Instrumentation Amplifiers: characteristics

By definition:

- Precise gain
- High input resistance
- Differential input

Other important features

- Low input referred offset voltage
- Low bias currents
- Low input referred voltage and current noise
- High CMRR
- Large bandwidth

Instrumentation Amplifiers: connection to the

$$v_{in} = V_{S1} - i_{B1}R_{S1} - v_n - (V_{S2} - i_{B2}R_{S2}) = V_{S1} - V_{S2} - v_{nt}$$
$$v_{nt} = v_n + i_{B1}R_{S1} - i_{B2}R_{S2}$$

$$v_{nt} = v_n + R_S (i_{B1} - i_{B2})$$

Balanced case (R_{S1}=R_{S2}=R_S)

Offset:
$$v_n = v_{io}$$
, $i_{B1} - i_{B2} = I_{B1} - I_{B2} = I_{io}$
 $v_{iot} = v_{io} + R_s (I_{B1} - I_{B2}) = v_{io} + R_s I_{io}$

Noise: v_n and i_{n1} , i_{n2} are represented by their PSD (power spectral density)

$$S_{vnt} = S_{vn} + R_S^2 (S_{I1} + S_{I2} - 2S_{I1I2})$$

If i_{b1} and i_{b2} are uncorrelated and their PSD is S₁:

$$S_{vnt} = S_{vn} + 2R_S^2 S_I$$

Monolithic In-Amps

Typical pin configuration

Input and output offset / noise

Typical two-stage architecture of In-amps

Generally, $A_2 = 1$, thus:

$$v_{nRTI} = v_{n1} + \frac{v_{n2}}{A_1} = v_{n1} + \frac{v_{n2}}{G}$$

Three-opamp instrumentation amplifier

Mismatch of these resistors degrades the CMRR of the second stage. Resistor trimming is necessary for CMRRs > 60 dB

The circuit that provides V_{REF} must have a very low output resistance (<<R)

Instrumentation Amplifiers

Figure 9. Current Noise Spectral Density vs. Frequenc

Figure 8. Voltage Noise Spectral Density vs. Frequency, (G = 1–1000)

AD 620

GBW does not increase much beyond the G=10 case: BW affected by second stage Nearly constant GBW product: BW determined by first stage

										AD620
Model	Conditions	Min	AD620 Typ)A Max	Min	AD620I Typ	3 Max	Min	AD620S ¹ Typ Max	Units
DYNAMIC RESPONSE Small Signal –3 dB Bandwidth G = 1 G = 10 G = 100 G = 1000 Slew Rate Settling Time to 0.01% G = 1–100 G = 1000	10 V Step	0.75	1000 800 120 12 1.2 1.2 15 150	Settling	0.75 times	1000 800 120 12 1.2 1.2	Slew	-Rate 0.75	1000 800 120 12 1.2 1.2 15	kHz kHz kHz kHz V/μs μs μs
NOISE Voltage Noise, 1 kHz	Total RTI Noise = $\sqrt{(e^2)}$)+(eng/G	Outpu	ut noise >:	> input	noise	Broa	d-Band	Noise: $\sqrt{S_{BB}}$	
Input, Voltage Noise, e _{ni} Output, Voltage Noise, e _{no} RTI, 0.1 Hz to 10 Hz G = 1 G = 10 G = 100–1000 Current Noise 0.1 Hz to 10 Hz	$\begin{array}{c} \text{Current} \left\{ \begin{matrix} B \\ L \\ f \\ I \end{matrix} \right\} \\ f = 1 \text{ kHz} I \end{array}$	road-Ba ow Frequ htegrated	9 72 nd Noi uency l over (13 100 se: √S _{BB} Noise 0.1-10 Hz		9 72 3.0 0.55 0.28 100 10	13 100 6.0 100 6.0 100 100 100 100 100 100 100 100 100 1	/ Freque grated o	9 13 ency Noise over 0.1-10 H 0.55 0.8 0.28 0.4 100 10	nV/\Hz nV/\Hz μV p-p μV p-p μV p-p fA/\Hz pA p-p

Such a small offset voltage and offset drift is the result of a laser-trimmed resistor-load BJT input pair

Innut offerst

The effective input referred offset (RTI) is a combination of the input and output offset

							niput	onset			
VOLTAGE OFFSET	(Total RTI Error = V _{OSI} + V _O	oso/G)									
Input Offset, Vost	$V_8 = \pm 5 \text{ V}$ to $\pm 15 \text{ V}$		30	125		15	50		30	125	μV
Over Temperature	$V_8 = \pm 5 \text{ V}$ to $\pm 15 \text{ V}$			185			🍯 Outpi	ut offset		225	μV
Average TC	$V_8 = \pm 5 \text{ V to } \pm 15 \text{ V}$		0.3	1.0		0.1	0.6		0.3	1.0	μV/°C
Output Offset, V _{OSO}	$V_s = \pm 15 V$		400	1000		200	500		400	1000	μV
	$V_s = \pm 5 V$			1500			750			1500	μV
Over Temperature	$V_s = \pm 5 \text{ V}$ to $\pm 15 \text{ V}$			2000			1000			2000	μV
Average TC	$V_8 = \pm 5 \text{ V to } \pm 15 \text{ V}$		5.0	15		2.5	7.0		5.0	15	μV/°C
Offset Referred to the											
Input vs.											
Supply (PSR)	$V_{s} = \pm 2.3 \text{ V}$ to $\pm 18 \text{ V}$										
G = 1	_	80	100		80	100		80	100		dB
G = 10		95	120		100	120		95	120		dB
G = 100		110	140		120	140		110	140		dB
G = 1000		110	140		120	140		110	140		dB
DIDUT CURRENT											
INPUT CURRENT											
Input Bias Current			0.5	2.0		0.5	1.0		0.5	2	nA
Over Temperature				2.5		Z	1.5			4	nA
Average TC			3.0			3.0			8.0		pA/°C
Input Offset Current			0.3	1.0		0.3	0.5		0.3	1.0	nA
Over Temperature				1.5		1.	0.75		~ ~	2.0	nA
Average TC			1.5			1.5			8.0		pA/°C

The input bias current and input offset current are similar, since such a small bias current is the result of internal bias current cancellation

_ _

	±2.3	±18	±2.3		±18	±2.3		±18	v
$V_{\rm S} = \pm 2.3 \text{ V}$ to $\pm 18 \text{ V}$	0.9	1.3		0.9	1.3		0.9	1.3	mA
-	1.1	1.6		1.1	1.6		1.1	1.6	mA
	$V_{\rm S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$	$V_{\rm S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$ 1.1 ± 2.3 0.9 1.1	$V_{\rm S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$ 1.1 1.6 $\pm 2.3 \qquad \pm 18 \qquad 0.9 \qquad 1.3 \qquad 1.1 \qquad 1.6$	$V_{\rm S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$ $\begin{array}{c} \pm 2.3 & \pm 18 \\ 0.9 & 1.3 \\ 1.1 & 1.6 \end{array}$ ± 2.3	$V_{\rm S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$ $\begin{array}{c} \pm 2.3 & \pm 18 \\ 0.9 & 1.3 \\ 1.1 & 1.6 \end{array}$ $\begin{array}{c} \pm 2.3 \\ 0.9 \\ 1.1 \end{array}$	$V_{\rm S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$ $\begin{array}{c} \pm 2.3 & \pm 18 \\ 0.9 & 1.3 \\ 1.1 & 1.6 \end{array}$ $\begin{array}{c} \pm 2.3 & \pm 18 \\ 0.9 & 1.3 \\ 1.1 & 1.6 \end{array}$	$V_{\rm S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$ $\begin{array}{c} \pm 2.3 & \pm 18 \\ 0.9 & 1.3 \\ 1.1 & 1.6 \end{array}$ $\begin{array}{c} \pm 2.3 & \pm 18 \\ 0.9 & 1.3 \\ 1.1 & 1.6 \end{array}$ $\begin{array}{c} \pm 2.3 \\ 0.9 & 1.3 \\ 1.1 & 1.6 \end{array}$	$v_{\rm S} = \pm 2.3 {\rm V}$ to $\pm 18 {\rm V}$ $\pm 2.3 \pm 18 {\rm d}$ $\pm 2.3 \pm 18 {\rm d}$ $\pm 2.3 {\rm d}$ $\pm 2.3 {\rm d}$ $V_{\rm S} = \pm 2.3 {\rm V}$ to $\pm 18 {\rm V}$ $0.9 1.3 {\rm d}$ $0.9 1.3 {\rm d}$ $0.9 1.3 {\rm d}$ $0.9 1.1 {\rm d}$	$U_S = \pm 2.3 \text{ V}$ to $\pm 18 \text{ V}$ $\pm 2.3 \qquad \pm 18 \qquad \pm 2.3 \qquad \pm 18 \qquad \pm 2.3 \qquad \pm 18 \qquad \pm 2.3 \qquad \pm 18 \qquad 0.9 1.3 \qquad 0.11 1.6 \qquad 0.11 1.6 \qquad 0.9 1.3 \qquad 0.9 0.9 0.3 \qquad 0.9 0.3 \qquad 0.9 0.3 0.9 $

The AD 620 in-amp represent a good trade-off between input noise voltage, input bias currents and supply current (quiescent current)

AD 8429

PIN CONNECTION DIAGRAM

The AD8429 has a much smaller input referred noise than the AD620 (BB-noise)

	1	1 1		
VOLTAGE NOISE, RTI	$V_{IN}+$, $V_{IN}-=0$ V	· · · · · · · · · · · · · · · · · · ·		
Spectral Density ¹ : 1 kHz				
Input Voltage Noise, eni		1.0	1.0	nV/√Hz
Output Voltage Noise, eno		45	45	nV/√Hz
Peak to Peak: 0.1 Hz to 10 Hz				
G = 1		2	2	μV р-р
G = 1000		100	100	nV p-p
CURRENT NOISE				
Spectral Density: 1 kHz		1.5	1.5	pA/√Hz
Peak to Peak: 0.1 Hz to 10 Hz		100	100	рАр-р
	1			1

..... but its input current noise is much larger..

AD 8429

The bias current (dc value) is also much larger than AD620 one

VOLTAGE OFFSET ²								
Input Offset, Vosi				150			50	μV
Average TC			0.1	1		0.1	0.3	µV/°C
Output Offset, Voso				1000			500	μV
Average TC			3	10		3	10	μV/°C
Offset RTI vs. Supply (PSR)	$V_s = \pm 5 V \text{ to } \pm 15 V$							
G = 1		90			100			dB
G = 10		110		/	120			dB
G = 100		130			130			dB
G = 1000		130			130			dB
INPUT CURRENT								
Input Bias Current				300			150	nA
Average TC			250			250		pA/°C
Input Offset Current				100			30	nA
Average TC			15			15		pA/°C
DYNAMIC RESPONSE			Th		is fast	er than	the AD62	h
Small Signal Bandwidth: –3 dB								ľ
G = 1			15			15		MHz
G = 10			4			4		MHz
G = 100			1.2			1.2		MHz
G = 1000			0.15			0.15		MHz

.... but it requires much more quiescent current

POWER SUPPLY								
Operating Range		±4		±18	±4		±18	v
Quiescent Current			6.7	7		6.7	7	mA
	T = 125°C			9			9	mA

Instrumentation Amplifiers

☞ 🄗

INA333

 The INA333 is a very low-power instrumentation amplifier (I_{supply}: 50 μA) As a result, its input referred voltage noise is larger and its bandwidth smaller.

					1	NA333		
PARAMETER		TEST CONDITIONS		MIN		TYP	MAX	UNIT
INPUT ⁽¹⁾								
Offset voltage, RTI ⁽²⁾	Vosi				±1	10 ±25/G	±25 ±75/G	μV
vs Temperature							±0.1 ±0.5/G	μ V/°C
vs Power supply	PSR	1.8V ≤ V _S ≤ 5.5V				±1 ±5/G	±5 ±15/G	μV/V
Long-term stability					Se	e note (3)		
POWER SUPPLY	1						1	
Voltage range								
Single			+1.8		+5.5	v		
Dual			±0.9	🖌 🖌 📔	±2.75	v		
Quiescent current	la	$V_{IN} = V_S/2$		50	75	μA		

INA 333

	I			
FREQUENCY RESPONSE				
Bandwidth, -3dB				
G = 1		150		kHz
G = 10		35		kHz
G = 100	Small bandwidths	3.5		kHz
G = 1000		350		Hz
1	1		I	
Settling time to 0.01% ts				
G = 1	V _{STEP} = 4V	50		μs
G = 100	V _{STEP} = 4V	400		μs
			I	-
	Very low input bias curre	ent 🥿		
INPUT BIAS CURRENT				
Input bias current IB		±70	±200	pA
vs Temperature		See Typical Characteri	stic curve	pA/°C
Input offset current Ios		±50	±200	pA
vs Temperature		See Typical Characteri	stic curve	pA/°C
INPUT VOLTAGE NOISE				
Input voltage noise e _{NI}	G = 100, R _S = 0Ω			
f = 10Hz		50		nV/√Hz
f = 100Hz		50		nV/√Hz
f = 1kHz	Large noise density	50		nV/√Hz
f = 0.1Hz to 10Hz	AD620 was 9 nV/√Hz	1		μV _{PP}
Input current noise i _N				
f = 10Hz		100		60 / Jaz
· · · · · ·		100	1 1	TA/ VHZ

INA 111: J-Fet input

INA 111

The strong advantage of a JFET input is the negligible noise current density

LTC1100

Precision, Zero-Drift Instrumentation Amplifier

Voltage Noise vs Frequency

The LTC 1100 uses an Autozero technique to cancel the input offset and flicker noise.

The side-effect is foldover, resulting in an increased low-frequency noise density.

	· ·	1					
Input Offset Voltage	(Note 2)		±1	±10	±1	±10	μV
Input Offset Voltage Drift	(Note 2)	•	±5	±100	±5	±100	nV/°C