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erality of Theorem 1 side-steps the approximation problem 
except for putting the given data in real rational 2- 
variable form. 
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Sensitivity Analysis and Models of Nonlinear Circuits 

SYDNEY R. PARKER, SENIOR MEMBER, IEEE 

Absfracf-Sensitivity analysis of general nonlinear circuits is 
considered using the concepts of state space. It is shown that sensi- 
tivity functions may be obtained by calculating the responses of a 
dependent linear model, topologically equivalent to the original, 
with element palues and driving functions determined by partial 
derivatives of the characteristics and responses of the original cir- 
cuit components. The sensitivity parameter may be taken as ex- 
plicit in any one of the circuit parameters. The solution of the 
sensitivity functions from the model involves basically the same 
program as is used to obtain the solution of the original circuit and 
both solutions may be generated simultaneously. 

T 

HE USE of auxiliary networks or sensitivity 
models for the sensitivity analysis of linear circuits 
and systems has been discussed by several authors. 

These models, as implemented on an analog or digit.al 
computer, dynamically generate sensitivity functions; 
that is, waveforms which represent the variation in the 
circuit or system response to be expected if an incremental 
change in a parameter were made. If the response is 
y(t, QI), where O( is a circuit parameter, the sensitivity 
function, as used here, is given by +/(t, a)/da. Kakotovic 
and Parezanovic, as discussed in a monograph by Tomo- 
vie [l], have introduced sensitivity models for systems 
represented by linear differential equations simulated 
on analog computers. Leeds [2] has expanded this concept 
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to linear-circuit analysis that may be carried out on a 
digital computer. This result may be shown to be es- 
sentially an application of the compensation theorem, as 
presented in a text by Skilling [4]. Recently, Leeds and 
Urgon [5], and Hachtel and Rohrer [6], have considered 
sensitivity functions applied to equivalent networks and 
circuit design, respectively. The extension of sensitivity 
studies to nonlinear circuits and systems has been dis- 
cussed in papers by Meissinger [7], Dorf [S], and Rohrer 
[3], but without the physical interpretation of the sensi- 
tivity model and its relationship to the original circuit 
for computational purposes as presented here. The results 
obtained are summarized in the following theorem. 

THEOREM 

Sensitivity functions for a nonlinear circuit may be 
obtained by calculating the corresponding responses of a 
dependent circuit, topologically identical to the original, 
in which each component is replaced by a dependent 
linear equivalent given, at any instant, by the slopes of 
the voltage (current) versus current (voltage) character- 
istic for resistive (conductive) elements, the charge versus 
voltage characteristic for capacitive elements, and the 
flux versus current characteristic for inductive elements. 
The driving function for the sensitivity, model depends 
upon the sensitivity parameter and is a voltage source 
in series with the component when the sensitivity param- 
eter is explicit in resistive or inductive elements, a current 
source in parallel with the component when the sensitivity 
parameter is explicit in conductive or capacitive ele- 
ments. It is always directed to cause a current flow in the 
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sensitivity model element opposite to the direction of d 
current through the element in the original circuit. The 1) is = jjj (C9Js) 4) i,g = G,va 

value of the source function is determined by the partial 
derivative of element voltage (current) with respect to 2) i, = d 

(3) 
the sensitivity parameter for resistive (conductive) ele- 

$ Gvc> 5) VL = yj-j (LiL + L,ir) 

ments; and by the time rate of change of the partial 
derivatives of charge with respect to the sensitivity param- 3) vR = R,i, 6) vr = $ (LiL + Lir) 

eter for capacitive elements and by flux with respect to 
the sensitivity parameter for inductive elements. where mutual inductances are treated with one coil as 

The results are generalized using state-space formula- a link and the other as a tree branch. Dependent voltage 

tion, and it is shown that circuit responses and the sensi- and current sources may also be characterized by the 

tivity functions may be calculated simultaneously. following hybrid equations 

THEOREMDEVELOPMENT 

Consider the following general matrix characterization 

V R = HA + HnvG (44 

for a circuit, as presented in a basic paper by Kuh and 
Rohrer [lo]. 

with the voltage source treated as a link and the current 
source treated as a tree branch, dependent upon other 
branch currents and voltages as indicated. - 

the foregoing ex- 

v, and i, represent link voltages and currents, respectively, 
and v2 and iz represent tree-branch voltages and currents, 
respectively. F = [l 1 B], where B is the fundamental 

1) i, = 5 &C1(VS) 4) iG = &2(vd 

circuit matrix, and e and j represent independent voltage d 
and current sources appearing in each fundamental loop 2) & = z &C&C) 5) VL - - -$ [h(id + &(G->I (5) 
and across each fundamental cutset, respectively. Follow- 
ing Kuh and Rohrer, if a normal tree is chosen, (1) may 

3) vR = vRl(iR) 6) vr = be written as follows: 

L 

US 

VR 

VL -- 

ZC 

% 

al-. 

= 

0 0 0 l-F,, 0 
I 

0 0 0 b-F,, -F,, 0 
I 

0 0 0 I-F,, -F,, 
I 

In (2), Kirchhoff’s voltage law is written for each 
fundamental loop defined by links L (inductance), R 
(resistance), and S (inverse capacitance). Kirchhoff’s 
current law is written for each fundamental cutset de- 
fined by tree branches I? (inverse inductance), G (con- 
ductance), and C (capacitance). All voltage sources ap- 
pear in voltage loop equations and all current sources 
in cutset equations. F (with appropriate subscripts) 
relates link and tree branch voltages and link and. tree 
branch currents according to the network topology. A 
prime designates the inverse of a matrix. eL, eE, and es 
represent independent voltage sources. jr, j,, arid j, 
represent independent current sources. 

The relationship between individual branch voltages 
and currents depends upon the nature of the component 
comprising that branch. For linear components these 
relationships may be written as 

For dependent sources 

V R = hl(iR) + h&) (64 

% = h?l(iR) + h(VfJ)~ @b) 

If an incremental change in a parameter Q! occurs any- 
where in the network, the effects upon voltages and 
currents may be obtained by considering the derivative 
of (2) with respect to (Y. It is apparent that each of the 
variables is L replaced by its derivative with respect to 
a, (v, by &J,/&Y, is by dis/6’cu, e, by deS/acr, . * * , etc.), 
and that these derivatives are interrelated by the same 
topological matrix as the original network. Thus a new 
network is characterized, topologically identical to the 
original, with voltages and currents representing corre- 
sponding sensitivity functions. The exact nature of the 
branch voltage-current relationships in this sensitivity 
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model network depends upon the components of the 
original network and the explicit location of the param- 
eter (Y. 

Consider that cr is explicit in only one of the inde- 
pendent sources. For example, es = e,(t, LY). From (5) 
and (6) it follows typically, that 
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of the voltage source is to cause current flow in a direction 
opposite to the current through the component in the 
original circuit. Since the derivatives of the independent 
sources in (2) with respect to O( are zero, they are not 
present in the sensitivity model. The other elements in 
the sensitivity model are given by their dependent linear 
equivalents as listed in (8). 

Similarly, when the parameter 01 is explicit in one of the 
capacitance elements, 

(74 

2 = 5 (!!!!) = e!?$ [?+$d(%)] (7b) 

au, f3 -=- 
da at > 

= !$!ep(2) +!?&p(z)]. (7C) 

Comparison>of (7) with (3) reveals that for the sensi- 
tivity network each resistance, capacitance, and induct- 
ance of the original network has been replaced by a 
dependent linear resistance, capacitance, or inductance 
with a value equal to the instantaneous slope of the 
defining component characteristic evaluated at the value 
of current or voltage of the element in the original cir- 
cuit. Thus 

‘4 c2 eq = 7 
ah(i,) 

c 
6) L eq = --g--- 

L 
69 

3) R, eq = F &dir) 7)L -~ 12eq - 
R dir 

4) G, eq = !?i+) 8) L 
%dir> 

*2eq = -* 
c dir 

For linear components these values are constants, 
namely, R,, C,, L,,, L,,, C,, G,, L,,, and L,,, respectively. 
The derivatives of the independent sources in (2) are 
zero, except for the source dependent upon the param- 
eter, CL In the sensitivity network this source is replaced 
by an equivalent source given by des(t, a)/aa. 

Consider that the variable Q is explicit in one of the 
resistive components so that one may write, for example, 

V R= vR1(iR, 4. (9) 

NOW 

Comparison of (10) with (3~) reveals that in the sensi- 
tivity model the resistive component of the original net- 
work has been replaced by a dependent linear resistance 
R leq = ahdiRt da i, in series with a voltage source of 
value eRleP = dvRl(iR, ~z)/&x. See Fig. l(a). For a linear 
resistance, vR = R,i,. If Q: = R,, then RI,, = R, and 
eRle4 = iR. For a nonlinear resistance, if v, = Kii and 
a! = K, then R,,, = 2Ki, and eRles = ii. The direction 

i, = i Qc2(vc, a) 
(112 
. sic -=- 

aa: 
a [aQc$;IT 4 (2)] + $ (aQcej 4). 
at 

Comparison of (11) with (3b) reveals that in the sensi- 
tivity network the capacitance component of the original 
network has been replaced by a dependent linear capaci- 
tance C,,, = a& (vc, cr)/& in parallel with a current 
source of value j,,,, = (a/at)[ag,, (vc, a)/aa]. See Fig. 
l(c). For a linear capacitance, Q. (vc, CX) = C2vc. If 
Q = C,, then CZeq = C, and j,,,, = dv,/dt. For a non- 
linear capacitance, if QcZ (vc, a) = Ku: and a! = K, 
then C,,, = 2Kv, and j,,,, = d(vi)/dt. The current 
source is directed to oppose the direction of current flow 
through the component in the original circuit. The de- 
rivatives of the independent sources in (2) are zero and 
they do not, appear in the sensitivity model. The other 
components are given by their dependent linear equiva- 
lents as listed in (8). 

The .foregoing analysis may be applied to each type of 
component of (5)) including the dependent sources of (6). 
The results are summarized in Fig. 1. In view of the 
foregoing, the theorem follows. 

COMPUTATIONAL ASPECTS 

For computational purposes it is important to note that 
when nonlinear components are present the dependent 
linear equivalents in the sensitivity model are essentially 
time varying since the slope of the element’s nonlinear 
characteristic varies with its voltage or current. However, 
in a digital computation, the slope is usually available at 
each instant of computation time in the solution of the 
original circuit. For example, in order to obtain a solution 
of a diode or transistor circuit, the resistance of the non- 
linear element has usually been replaced by a linear 
resistance used in the convergence process at any instant 
of computation time to obtain the computer solution. 
Also, the source currents or voltages for the sensitivity 
model can be calculated directly from the solution of the 
original circuit as it is generated. The foregoing may be 
demonstrated by considering the state equations for a 
circuit written in the following form where nonlinear 
resistance elements have been separated as dependent 
sources [II]. All other circuit elements are considered 
to be linear. 

a%(t) 
- = A(+$) + &G, P, 0 + B,u,(t) at (12) 



R = 
avRu,,a) 

eq aiR 

avR(i,, a) 
=.ECJ a aa 

(a) RESISTIVE RLEKEWT 

vR - vR(iR,a) 

Gq = 
aiGc~Gsa) 

av 
G 

j eq = 
aiG bGr a) 

aa 

(b) CONDUCTIVF.EI.EMENT 

iG = i,(v,.W 

a9 -- 
- aa 

av 

+aL& 

wv,.a) 
J-2 -& (a ) 

e =C 
-1 bp(-+a) 

a -2 eq 
( ) 

aa 

(c) CAPACITIVE E 

ai R 
%eq 

L 

t %2eq 
+ 

av 
2 

$1 

+ 
=11eq 

ahll(iR a) 
%eq = T 
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wll (i,. a) 
+=q = aiL a @ii-) "1leq = E 

HIZeq = r!.qe 
"12eq = 37 

w12 +a) 
“( aa > 

M21eq = 
wzl (i,, a) Wzl(iL.a) 

ai "Zleq = 7% ( aa L > 

aa22(irw 
M22wx a+ 

a 
"22eq = TE 

( aQ2;yra)) 

(d) INDDCTIVRELEMEprp OmrB BaFruAL CWPIJNG) 

t = & 
[ 

@ll(iLA + r,,(+P) 1 
QZl(iL,w + 622 (+P) 1 

l 0 

t 

@@@ 

a”G 

H22eq -EC 

H21eq j22eq j21eq 

. 0 

=22eq= 
ah22 Iv,. 0) 

a"G 

ahl2 cv,, 0) ahZ1 (i,. a) 
%Zeq = avG (2) %eg= aiR 

(>j 

%eq = 
ahll (iRe a) ah22 (vG. a) 

au J22eq= aa 

%2eq = 
bhl2 b,. a) 

aa 
j21eq-ah2;yR*a) 

(e) RESISTIVE BYBRID EIJB¶BtW 

"R = hll(iR,a) + h12(vG,U) 

iG = h21(iR,a) + hz2(vG,U) 

Fig. 1. Sensitivity model equivalents. 
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where z(t) is the state vector, A(cr) is the system matrix 
involving linear elements only, u(z, /3, t) is a dependent 
source input vector, u,(t) is an independent source vector, 
and B, and B, are input matrices. Q! and p designate 
circuit sensitivity parameters. Considering variations 
with respect to (Y, it follows from (12) that 

+ (y!$)“(‘). 
(13) 

Equation (13) is the state equation for the sensitivity 
vector. The term B, du(z, p, t)/dx represents the de- 
pendent resistance (conductance) of the nonlinear ele- 
ment and aA.(~ represents a coupling matrix that 
relates sensitivity model sources to the original circuit 
responses. 

Considering variations with respect to p, it follows 
from (12) that 

5 (!%$) = (A(ol) + B, ‘““;,B’ “)(!%) 

Equation (14) is the state equation for the sensitivity 
vector. The term B, &L(z, /3, t)/&r represents the dynamic 
resistance (conductance) of the nonlinear element, and 
B, &u(z, 0, Q/d/3 represents a coupling matrix that relates 
sensitivity model sources to the circuit responses. If (12) 
is integrated numerically, then at each instant of discrete 
time, the slope du(z, /3, t)/&r is known, and &L(z, /?, t)/&3 
may be calculated. Using these values in (13) and (14) 
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enables the sensitivity functions to be integrated over each 
discrete interval of calculation. The solutions to (13) and 
(14) are dependent upon the solution to (12) and may be 
integrated simultaneously provided that the coefficient 
matrix and source vectors are reevaluated at each discrete 
interval as the numerical solution proceeds. When non- 
linear terms are not present, the coefficient matrices are 
constant and only the source vectors of (13) and (14) need 
to be coupled to the solution of (12). 
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