gm2R2>>1. Note that all 
these conditions are generally valid in all practical two-stage op-amps. The zero sz may be positive, and 
this has unfavorable consequences on the phase margin, since it adds phase delay to the unavoidable 
contribution of the poles. The zero is certainly positive if RC is zero. Choosing a proper value for RC it 
is possible to eliminate the zero or make it negative.  

Considering that the frequency response is dominated by p up to the unity gain frequency (0), the 
latter is then given by: 

 
c

m
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00   (1.34) 

Therefore, the gain bandwidth product will be given by  

 





2
0

0fGBW  (1.35) 

Design for GBW and stability 

Stability in closed loop configuration is the main aspect of op-amp design since it has to be guaranteed 
independently from other performances. As we have seen in previous paragraphs, stability is closely 
related to the GBW. Nevertheless, even if we are designing an op-amp to be used only for d.c. signals, 
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it has to be stable in closed loop configuration, thus the arguments described in this chapter have to be 
mandatorily addressed. Figure 1.7 shows an idealized magnitude and phase diagrams of the open loop 
amplification A. Differently from Fig. 1.3, we have not considered here the value of . The plots can be 
used to investigate the case = 1 (unity gain configuration) that we have seen to be the worst case for 
stability. The magnitude diagram of A coincides with that of A in unity gain configuration while, due 
to the negative sign of , the A phase diagram can be obtained by shifting the phase diagram of A by 
180°. As a result, the phase margin in Fig. 1.7 is the difference with respect to the line 180°. 
Furthermore, here we have indicated the angular frequencies instead of frequencies to simplify the 
discussion that follows.  

 

Figure 1.7. Open loop  magnitude and phase response with wide phase margin: excellent design.  

Figure 1.7 represents an ideal situation, where a relatively large phase margin is present. Note that we 
have indicated only the dominant pole and the first non-dominant pole. Equations (1.33) indicate that 
also a zero is present. Let us indicate the angular frequency of the zero with z = |sz|.  If RC=0, the zero 
is positive, and its angular frequency becomes equal to Gm2/Cc. This value is comparable to 0, since 
Gm1 and Gm2 are of the same order of magnitude. Considering that the zero lies in the RHP (Right Half 
Plane) of the complex domain, it will give a phase delay equivalent to that of a LHP (Left Half Plane) 
pole. Therefore, the presence of the zero will reduce the phase margin and could eventually lead to 
instability, as in the example of Fig. 1.8 that refers to the case ||=1.  
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Fig. 1.8. Adverse effect of the right-half-plane (RHP) zero.  

Clearly, Fig. 1.8 shows one of the possible cases. If z is significantly larger than 0, the response can 
still be stable. However, even in this case, the zero will reduce the phase margin. Resistor RC is then 
added to modify z. Various strategies are possible. The first (and simpler) strategy is pushing z to 
infinity, practically cancelling the zero. This is obtained by choosing RC=1/Gm2. An alternative strategy 
is choosing a particular value of RC that makes the zero negative (with RC>1/Gm2) and equal to 2. In 
this way, the zero and first non-dominant pole cancels out each other [3]. This attracting strategy is less 
robust than the former, due to the necessity of precise matching between 2 and z. Furthermore, note 
that 2 is dependent on the load capacitance, therefore cancellation occurs only for a given load 
condition. It can be objected that also making RC=1/Gm2 requires an excellent matching, but in this 
case, if a mismatch is present, z is no more infinite but still remains at very high frequencies and can 
be neglected as well. Resistor RC can also be chosen to be slightly larger than 1/Gm2 to assure that sz 
remains negative even in the presence of mismatch but still at much higher frequencies than in the case 
RC=0. In the next part of this discussion, we will assume: 

1. The choice RC=1/Gm2 is made, so that the zero can be neglected; 

2. The phase margin is determined only by 2 and 0, according to Eqn. (1.10). This is equivalent 
to considering that 3 and other possible singularities are located at frequencies much higher 
than f2.  

In order to obtain the required phase margin m we will impose: 

 02   (1.36) 

where  is chosen using (1.10) to provide the desired phase margin. As we will see,  is paid in terms 
of performance, so that a tradeoff should be sought. A typical choice is=3, resulting in a theoretical 
phase margin of around 70 degrees. The real phase margin of the amplifier will generally be worse, 
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owing to the contribution of other singularities that we are neglecting in this simplified analysis. For 
this reason, it is necessary to aim at phase margin significantly higher than the real target value.  

By substituting the expressions of 2 and 0, given in (1.33) and (1.34), into (1.36), one could calculate 
the value of the compensation capacitor [4]: 
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In this way, Cc is no more a DOF, since it can be expressed in terms of the 7 static DOFs. Indeed, Gm1, 
Gm2 and C1, C2 are actually functions of the DOFs indicated in (1.22). Since also RC has been 
eliminated from the DOFs with the choice RC=1/Gm2, the only remaining DOFs are those specified in 
(1.22). Furthermore, this expression could be put into (1.34) and (1.35) in order to calculate the GBW 
as a function of the DOFs. In practice, this does not lead to equations that can be used to perform 
manual design of the amplifier, since too many DOFs still appear in (1.37).  

It is then necessary to introduce approximations aimed at simplifying the analysis and provide clear 
indications to the designer. We will then introduce two hypotheses that have to be always checked at 
the end of the design work: 

Hyp. 1 CCCC ,21     (1.38) 

Hyp. 2 LCC '2    (1.39) 

In practice, hypotheses 1 and 2 means that the parasitic capacitances C1 and C2’ are negligible with 
respect to the load and compensation capacitances. Hypothesis 1 can be used to simplify the expression 
of 2 given in Eqns.(1.33). If C1<<C2, then the series capacitance CS is nearly equal to C1. Using 
hypothesis 1 again, C1<<CC, thus we can write: 
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Using Hyp.2, we can finally write: 
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Now, using (1.35) and stability condition (1.36), we can write a useful expression of the GBW: 
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Equation (1.42) states that, to obtain a given GBW, it is necessary to start designing the output stage. 
This seems in contrast with (1.34) and (1.35), which relate the GBW to parameters of the first stage 
(Gm1) and the compensation capacitor. Actually, (1.34) and (1.35) are correct for the analysis of the 
amplifier, but not immediately useful during the synthesis. In fact, 0 is not a free parameter but, once 
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the phase margin has been chosen, it cannot be larger than 2/. Thus, in order to obtain a certain value 
of 0, we have to “make room to it” by setting 2. If Hyp.1 and Hyp.2 are valid, 2 depends only on 
parameters of the output stage and this explains Eq. (1.42).  

We can further transform (1.42) to highlight the role of the various DOFs involved. Considering that, 
for the amplifier of Fig. 1.5, Gm2=gm5, we have: 
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  (1.43) 

Equation (1.43) directly relates the GBW to the current consumption of the output stage. A high GBW 
is paid mainly in terms of current consumption. Once the target GWB has been fixed, it is possible to 
choose a small (VGS-Vt)5 value in order to reduce VTE5 and then obtain the GBW with an as small as 
possible current consumption. Unfortunately, this condition can be in contrast with other constraints, as 
it will be shown in the section regarding offset and noise. In next part of this paragraph we will show 
also that a small (VGS-Vt)5 may lead to violate Hyp. 1 and 2.  

Equation (1.43) seems to indicate that there is no upper limit to the GBW, the problem being only 
power consumption. Furthermore, this equation is independent of process parameters. This is true until 
Hyp.1 and 2 are valid. To understand what happens when Hyp. 1 and 2 are not applicable, let us 
consider the expression of ID5, referred to strong inversion operation, for simplicity: 
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In order to increase ID5 with fixed VGSVt and L, it is necessary to increase W5. This produces an 
increase of the parasitic capacitances of M5 and, in particular, CDB5 and CGS5. According to Eqns.(1.29)
, these two capacitances appears in the expression of C1 and C2’, respectively. Therefore, there will be a 
value of ID5, over which the hypotheses will not hold any more and Eqn. (1.42) cannot be applied any 
more. It can be useful to rewrite (1.40) without the approximations given by Hyp.1, and 2. The only 
exception will be the approximation CS/CC<<1, which will be considered to be still valid, since CC can 
be properly chosen high enough to make this happen. Using the strong inversion approximation for 
Gm2=gm5, we get: 
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Parameters CJ and LC are the junction capacitance per unit area and the minimum length of the 
drain/source diffusion, respectively. Both LC and CJ have been assumed identical for p-MOS and 
n-MOS devices, for simplicity. Dividing both the numerator and denominator in (1.45) by W5, we get 
the following expression: 
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The ratio W6/W5 in (1.46) can be regarded as a constant term, since an increase of W5 should be 
followed by an identical increase of W6 to maintain 6=5, imposed by Eqn. (1.25).  

If ID5 is increased to obtain a large GBW, according to Eqn. (1.43), W5 should be increased as well. 
Eqn. (1.46) shows that the GBW does not increase indefinitely, but tends to an asymptotic value given 
by: 
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 (1.47) 

This value is deeply process dependent. The behavior of GBW as a function of W5 (i.e. ID5) is sketched 
in Fig. 1.9. 

 

Fig. 1.9. GBW dependence of W5 for fixed (VGS-Vt)5  and L5. 

First, consider curve A, obtained varying W5 while keeping (VGSVt)5 and L5 fixed. Starting from low 
W5 values, corresponding to low M5 drain currents, we find a linear region. Here the GBW is 
proportional to ID5, thus (1.43) is applicable. We have indicated with W5* the upper limit of the linear 
region. For W5> W5* the GBW begins to saturate to the final value given by (1.47). If we choose 
different (VGSVt)5 and L5 values, so that the ratio (VGS-Vt)5/L5 is larger, then we get a similar GBW 
curve that saturates to a higher GBW value. This is represented in Fig. 1.9 by curve B. The transition 
between the linear to the saturated region occurs when the load and parasitic capacitances becomes 
comparable. This occurs at the same W5* value for both curves A and B. Nevertheless, considering the 
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drain current expression given by (1.44), the value of ID5 for which the linear relationship holds is 
higher for curve B.  

It is interesting to consider two different design cases where we will assume that the length L5 is fixed 
while (VGS-Vt)5 is a free parameter (i.e. it is not fixed by other specifications), Referring to Fig. 1.9, in 
the first case the required GBW is indicated by the value GBW1. We note that both curves A and B 
satisfy the specification with W5 in the linear zone, then (1.43) is valid. In this case, it is convenient to 
choose curve A, since the (VGSVt)5 is smaller and, from (1.43) the power consumption (due to ID5) is 
lower. In the second case, it is required to reach GBW2. This value cannot be achieved with curve A 
and the designer should use a larger (VGSVt)5 and, from (1.43), a larger power consumption. Clearly, 
for a given process and power supply voltage, there will be a maximum GBW that cannot be exceeded. 
The continuous improvement of CMOS processes, manly aimed at scaling down the minimum channel 
length, has produced a corresponding increase in the maximum achievable GBW. In the following part 
of this discussion, we will assume that Hyp.1 and 2 are valid, so Eqn. (1.41) holds. 

Once the value of Gm2 has been determined, it is necessary to calculate the value of the compensation 
capacitor CC and of the first stage transconductance Gm1.  

Going back to the expressions of 0 and 2, given by Eqns. (1.34) and (1.41), respectively, and 
combining them with the stability condition (1.36), we find: 
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from which we obtain CC: 
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In order to calculate CC the designer has to decide the value to assign to Gm1/Gm2. The parameter to be 
considered is the value of CL. It is possible to start from a commonly used rule of thumb that assigns: 

Rule of thumb: 
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 (1.50) 

Since generally ~3, this means Gm1=Gm2/3. The rule of thumb has the advantage of being simple and 
making easier to satisfy Hyp. 1, because if CC=CL then: 

 11 alsothenif CCCC CL   (1.51) 

The rule of thumb is no more convenient if CL is so large that CC occupies too much silicon area. Note 
that the amplifier can be designed to drive loads that are external to the chip, so that CL may be 
relatively large, even up to a few nF. In these cases, it can be convenient to choose smaller Gm1/Gm2 
ratios in order to reduce CC. For example, we can choose: 
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It should be observed that there is no risk that CC becomes too small to satisfy Hyp.1, since we have 
assumed that CL is particularly large.  

Finally, it is important to consider what happens if we have designed an op-amp for a certain CL value 
and the same op-amp is used with a smaller CL. Note that CL is generally a maximum load capacitance 
specification, thus the amplifier has to remain stable in closed loop conditions even if CL is completely 
removed. Let us consider the consequences of reducing CL (or completely removing it) with respect to 
the value used to design the amplifier: 

 The unity gain angular frequency 0 does not change, since it is given by (1.34) where CL is not 
present.  

 The first non-dominant pole 2 is affected by CL since it is included into C2. Reducing CL will 
probably lead to violate Hyp.1 and Hyp.2. Therefore, the expression of 2 given in (1.33) 
should be used. Reducing C2, reduces also CS. Thus, 2 shifts to higher frequencies for two 
concurrent reasons: (i) denominator (C1+C2) decreases and (ii) also the ratio CS/CC decreases. 

For these reasons, if we reduce CL with respect to the specified value, the ratio 2/0 increases and so 
does the phase margin. On the contrary, if we increase the value of CL over the value used to design the 
amplifier, the phase margin will progressively decrease and will eventually get negative, resulting in 
unstable closed loop configurations. This situation is common to most two-stage amplifiers.  

Relationship between GBW and slew rate  

The slew rate is the maximum rate by which the amplifier output voltage can increase and decrease. 
The effect occurs when one of the amplifier stage saturates and its current reaches the maximum value. 
In a two-stage op-amp, slew rate is generally due to saturation of the input stage. As Fig. 1.10 shows, 
the combination of the amplifier second stage (inverting) and compensation capacitor forms a Miller 
integrator having the output current of the first stage as its input. It can be demonstrated that this 
schematization is valid for frequencies much higher than the dominant pole fp.   
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Fig.1.10. Simplified model used to determine the slew rate.  

Due to its small value, the resistance RC can be neglected while considering a first order approximation 
of the integrator step response. The output load, represented in Fig. 1.10 by ZL, can be considered equal 
to capacitance C2, which, as we have seen, typically coincides with the load capacitance. If the first 
stage saturates, it feeds the integrator with a constant current. For the op-amp that we have considered 
so far (Fig. 1.5), the maximum current is ±I0. If the output stage is capable of providing a current equal 
to I0 + IL, where IL is the current delivered to the load, then the maximum time derivative of the output 
voltage, corresponding to the slew rate sR is given by: 

 
C

out
R

C

I

dt

dv
s 0max   (1.53) 

Expression (1.53) is useful to relate the slew rate to the gain bandwidth product. Considering (1.34), the 
unity gain angular frequency 0 is given by Gm1/CC. Therefore: 

.  
1

0
0

m

R
G

I
s   (1.54) 

For the considered amplifier topology, Gm1=gm1 and I0=2ID1 and the slew rate is given by: 
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I
s   (1.55) 

Note that 0. = 2GBW. Thus, if the GWB is fixed, a higher slew rate can be obtained with a larger 
input-equivalent thermal voltage (VTE), which, in turn, means an high overdrive voltage. In particular, 
for a MOSFET in strong inversion, Eq. (1.55) becomes: sR=0(VGS-Vt). On the other hand, if the same 
op-amp of Fig. 1.5 is implemented with BJTs, VTE is simply given by VT=kT/q. In this respect, for the 
same GBW, the BJT version will have a smaller slew rate than all MOSFET versions.  

Finally, we note that for particularly large load capacitances, the output stage could not be able to 
produce a total current equal to I0+IL, where IL=CLdVout/dt. In this case, it is the output stage to limit the 
slew rate and the expressions found in this section do not apply.   
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Design for input referred voltage noise.  

In order to calculate the noise of a given amplifier, we have to add noise sources to each device of the 
circuit. For MOSFETs up to frequencies of several hundred MHz it simply possible to model noise by 
adding a noise current source across the drain and source terminals. After that, the output voltage 
(output noise voltage) caused by the simultaneous action of all device noise sources is calculated. From 
the output noise, the input noise can be obtained by simply dividing the output noise by the 
amplification. In a multistage circuit, like that the amplifier that we are analyzing, it is convenient to 
study each stage separately obtaining simplified equivalent circuits, which can then be used to build the 
complete amplifier noise model. When the amplifier has a relatively large output resistance, the input 
noise estimation can be simplified if we calculate the effect of the noise sources on the output short 
circuit current instead of the output voltage. In the absence of noise, we can express the relationship 
between the output short circuit current (io-sc) as: 

 o sc m ini Y v    (1.56) 

where Ym is an admittance that is generally a function of frequency and we have considered that an 
output current that enters the output node is positive. The amplifier voltage gain, AV, is then simply 
given by:  

 V m outA Y Z    (1.57) 

where Zout is the output impedance of the amplifier. When we consider the effect of noise sources, we 
can express the output noise voltage as: 

 on out on scv Z i     (1.58) 

where ion-sc is the output short circuit current produced by the noise sources. Then, the input referred 
noise, vn= von/AV is simply equal to: 

 on sc
n

m

i
v

Y


   (1.59) 

The advantage of this approach is that calculation of the output short circuit current is generally simpler 
in amplifiers that has a large output resistance.  

We can start by applying this method to first stage of the operation amplifier of Fig. 1.5. The first stage, 
depicted in Fig. 1.11 (a), is replaced by the small-signal equivalent circuit shown in Fig. 1.11 (b), 
where the noise sources of all circuit have been introduced and the output port is short-circuited. The 
noise output short circuit current of this stage is indicated with i1n-sc.  

This circuit presents only a high impedance node, which coincides with the output port. The output 
impedance does not affect the output short circuit current, thus the singularities (poles and zeroes) that 
we have to take into account for the calculation of both Ym and i1n-sc comes from low resistances nodes 
(such as node K, for example) and then they are located at frequencies of the same order of f0. In this 
noise analysis, we will consider only frequencies that are significantly smaller than f0 (at least one 
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decade lower), and thus we will neglect these singularities and we will perform the calculation of both 
Ym and iocc-n in the low frequency limit. It can be easily found that: 

 1 1m m mY G g    (1.60) 

As far as i1n-sc is concerned, we can introduce current gains AIk, which represent the transfer function 
from current source ink and the output short circuit current. With this definition: 

 1
1

M

n sc Ik nk
k

i A i


    (1.61) 

where, for the amplifier in Fig. 1.11, M=5. Coefficients AIk for in3 and in4 can be easily found: in4 flows 
directly into the output short circuit, and then AI4=1, while in3 reaches node H through the M3-M4 
mirror that introduces a sign inversion. Then, AI3= 1.  

 

Fig. 1.11. Fisrt stage of the op-amp (a) and its equivalent small-signal circuit for the calculation of the noise output short 
circuit current.  

Source in7 produces negligible effects on the output current since it is split into two equal components 
that flows through M1 and M2, respectively. The component through M2 reaches node H directly, 
while the component through M1 encounters M3-M4 mirror, and then it is reversed. As a result, the 
two components give opposite contributions to the output current and then the net effect if in7 is zero. 
Note that this occurs only in quiescent conditions, i.e. when Vid = 0. If a non-zero input differential 
signal is present, in7 is split into two components that are not equal any more, and then they do not 
cancel each other on the output node H. In the following part of this section, we will continue to 
perform noise analysis in the quiescent point of the amplifier, so that we will consider AI70. However, 
it is important to know that if a relatively large input signal is present, also in7 gives a non-negligible 
contribution to the noise of the first stage.  
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The situation is slightly more complicated for in1 and in2, since they do not have a terminal connected to 
gnd (they are “floating sources”). To simplify the analysis, they can be split into two current sources as 
shown in Fig. 1.12. For the equivalence to hold true, currents in1-a and in1-b should be equal to in1.  

Component in1-a reaches the output node H in the same way as in3, then it is simply multiplied by 1. 
Component in1-b follows the same paths as in7 and then do not give a significant contribution. As a 
result, in1 gives a contribution to the output short circuit current equal to –in1, so that AI1= 1. With the 
same procedure, we can split in2 into two components that have one terminal connected to gnd. The 
only component that gives a significant contribution is connected directly to node H and then is gives a 
contribution such that AI2=1.  

 

Fig. 1.12. Substitution of floating source in1 with two sources in1-a and in1-b with one terminal to gnd.   

Then, we are ready to write an approximate expression of the output short circuit current of the first 
stage: 

 1 2 1 4 3n sc n n n ni i i i i       (1.62) 

The input referred noise of the first stage can be simply found by dividing i1n-sc by the admittance Ym of 
the first stage, given by (1.60). Before doing that, we need to consider also the effect of the second 
stage. Repeating the same procedure to the second stage, depicted in Fig. 1.13, it can be easily found 
that: 

 2 5 6n sc n ni i i     (1.63) 
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Fig. 1.13. (a) Second stage of the op-amp and (b) its equivalent circuit for the output noise short circuit current.  

Now we can model the op-amp noise using a simplified equivalent small signal circuit similar to that of 
Fig. 1.6, where the noise of the first and second stage is simply represented by their output noise short 
circuit currents. This equivalent circuit is shown in Fig. 1.14 (a).  

 

Fig. 1.14. Low frequency small signal equivalent model with the first stage and second stage noise sources.  

We can apply the procedure used for the two individual stages to the overall amplifier and calculate the 
output short circuit current, ion-sc and the admittance Ym= io-sc/vid. The circuit to be considered is shown 
in Fig.  1.14 (b), where the output port has been short-circuited and superfluous components have been 
removed. Let us start by considering ion-sc :  

 2 1on sc n sc Ih n sci i A i      (1.64) 

where AIh is the current transfer function from current source i1n-sc and the output short circuit current. 
By simple considerations, we can write: 
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  2Ih A m CA Z G Y     (1.65) 

where ZA is the impedance seen by source i1n-sc and YC is the admittance of the series RC,CC. Then: 
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  (1.67) 

Substituting the expressions of YC and ZA into (1.65), we obtain: 
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  (1.68) 

With the choice RC=1/Gm2 that we have done to eliminate the RHP zero, we finally obtain: 
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  (1.69) 

Considering that AIh is also the transfer function from source Gm1vid and the output short circuit current, 
we can also express the admittance Ym as: 

 1m m IhY G A   (1.70) 

Considering (1.64) and (1.59) we can now calculate the input referred noise of the op-amp: 

 2 1 2
1

1 1

1n sc Ih n sc n sc
n n sc

m Ih m Ih

i A i i
v i

G A G A
  



 
     

 
 (1.71) 

Notice that current i2n-sc is divided by AIh before being summed to i1n-sc. At low frequencies, AIh is equal 
to the Gm2R1 product, which is much greater than one. This can be easily understood because Gm2 is 
generally larger than Gm1 (see the section on stability and GBW), thus Gm2R1>Gm1R1 and Gm1R1>>1 
because Gm1R1 is the gain of the first stage. Therefore, at low frequencies the contribution of i2n-sc can 
be neglected. The magnitude of AIh begins to reduce at high frequencies due to the presence of s and s2 
terms in the denominator. Then, at high frequencies in2-sc cannot be neglected any longer and becomes 
the dominating terms at frequencies where AIh becomes <<1. This cause the well-known increase of the 
input referred noise at frequencies around and beyond the amplifier GBW.  These effects are generally 
not important, since the increase of the input referred noise, which is a mathematical effect well 
described by (1.71) and (1.69), is counteracted by the filtering effects produced by the amplifier in all 
possible closed loop configurations. For these considerations, we will use (1.71), taking into account 
i1n-sc contribution. Taking expression (1.62) for i1n-sc, we obtain:  

 



P. Bruschi:  Notes on Mixed Signal Design   Chap.3, Part 2 

 

29 

 

 1 2 3 4

1

n n n n
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m

i i i i
v

G
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  (1.72) 

The power spectral density (PSD) of the input referred noise, Svn, will be given by: 
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  (1.73) 

where Si1 and Si3 are the current PSDs of i1 and i3. Due to the symmetry of the circuit we have 
considered Si2=Si1 and Si4=Si3. All the noise currents have been considered to be independent stochastic 
processes. A more useful expression can be obtained by transforming the MOSFET current PSDs into 
the corresponding gate-referred voltage PSDs, according to: 

 VmI SgS 2  (1.74) 

The input referred noise PSD of the amplifier becomes: 
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In the considered amplifier topology, Gm1=gm1, therefore: 
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Indicating with F the ratio gm3/gm1 we can write the following compact formula: 

  3
2

12 vvvn SFSS   (1.77) 

The parameter F can be used to reduce the effect of the mirror MOSFETs on the input referred noise. 
Writing gm as ID/VTE, we get: 
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In order to reduce the noise contribution of the mirror MOSFETs, we have to make the equivalent 
thermal voltage VTE of the mirror devices (M3,M4) much larger than that of the input devices. This is 
usually accomplished by biasing M1 and M2 in weak inversion, or, at least at the lower end of the 
strong inversion, with |VGSVt|1  nearly equal to 100 mV. The mirror devices should be biased in strong 
inversion, preferably with (VGSVt)3 of the order of several hundreds mV. This is paid in terms of input 
common mode range and, considering that (VGSVt)3=(VGSVt)5, also in terms of output swing.  

Case 1: Thermal Noise. 

Thermal noise can be calculated using (1.76) with the expression Sv=(8/3)kT/gm for Sv1 and Sv3: 
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Applying elementary simplifications, we obtain: 
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The input thermal noise can is then given by the voltage thermal noise of the input devices (M1 and 
M2) multiplied by a factor (1+F) > 1, which takes into account the additional contribution of the mirror 
devices M3 and M4. Again, in order to minimize the effect of he latter and be enabled to consider that 
the noise comes from only the input devices, (VGSVt)3 should be much larger than |VGS-Vt|1, penalizing 
the input and output ranges.  

Now let us express gm1 in (1.80) as ID1/VTE1. After obvious simplifications, we obtain: 
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1  (1.81) 

The following considerations can be drawn: 

 A small thermal noise PSDs is mainly paid in terms of current, i.e power consumption. 
Remember that the bias current of the first stage, I0, is equal to 2ID1. The higher I0, the smaller 
Sv1.  

 Keeping small the input device overdrive voltage, (VGSVt)1, helps reducing the input noise.  

Case 2: Flicker Noise. 

For M1 and M3 gate referred noise the expression fSv(f)=Nf /(WL) will be used. Equation (1.77) 
becomes: 

  









33

2

11

2)(
LW

N
F

LW

N
fSf

fnfp

vn  (1.82) 

where Nfn and Nfp are the flicker noise process parameters for n-MOS and p MOS, respectively. Note 
that: 

 a low flicker noise is paid in terms of silicon area 

 it is possible to save area by reducing the effect of the mirror devices choosing small F factors.  
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Design for input offset voltage.  

In previous chapter, we have seen that MOSFET parameter variations can be modeled as d.c. current 
sources placed across the drain and source of the nominal (ideal) device. As in the case of noise, the 
circuit of Fig.1.11  and the analysis that follows can still be used. Then, expression (1.72) can be used 
also for the offset voltage: 
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  (1.83) 

where currents iip  is the currents modeling the process variations of i-th MOSFET. In the following 
analysis, we will consider that all devices are in strong inversion. Since M1 and M2 as well as M3 and 
M4 form matched pairs, we can write: 
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 (1.84) 

Substituting the expressions in (1.84) into (1.83) and considering that ID1=ID3, and Gm1=gm1, we get: 
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Finally, in strong inversion ID1/gm1=(VGSVt)1/2, so that the expression of the input offset voltage 
becomes: 
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where F is given by equation (1.78).  

Equation (1.86) can be used to calculate the standard deviation of the offset voltage. Considering that 
all random variables are independent, we can write: 
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The standard deviations can be expressed in terms of the p-MOS and n-MOS matching parameters Cp , 
CVtp ,  Cn and CVtn according to: 
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Using these expressions equations (1.87) becomes: 
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where A and B are given by: 
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Equation (1.89) indicates that a low offset voltage is paid mainly in terms of area. Once the target vio is 
given, constants A and B have to be minimized as much as possible in order to save area. As shown by 
(1.90), the input overdrive voltage (VGS-Vt)1 has to be reduced to the minimum value (around 0.1 V), 
while F should be made small by making (VGS-Vt)3 several times larger than (VGS-Vt)1.  

Once these operations have been performed, M1 and M3 gate areas have to be chosen to obtain the 
required offset voltage (vio). Clearly, there are infinite solutions to Eqn. (1.89), because we have two 
unknowns (W1L1, W3L3). If there are no other specifications, it is convenient to find the solution that 
minimizes the total gate area of M1 and M3, defined as S = W1L1+ W3L3 . If we introduce the following 
unknown: 

 
11

33

LW

LW
a   (1.91) 

we can rewrite (1.89) as: 
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Calculating W1L1 from (1.92) and substituting it into the expression of the area, we find: 
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It can be easily shown that the previous expression tends to infinity when a tends either to zero or to 
infinity. Therefore, a minimum should exist. Calculating the derivative of (1.93) with respect to a and 
equating it to zero, we find the optimum value of a that minimizes M1 and M3 total area: 
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Substituting aOPT into (1.92) we finally find W1L1:  
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Note: the same optimization procedure can be applied to the flicker Noise, since Eqn. (1.82) is formally 
identical to Eqn. (1.89).  

 

Power consumption.  

 

The power consumption is given by: 

 

 SupplyDD IVP   (1.96) 

where Isupply is the total supply current, equal to:  

 

 5110 2 DDsupply IIIII   (1.97) 

 

Considering that we can write the drain current ID= gm VTE, the supply current becomes: 

 

 55112 TEmTEmsupply VgVgI   (1.98) 

 

This equation can be specialized to emphasize the role of either gm1 or gm5. In the case that the 
dominant specification is the input thermal noise, it is important to show the dependence of gm1, since 
the thermal noise input spectral density is marked by an inverse proportionality to gm1. Then: 
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where: 
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In the case that the dominant role is the GBW, it is important to design gm5 in such a way that (1.43) 
holds. Therefore, we can transform (1.98) to highlight the role of gm5:  
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  FrVgI gmTEm 2155supply   (1.101) 

 

Considering, (1.43) we can directly relate the current consumption to the GBW: 

 

  FrGBWCVI gmLTE 212 5supply   (1.102) 
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