1 Design of a CMOS operational amplifier with Offset and GBW/stability specifications.

1.1 Amplifier topology

1.2 Process parameters

Parametro	$\mathrm{n}-\mathrm{MOS}$	$\mathrm{p}-\mathrm{MOS}$
$\mu_{\mathrm{n}} \mathrm{Cox}, \mu_{\mathrm{p}} \mathrm{Cox}$	$240 \times 10^{-6} \mathrm{~A} / \mathrm{V}^{2}$	$50 \times 10^{-6} \mathrm{~A} / \mathrm{V}^{2}$
$\mathrm{~V}_{\mathrm{tn}}, \mathrm{V}_{\mathrm{tp}}$	0.43 V	-0.56 V
γ (effetto body)	$0.44 \mathrm{~V}^{1 / 2}$	$0.59 \mathrm{~V}^{1 / 2}$
k_{λ}	$50 \mathrm{~V} / \mu \mathrm{m}$	$50 \mathrm{~V} / \mu \mathrm{m}$
α (coeff. termico della Vt)	$-1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{N}_{\mathrm{fn}}, \mathrm{N}_{\mathrm{fp}}$ (fattore rumore flicker)	$6 \times 10^{-10} \mathrm{~V}^{2} \mu \mathrm{~m}^{2}$	$2 \times 10^{-10} \mathrm{~V}^{2} \mu \mathrm{~m}^{2}$
C_{Vt} (matching Vt)	$8.5 \mathrm{mV} \cdot \mu \mathrm{m}$	$8.5 \mathrm{mV} \cdot \mu \mathrm{m}$
C_{β} (matching beta)	$0.03 \mu \mathrm{~m}$	$0.03 \mu \mathrm{~m}$
$\mathrm{C}_{\text {ox }}$	$6.2 \mathrm{fF} / \mu \mathrm{m}^{2}$	$6.2 \mathrm{fF} / \mu \mathrm{m}^{2}$
$\mathrm{~L}_{\mathrm{C}}$ (lunghezza minima D / S)	$1.2 \mu \mathrm{~m}$	$1.2 \mu \mathrm{~m}$
C_{J}	$1.8 \mathrm{fF} / \mu \mathrm{m}^{2}$	$1.8 \mathrm{fF} / \mu \mathrm{m}^{2}$
Cgdo^{2}	$0.6 \mathrm{fF} / \mu \mathrm{m}$	$0.6 \mathrm{fF} / \mu \mathrm{m}$
$\mathrm{t}_{\text {ox }}$	5.6 nm	5.6 nm

1.3 Design specifications

The goal is designing an operational amplifier with:

- An offset voltage (absolute value) smaller than 3 mV
- A GBW of 10 MHz for a load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ up to 10 pF .
- A phase margin around 70° in unity gain configuration

1.4 Solution

Offset condition

In order to have an offset voltage that is smaller than 3 mV for the most part of the fabricated devices (99.7%) we need to impose that:

$$
\begin{equation*}
3 \sigma_{v i o}=3 \mathrm{mV} \Rightarrow \sigma_{v i o}=1 \mathrm{mV} \tag{1.1}
\end{equation*}
$$

We can express the standard deviation with the following relationship:

$$
\begin{equation*}
\sigma_{v i o}^{2}=\frac{A}{W_{1} L_{1}}+\frac{B}{W_{3} L_{3}} \tag{1.2}
\end{equation*}
$$

where:

$$
\begin{equation*}
A=C_{V t p}^{2}+\left[\frac{\left(V_{G S}-V_{t}\right)_{1}}{2} C_{\beta p}\right]^{2} \quad B=F^{2} C_{V t n}^{2}+\left[\frac{\left(V_{G S}-V_{t}\right)_{1}}{2} C_{\beta n}\right]^{2} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\frac{g_{m 3}}{g_{m 1}}=\frac{\left(V_{G S}-V_{t}\right)_{1}}{\left(V_{G S}-V_{t}\right)_{3}} \tag{1.4}
\end{equation*}
$$

With the process parameters in paragraph $1.2, p$ and n devices have the same matching coefficients, then $\mathrm{C}_{\beta \mathrm{p}}=\mathrm{C}_{\beta \mathrm{n}}$ and $\mathrm{C}_{\mathrm{vtp}}=\mathrm{C}_{\mathrm{vtn}}$. Inspection of the previous equations suggests that, the smaller coefficients A and B, the smaller will be the area $\left(\mathrm{W}_{1} \mathrm{~L}_{1}\right.$ and $\mathrm{W}_{3} \mathrm{~L}_{3}$ gate areas) required to obtain the desired $\sigma_{\text {vio }}$. We can reduce A and B by choosing a small value for $\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)_{1}$. In addition, we can choose a small value for F, in order to reduce coeff. B. We choose:

$$
\begin{equation*}
\left(V_{G S}-V_{t}\right)_{1}=100 \mathrm{mV},\left(V_{G S}-V_{t}\right)_{3}=300 \mathrm{mV} \Rightarrow F=\frac{1}{3} \tag{1.5}
\end{equation*}
$$

With these overdrive voltages, coefficients A and B are:
$\mathrm{A}=74.5 \times 10^{-6} \mathrm{~V}^{2} \mathrm{\mu m}^{2}$
$\mathrm{B}=10.3 \times 10^{-6} \mathrm{~V}^{2} \mu^{2}$
In spite of the coincidence of p-MOS and n-MOS matching parameters, A and B are very different. This is the effect of the coefficient F. Note that F affects only the threshold voltage mismatch term $\left(\mathrm{C}_{\mathrm{t}}\right)$, which, with small value of $\left(V_{G S}-V_{t}\right)_{1}$, is by far the dominant component of A and B.

At this point, we have one equation (1.2) and two unknowns ($\mathrm{W}_{1} \mathrm{~L}_{1}$ and $\mathrm{W}_{3} \mathrm{~L}_{3}$). We can chose the solution that minimizes the total gate area $\left(\mathrm{W}_{1} \mathrm{~L}_{1}+\mathrm{W}_{3} \mathrm{~L}_{3}\right)$. This is obtained for:

$$
\begin{equation*}
\frac{W_{3} L_{3}}{W_{1} L_{1}}=\sqrt{\frac{B}{A}}=0.37 \tag{1.6}
\end{equation*}
$$

from which we find:

$$
\begin{align*}
& W_{1} L_{1}=\frac{1}{\sigma_{v i o}^{2}}(A+\sqrt{A B}) \cong 102 \mu \mathrm{~m}^{2} \tag{1.7}\\
& W_{3} L_{3}=W_{1} L_{1} \sqrt{\frac{B}{A}} \cong 38 \mu \mathrm{~m}^{2}
\end{align*}
$$

At this point, we have determined the gate areas of M_{1} and M_{3}, but we are still unable to find their W and L . If the offset specification is the only requirement, than this problem remains undetermined.

GBW and phase margin

In our example, we have also a GBW specification and this allow determining the W/L. With the hypotheses:

$$
\begin{equation*}
C_{1} \ll C_{c}, C_{2} \quad \text { and } \quad C_{2} \cong C_{L} \tag{1.8}
\end{equation*}
$$

We have:

$$
\begin{equation*}
G B W=\frac{1}{2 \pi \sigma} \frac{g_{m 5}}{C_{L}} \Rightarrow g_{m 5}=2 \pi \sigma C_{L} \cdot G B W \cong 1.88 \mathrm{mS} \tag{1.9}
\end{equation*}
$$

where we choose $\sigma=3$ to obtain a phase margin of nearly 70°.
With the value of $g_{m 5}$, we can calculate the value of resistor R necessary to shift the RHP (Right HalfPlane) zero to infinity:

$$
\mathrm{R}=1 / \mathrm{g}_{\mathrm{m} 5}=532 \Omega
$$

From g_{m} we can find M_{5} aspect ratio:

$$
\begin{equation*}
g_{m 5}=\mu_{n} C_{O X} \frac{W_{5}}{L_{5}}\left(V_{G S}-V_{t}\right)_{5} \Rightarrow \frac{W_{5}}{L_{5}}=\frac{g_{m 5}}{\mu_{n} C_{O X}\left(V_{G S}-V_{t}\right)_{5}}=26.1 \tag{1.10}
\end{equation*}
$$

where we have used the property: $\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)_{5}=\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)_{3}=300 \mathrm{mV}$
We can propagate the result found for $g_{m 5}$ back to the first stage:

$$
\begin{equation*}
g_{m 1}=\frac{1}{\sigma} \frac{C_{C}}{C_{L}} g_{m 5} \tag{1.11}
\end{equation*}
$$

Using the practical rule $\mathrm{C}_{\mathrm{C}}=\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ and $\sigma=3$, we obtain:

$$
\begin{equation*}
g_{m 1}=\frac{g_{m 5}}{3} \cong 0.63 \mathrm{mS} \tag{1.12}
\end{equation*}
$$

Design completion

From $g_{m l}$, we can determine $g_{m 3}$, considering that, from the definition of parameter F :

$$
\begin{equation*}
g_{m 3}=F \cdot g_{m 1}=0.21 \mu \mathrm{~S} \tag{1.13}
\end{equation*}
$$

Again, since we have fixed the M_{1} overdrive voltage to 100 mV , we can find $\mathrm{W}_{1} / \mathrm{L}_{1}$:

$$
\begin{equation*}
\frac{W_{1}}{L_{1}}=\frac{g_{m 1}}{\mu_{p} C_{O X}\left(V_{G S}-V_{t}\right)_{1}}=126 \tag{1.14}
\end{equation*}
$$

From $\left(V_{G S}-V_{t}\right)_{3}=300 \mathrm{mV}$, we can find $\mathrm{W}_{3} / \mathrm{L}_{3}$:

$$
\begin{equation*}
\frac{W_{3}}{L_{3}}=\frac{g_{m 3}}{\mu_{n} C_{O X}\left(V_{G S}-V_{t}\right)_{3}}=2.92 \tag{1.15}
\end{equation*}
$$

Now we can find W_{1} and L_{1} individually:

$$
\left.\begin{array}{l}
W_{1} L_{1}=102 \mu \mathrm{~m}^{2} \tag{1.16}\\
\frac{W_{1}}{L_{1}}=126
\end{array}\right\} \Rightarrow W_{1}=\sqrt{W_{1} L_{1} \cdot \frac{W_{1}}{L_{1}}} \cong 114 \mu \mathrm{~m} \quad L_{1}=W_{1} \cdot\left(\frac{W_{1}}{L_{1}}\right)^{-1} \cong 0.9 \mu \mathrm{~m}
$$

Applying the same procedure to M_{3} :

$$
\left.\begin{array}{l}
W_{3} L_{3}=38 \mu \mathrm{~m}^{2} \\
\frac{W_{3}}{L_{3}}=2.92
\end{array}\right\} \Rightarrow W_{3}=\sqrt{W_{3} L_{3} \frac{W_{3}}{L_{3}}} \cong 10.5 \mu \mathrm{~m} \quad L_{1}=W_{3} \cdot\left(\frac{W_{3}}{L_{3}}\right)^{-1} \cong 3.6 \mu \mathrm{~m}
$$

In this way, we have determined all is needed for M_{1} and M_{3}. We can propagate L_{3} to M_{5}, according to the arbitrary choice $L_{3}=L_{5}$, introduced to keep a precise current ratio between M_{3} and M_{5} in rest conditions.
Since we have determined W_{5} / L_{5} earlier, we now can find M_{5} individual width and length:

$$
\left.\begin{array}{l}
L_{5}=3.6 \mu \mathrm{~m} \tag{1.17}\\
\frac{W_{5}}{L_{5}}=26.1
\end{array}\right\} \Rightarrow W_{5} \cong 94 \mu \mathrm{~m}
$$

Let us now complete the op-amp design. The only parameters that are still missing belong to M_{7} and M_{6}. Opting for a symmetrical output swing, we set:

$$
\begin{equation*}
\left(V_{G S}-V_{t}\right)_{6}=\left(V_{G S}-V_{t}\right)_{5} \tag{1.18}
\end{equation*}
$$

Since $I_{D 6}=I_{D 5}$, this means that M_{5} and M_{6} should have the same β. Then:

$$
\begin{equation*}
\mu_{p} C_{O X} \frac{W_{6}}{L_{6}}=\mu_{n} C_{O X} \frac{W_{5}}{L_{5}} \Rightarrow \frac{W_{6}}{L_{6}}=\frac{\mu_{n} C_{O X}}{\mu_{p} C_{O X}} \frac{W_{5}}{L_{5}} \cong 125 \tag{1.19}
\end{equation*}
$$

We have now to individually choose W_{6} and L_{6}. Let us recall that L_{6} is one of the DOFs in our model of the op-amp. L_{6} will affect mainly the dc gain. We can make L_{6} equal to L_{5} in order to have a balanced effect of the dc gain of the second stage. Larger L_{6} values does not result in important advantages (the gain becomes dominated by $\mathrm{r}_{\mathrm{d} 5}$); much smaller values begin to have a serious impact on the gain. Setting $\mathrm{L}_{5}=\mathrm{L}_{6}$, we find W_{6} :

$$
\begin{equation*}
L_{6}=L_{5}=3.6 \mu \mathrm{~m} \Rightarrow W_{6}=L_{6}\left(\frac{W_{6}}{L_{6}}\right)=450 \mu \mathrm{~m} \tag{1.20}
\end{equation*}
$$

Finally, we set M_{7} parameters. Using the equal-length condition to improve precision of the $\mathrm{I}_{\mathrm{D} 6}$ over $\mathrm{I}_{\mathrm{D} 7}$ ratio, we have:

$$
\begin{equation*}
L_{7}=L_{6}=3.6 \mu \mathrm{~m} \tag{1.21}
\end{equation*}
$$

Let now exploit the condition for null output short-circuit current when $\mathrm{Vd}=0$ (null systematic offset):

$$
\begin{equation*}
\frac{\beta_{6}}{\beta_{7}}=\frac{1}{2} \frac{\beta_{5}}{\beta_{3}} \tag{1.22}
\end{equation*}
$$

Note that the factors μ Cox cancel each other in both hands of equation (1.22). Then, we obtain a condition on the aspect ratios that allows us to M_{7} aspect ratio.

$$
\begin{equation*}
\frac{\frac{W_{6}}{L_{6}}}{\frac{W_{7}}{L_{7}}}=\frac{1}{2} \frac{\frac{W_{5}}{L_{5}}}{\frac{W_{3}}{L_{3}}} \Rightarrow \frac{W_{7}}{L_{7}}=2 \frac{W_{6}}{L_{6}} \frac{\frac{W_{3}}{L_{3}}}{\frac{W_{5}}{L_{5}}} \cong 28 \tag{1.23}
\end{equation*}
$$

This allow us to find M_{7} parameters:

$$
\begin{equation*}
L_{7}=L_{6}=3.6 \mu \mathrm{~m} \Rightarrow W_{7}=L_{7}\left(\frac{W_{7}}{L_{7}}\right)=101 \mu \mathrm{~m} \tag{1.24}
\end{equation*}
$$

Device M_{8} is not strictly part of the amplifier, since it can be shared among several different op-amps. We consider that We have to design a cell that is to be biased by a current (I_{B}), than M_{8} is necessary. To simplify the design, we set $\mathrm{M}_{8}=\mathrm{M}_{7}$, thus $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{0}$.

Calculation of the bias currents

$$
\begin{align*}
& I_{0}=2 I_{D 1} \cong 2 g_{m 1} V_{T E 1}=2 g_{m 1} \frac{\left(V_{G S}-V_{t}\right)_{1}}{2} \cong 63 \mu \mathrm{~A} \\
& I_{B}=I_{0}=63 \mu \mathrm{~A} \tag{1.25}\\
& I_{1} \cong g_{m 5} V_{T E 5}=g_{m 5} \frac{\left(V_{G S}-V_{t}\right)_{5}}{2} \cong 282 \mu \mathrm{~A}
\end{align*}
$$

Final component table

	$\mathrm{W}(\mu \mathrm{m})$	$\mathrm{L}(\mu \mathrm{m})$
$\mathrm{M}_{1}, \mathrm{M}_{2}$	114	0.9
$\mathrm{M}_{3}, \mathrm{M}_{4}$	10.5	3.6
M_{5}	94	3.6
M_{6}	450	3.6

M7	101	3.6
M8	101	3.6
R	532Ω	
C_{C}	10 pF	
I_{B}	$63 \mu \mathrm{~A}$	

Verification of the original hypotheses

$$
\begin{equation*}
C_{1}=C_{G S 5}+C_{D B 2}+C_{D B 4} \tag{1.26}
\end{equation*}
$$

with

$$
\left.\begin{array}{c}
C_{G S 5}=\frac{2}{3} C_{O X} W_{5} L_{5} \cong 1.4 \mathrm{pF} \\
C_{D B 2}=C_{J_{p}} L_{C} W_{2} \cong 0.246 \mathrm{pF} \\
C_{D B 4}=C_{J_{n}} L_{C} W_{4} \cong 0.023 \mathrm{pF}
\end{array}\right\} \Rightarrow C_{1} \cong 1.67 \mathrm{pF}
$$

It can be easily shown that hypotheses (1.8) are verified.

1.5 Performance estimation

We have designed the amplifier according to offset and GBW specifications. It is possible to estimate the remaining performance figures using approximate expressions.

Total current consumption:

Excluding the bias transistor M_{8}, the amplifier is marked by the following current consumption:

$$
\begin{equation*}
I_{\text {sup } p l y}=2 I_{0}+I_{1}=345 \mu \mathrm{~A} \tag{1.29}
\end{equation*}
$$

Considering also M8, to total current consumption is:

$$
\begin{equation*}
I_{\text {tot }}=I_{\text {supply }}+I_{B}=408 \mu \mathrm{~A} \tag{1.30}
\end{equation*}
$$

Thermal noise density

$$
\begin{equation*}
S_{V t h} \cong 2 \frac{8}{3} k T \frac{1}{g_{m 1}}(1+F) \cong 4.5 \times 10^{-17} V^{2} / H_{z}(6.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}) \tag{1.31}
\end{equation*}
$$

Flicker noise density

$$
\begin{equation*}
k_{F}=2\left(\frac{N_{f p}}{W_{1} L_{1}}+F^{2} \frac{N_{f n}}{W_{3} L_{3}}\right) \cong 7.42 \times 10^{-12} \mathrm{~V}^{2} \tag{1.32}
\end{equation*}
$$

Flicker corner frequency

$$
\begin{equation*}
f_{k}=\frac{k_{F}}{S_{V T h}} \cong 165 \mathrm{kHz} \tag{1.33}
\end{equation*}
$$

Slew rate

$$
\begin{equation*}
s_{R}=\frac{I_{0}}{C_{c}}=6.3 \mathrm{~V} / \mu \mathrm{s} \tag{1.34}
\end{equation*}
$$

