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Practical formulas for noise calculations 
 

Figure 1(a) and (b) show a typical noise spectrum in linear and logarithmic coordinates. The spectrum 

includes a 1/f (flicker noise) contribution at low frequency and a region of constant noise (broad-band 

noise, SXBB), at higher frequency. The upper limit of the spectrum is indicated with B. For frequencies 

higher than B the spectral density decreases, tending to zero. For simplicity, in this course we will 

consider that the spectral density drops to zero abruptly for f>B. In real cases, the spectral density will 

gradually decrease, as shown by the dashed line in the figure.  

In terms of total noise power, the approximation of abrupt upper band limit is valid when B coincides 

with the equivalent noise bandwidth. For a frequency response with a dominant pole (first order low 

pass response), the equivalent noise bandwidth is equal to (/2)f-3dB, where f-3dB, is the cut-off 

frequency (frequency at which the response is 3dB below the value in the pass-band).   

The flicker noise component can be written as: 
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where kF is a constant parameter and  an exponent that in many practical cases is close to one. In the 

rest of this document we will consider =1. Thus we can write: 

 )( fSfk XFF   (2) 

Eqn. (2) allows determining the kF value from an experimental or simulated noise spectrum. In 

particular, if the noise spectrum at 1 Hz is dominated only by the flicker component, then kF coincides 

(only numerically) with the value assumed by the spectrum at 1 Hz. 

 

 

 

Fig. 1 
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An important parameter of the noise spectrum shown in Fig. 1 is the corner frequency, fk, defined as the 

frequency at which the flicker component is equal to the broad-band (constant) component. Applying 

(2) at fk: 

 
FXBBk kSf   (3) 

Let us consider that the readout channel has a bandwidth extending from fmin to fmax. In all well-

designed acquisition systems, there is a filter, generally placed at the end of the processing chain, that 

limits the channel bandwidth to the minimum required by the signal. Any additional bandwidth with 

respect to this minimum is not only useless, but also harmful, since it increases the rms noise, 

degrading the system resolution. Therefore, we will suppose that the spectral noise superimposed to 

signal X is filtered by an ideal pass-band filter as sketched in the inset of figure 1(a). The target is 

calculating the rms noise at the output of the filter.  

 

The rms noise in the signal bandwidth is given by: 
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The integral of the broadband component is simply given by: 
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The integral of the flicker component is given by: 
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where ndec is equal to: 
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A problem with the flicker component could arise if the signal bandwidth extends down to DC, since 

fmin should be set to zero, making the flicker component diverge to infinity. This is a false problem, 

since a real DC component should be constant over an infinite time interval, and therefore it is only a 

theoretical abstraction. In practical cases, we consider a signal to be DC when it stays constant over the 

whole observation time interval, which is a finite interval. If we indicate the observation time with Tobs, 

then we can recognize frequencies as low as:  
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For example, if the observation time is 100 s, then the minimum significant frequency is roughly 

0.01 Hz. If we do not know the observation time, we can arbitrarily assume that it is a few tens of 

second long (e.g. 100 s as in the example). An error in the determination of the observation time does 

not produce important errors in the estimated rms noise, due to the logarithmic dependence present in 

Eq.(5).  
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The kT/C noise 

 

This kind of noise occurs any time a voltage is sampled into a capacitor, as shown in Fig.2. When the 

switch S is closed, the voltage VC is equal to the voltage of the source, indicated with V0. For 

simplicity, we will consider that the voltage to be sampled is constant. When the switch opens 

(sampling instant tc), the sampled voltage VC  is V0+Ve, where V is a random error.  
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Fig.2 

 

Repeating the sampling operation, as in Fig.3, where we have shown also the clock signal that controls 

the switch, we obtain different error voltages (v1, v2, v3 ...), demonstrating the random nature of the 

phenomenon.  
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Fig. 3 

 

This error is named “kT/C”  (“kT over C”) noise, since it is marked by the following property: 
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where k is the Boltzmann constant and T the absolute temperature. The distribution of kT/C noise is 

gaussian.  

The reason of the existence of the kT/C noise is very simple. Voltage V0 is never really constant, but it 

is affected by thermal noise, associated to the series resistance of the voltage source. The real circuit, 

which includes also this resistance (R), is shown in Fig.4. When the switch is closed, the thermal noise 

voltage source of resistor R is filtered by capacitor C that, together with R, forms a first order low pass 

filter. The power spectral density (PSD) of the noise source is 4kTR, so that the PSD of the noise 

voltage superimposed to VC (vnc) is given by: 
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The mean square voltage of vnc is given by the integral of the spectral density shown in (10) from 0 to 

infinity. By simple calculations: 
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Note that the mean square voltage of vnc is independent of R. At the sampling instant, switch S opens 

and the voltage stored in C is the last value assumed by VC, which includes also the vnc noise 

contribution. Sampling of vnc gives the sequence vi of Fig.3. This sequence has the same mean square 

value of vnc, that is kT/C. Fig.4 (right) shows what happens when we change the resistance R: if R is 

increased, the spectral density at low frequencies proportionally increases, but the pole frequency 

decreases of the same amount. The result is that the area below the curve (i.e. the integral) does not 

change. The inverse happens if the resistance is decreased). Therefore the kT/C noise depends only on 

the capacitor value (and, of course, temperature).  
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Fig.4 
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Four important observations can be made at this point: 

 The circuit of Fig.4 (left) may represent an equivalent circuit, i.e. a Thevenin equivalent of the 

network seen from the capacitor terminals of capacitor C. That network can be much more 

complex than in the simple example of Fig. 4.  

 In many cases, it is interesting to consider the charge that is stored into C after each sampling 

operation. In particular, we are interested in the charge variations with respect to the average, 

which is equal to CV0. We can obtain the charge variations (i.e. the charge noise) by simply 

multiplying the voltage noise ve by C. In terms of mean square value we have to multiply the 

mean quare value of the voltage by C2. Then: 
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 The kT/C noise represents the minimum noise that is present on the sampled voltage. If the 

voltage to be sampled (V0) is affected by other sources of noise, kT/C noise is combined to the 

other sources to form the total sampled noise. This occurs, for example, if we are sampling the 

output noise of an amplifier that is generally accompanied by a large amount of “excess” noise, 

which is additional noise with respect to the (unavoidable) thermal noise associated to its output 

resistance. In this case, the spectral densities of the two noise sources cannot be simply added 

but there is a sort of mixing that is not simple to model. However, the total noise cannot be 

smaller than the kT/C limit.   

 One could argue that this phenomenon does not affect ideal voltage sources, as that shown in 

Fig.2, since they do not have an internal resistance that produces thermal noise. Actually, we 

can consider an ideal source as the limit of a real source when R tends to zero. Since for 

whatever small value of R the noise mean square voltage is still kT/C, then also the limit should 

be kT/C. Considering Fig.4, when R tends to zero the PSD gets lower and lower, but its 

bandwidth (e.g. fp) extend to infinity, leaving the integral unchanged.  

 

Inclusion of the offset into the noise power spectral density 

 

Figure 5 shows a frequently used simplified representation of noise spectra. This is only a symbolic 

representation since, in real cases, flicker noise diverges to infinity, when f tends to zero; furthermore, 

the upper band limit (B) is not as abrupt as in the figure, but more progressive.  
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Fig. 5 
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Nevertheless, this bilateral representation can be very useful to understand what happens to noise in 

modulation and sampling operations, where the spectra are replicated and shifted along the frequency 

axis. In order to extend this convenient representation to the other component of additive errors, i.e. 

offset, we can write the total error: 

 ionntot xxx   (13) 

Note that even offset can be considered a stochastic process, consisting in a DC signals with random 

(DC) value.  The autocorrelation function of the total additive error is given by: 
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Thus: 
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Since offset and noise derives from different phenomena, they can be considered independent. 

Therefore we obtain the following result: 
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where RXn() is the noise correlation function, while Xio is the offset standard deviation.  

In terms of spectral density, the offset contribution becomes a Dirac delta function with value 2

Xio . 

Then we obtain the following symbolic representation that takes into account noise and offset together: 

 

fk

SXBB

flicker noise

B-B -fk

(f) dXio

f

SXn
2

 

Fig 6 

 


