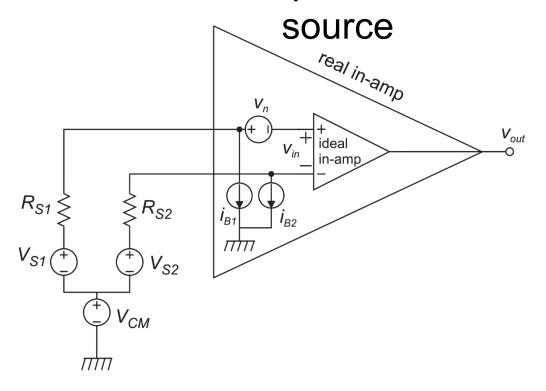
Instrumentation Amplifiers: characteristics


By definition:

- Precise gain
- High input resistance
- Differential input

Other important features

- Low input referred offset voltage
- Low bias currents
- Low input referred voltage and current noise
- High CMRR
- Large bandwidth

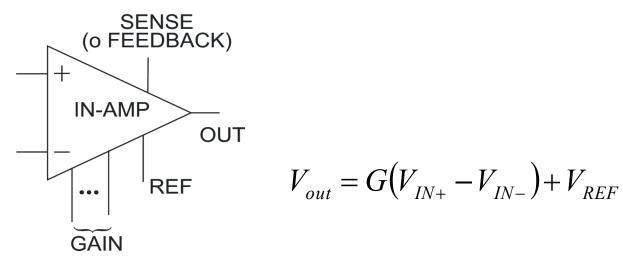
Instrumentation Amplifiers: connection to the

$$\begin{aligned} v_{in} &= V_{S1} - i_{B1} R_{S1} - v_n - \left(V_{S2} - i_{B2} R_{S2} \right) = V_{S1} - V_{S2} - v_{nt} \\ v_{nt} &= v_n + i_{B1} R_{S1} - i_{B2} R_{S2} \end{aligned}$$

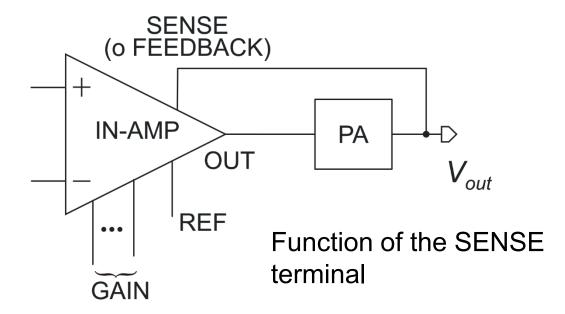
$$v_{nt} = v_n + R_S(i_{B1} - i_{B2})$$
 Balanced case (R_{S1}=R_{S2}=R_S)

Offset: $v_n = v_{io}$, $i_{B1} - i_{B2} = I_{B1} - I_{B2} = I_{io}$

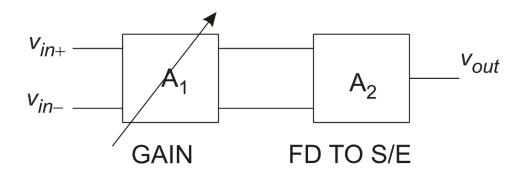
$$v_{iot} = v_{io} + R_S(I_{B1} - I_{B2}) = v_{io} + R_SI_{io}$$


Noise: v_n and i_{n1} , i_{n2} are represented by their PSD (power spectral density)

$$S_{vnt} = S_{vn} + R_S^2 (S_{I1} + S_{I2} - 2S_{I1I2})$$

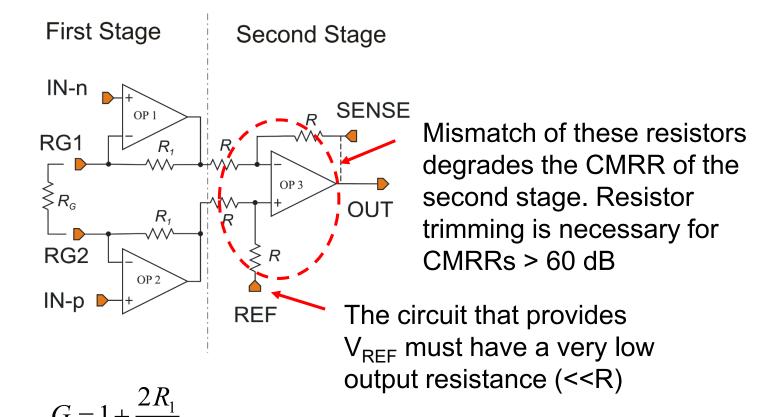

If i_{b1} and i_{b2} are uncorrelated and their PSD is S_1 :

$$S_{vnt} = S_{vn} + 2R_S^2 S_I$$


Monolithic In-Amps

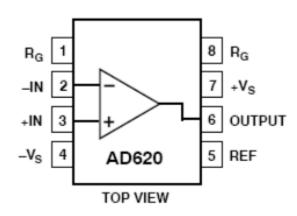
Typical pin configuration

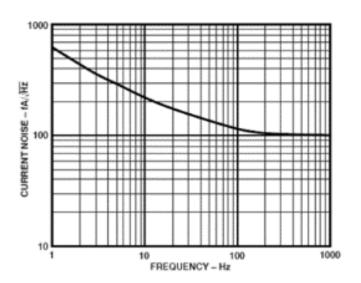
Input and output offset / noise

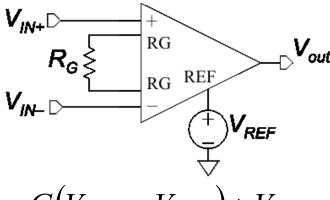


Typical two-stage architecture of In-amps

Generally, A_2 = 1, thus:


$$v_{nRTI} = v_{n1} + \frac{v_{n2}}{A_1} = v_{n1} + \frac{v_{n2}}{G}$$


Three-opamp instrumentation amplifier



Instrumentation Amplifiers

AD 620

$$V_{out} = G(V_{IN+} - V_{IN-}) + V_{REF}$$
$$G = 1 + 49.4k\Omega / R_G$$

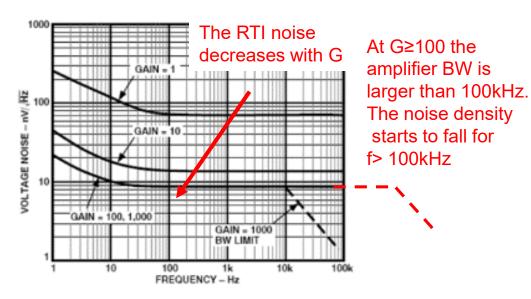


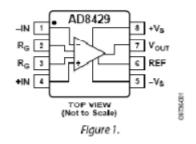
Figure 8. Voltage Noise Spectral Density vs. Frequency, (G = 1-1000)

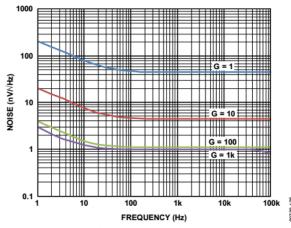
GBW does not increase much beyond the G=10 case: BW affected by second stage Nearly constant GBW product: BW determined by first stage

•	·		\							AD62
Model	Conditions	Min	AD620 Typ	A Max	Min	AD620B Typ		Min	AD620S ¹ Typ M	
DYNAMIC RESPONSE Small Signal -3 dB Bandwidth G = 1 G = 10 G = 100 G = 1000 Slew Rate Settling Time to 0.01% G = 1-100 G = 1000	10 V Step	0.75	1000 800 120 12 1.2	Settling	0.75 times	1000 800 120 12 1.2 1.5 15	Slew	-Rate 0.75	1000 800 120 12 1.2 1.5	kHz kHz kHz kHz V/µs µs µs
NOISE Voltage Noise, 1 kHz	Total RTI Noise = $\sqrt{(e^2 ni)}$)+(6no/G		ıt noise >	> input	noise	Broa	d-Band	Noise: √S	S _{BB}
Input, Voltage Noise, e _{ni} Output, Voltage Noise, e _{no} RTI, 0.1 Hz to 10 Hz G = 1 G = 10 G = 100-1000 Current Noise 0.1 Hz to 10 Hz	Current {B	road-Ba ow Freq	9 72 nd Nois uency l	13 100 se: √S _{BB} Noise).1-10 Hz		72 3.0 0.55	6.9 Inte		ency Nois over 0.1-1	I0 Hz μV p-

Such a small offset voltage and offset drift is the result of a laser-trimmed resistor-load BJT input pair

The effective input referred offset (RTI) is a combination of the input and output offset


							Input	offset			
VOLTAGE OFFSET	(Total RTI Error = Vost + Vos	so/G)									
Input Offset, Vost	V ₈ = ±5 V to ±15 V		30	125		15	50		30	125	μV
Over Temperature	V _S = ±5 V to ±15 V			185			Output	ut offset		225	μV
Average TC	$V_S = \pm 5 \text{ V to } \pm 15 \text{ V}$		0.3	1.0		0.1	0.6		0.3	1.0	μV/°C
Output Offset, Voso	V _S = ±15 V		400	1000		200	500		400	1000	μV
	V _s = ±5 V			1500			750			1500	μV
Over Temperature	$V_S = \pm 5 \text{ V to } \pm 15 \text{ V}$			2000			1000			2000	μV
Average TC	V _S = ±5 V to ±15 V		5.0	15		2.5	7.0		5.0	15	μV/°C
Offset Referred to the											
Input vs.											
Supply (PSR)	V _S = ±2.3 V to ±18 V										
G = 1		80	100		80	100		80	100		dB
G = 10		95	120		100	120		95	120		dB
G = 100		110	140		120	140		110	140		dB
G = 1000		110	140		120	140		110	140		dB
INPUT CURRENT											
Input Bias Current			0.5	2.0		0.5	1.0		0.5	2	nA
Over Temperature				2.5		1	1.5			4	nA
Average TC			3.0			3.0			8.0		pA/°C
Input Offset Current			0.3	1.0		0.3	0.5		0.3	1.0	nA
Over Temperature				1.5	/	1	0.75			2.0	nA
Average TC			1.5			1.5			8.0		pA/°C


The input bias current and input offset current are similar, since such a small bias current is the result of internal bias current cancellation

POWER SUPPLY Operating Range ⁴ Quiescent Current Over Temperature	$V_S = \pm 2.3 \text{ V to } \pm 18 \text{ V}$	±2.3 0.9 1.1	±18 1.3 1.6	±2.3	0.9 1.1	±18 1.3 1.6	±2.3	0.9 1.1	 V mA mA

The AD 620 in-amp represent a good trade-off between input noise voltage, input bias currents and supply current (quiescent current)

PIN CONNECTION DIAGRAM

The AD8429 has a much smaller input referred noise than the AD620 (BB-noise)

Figure 26. RTI Voltage Noise Spectral Density vs. Frequency

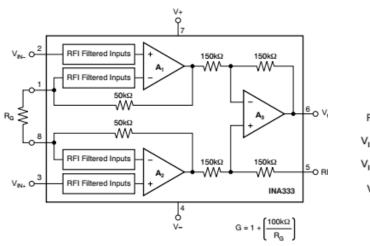
VOLTAGE NOISE, RTI	$V_{IN}+, V_{IN}-=0 V$			
Spectral Density ¹ : 1 kHz				
Input Voltage Noise, eni		1.0	1.0	nV/√Hz
Output Voltage Noise, eno		45	45	nV/√Hz
Peak to Peak: 0.1 Hz to 10 Hz				
G = 1		2	2	μV p-p
G = 1000		100	100	nV p-p
CURRENT NOISE				
Spectral Density: 1 kHz		1.5	1.5	pA/√Hz
Peak to Peak: 0.1 Hz to 10 Hz		100	100	рА р-р
		+		

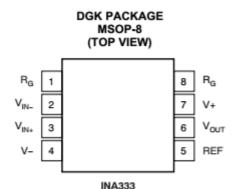
..... but its input current noise is much larger..

The bias current (dc value) is also much larger than AD620 one

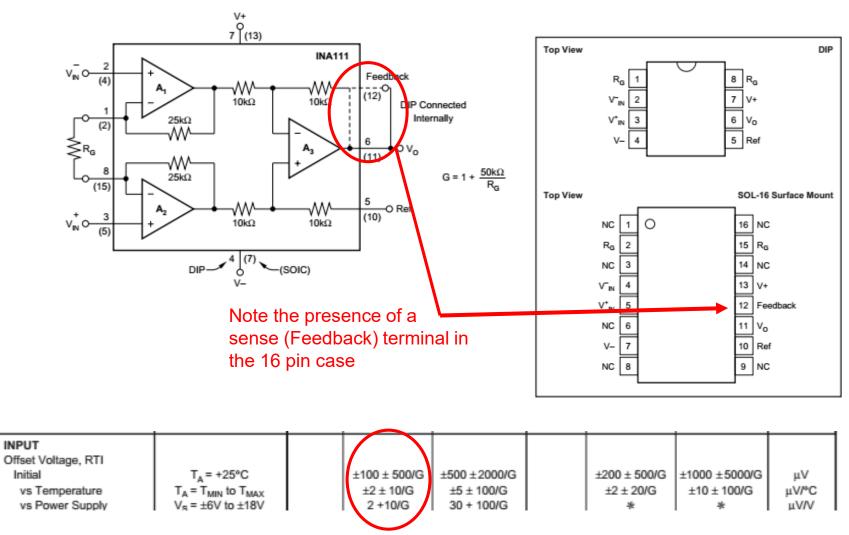
VOLTAGE OFFSET ²								
Input Offset, Vosi				150			50	μV
Average TC			0.1	1		0.1	0.3	μV/°C
Output Offset, Voso				1000			500	μV
Average TC			3	10	/	3	10	μV/°C
Offset RTI vs. Supply (PSR)	$V_S = \pm 5 \text{ V to } \pm 15 \text{ V}$				/			
G = 1		90			100			dB
G = 10		110			120			dB
G = 100		130		/	130			dB
G = 1000		130		/	130			dB
INPUT CURRENT								
Input Bias Current				300			150	nA
Average TC			250			250		pA/°C
Input Offset Current				100			30	nA
Average TC			15			15		pA/°C
DYNAMIC RESPONSE			Tł	ne AD842	9 is fast	er than	the AD62	20
Small Signal Bandwidth: -3 dB				IC / IDO-12	.0 10 1000	or triair	111071002	<u>-</u>
G = 1			15	/		15		MHz
G = 10			4	7		4		MHz
G = 100			1.2			1.2		MHz
G = 1000			0.15			0.15		MHz

.... but it requires much more quiescent current


			-75			-75		
POWER SUPPLY			•					
Operating Range		±4		±18	±4		±18	V
Quiescent Current			6.7	7		6.7	7	mA
	T = 125°C			9			9	mA

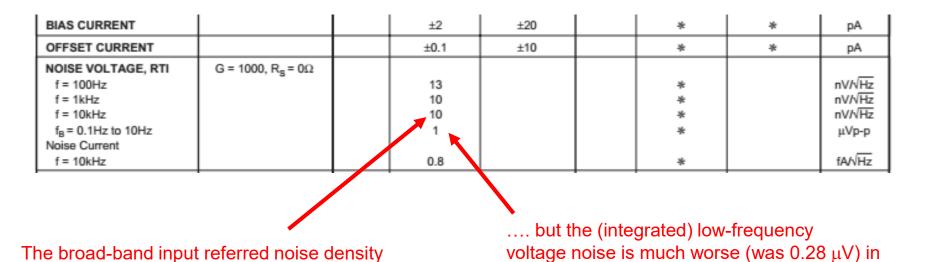

Instrumentation Amplifiers

INA333


The INA333 is a very low-power instrumentation amplifier
 (I_{supply}: 50 μA)
 As a result, its input referred voltage noise is larger and its bandwidth smaller.

					IN	IA333		
PARAMETER		TEST CONDITIONS		MIN	N .	TYP	MAX	UNIT
INPUT ⁽¹⁾								
Offset voltage, RTI(2)	Vosi				±10	±25/G	±25 ±75/G	μV
vs Temperature					/		±0.1 ±0.5/G	μ V/°C
vs Power supply	PSR	1.8V ≤ V _S ≤ 5.5V			±1	±5/G	±5 ±15/G	μV/V
Long-term stability					See	note (3)		
				/				
POWER SUPPLY								
Voltage range								
Single			+1.8		+5.5	V		
Dual			±0.9	🖊	±2.75	V		
Quiescent current	l _Q	$V_{IN} = V_S/2$		50	75	μА		

INA 333

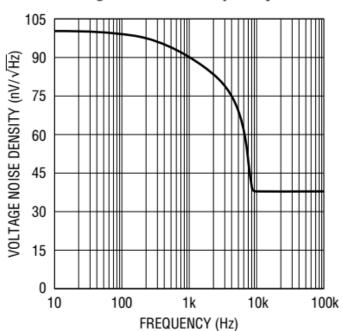

FREQUENCY RESPONSE						
Bandwidth, -3dB						
G = 1				150		kHz
G = 10				35		kHz
G = 100		Small bandwidths ————		3.5		kHz
G = 1000				350		Hz
Settling time to 0.01%	ts			I	[
G = 1		V _{STEP} = 4V		50		μs
G = 100		V _{STEP} = 4V		400		μs
INDUT DIAG GUDDENT	1	Very low input bias curre	ent	ı	ı	ı
INPUT BIAS CURRENT				A	.000	
Input bias current	IB			±70	±200	pA
vs Temperature			See Typic	cal Characteri	±200	pA/°C
Input offset current	los		Con Tomic	±50 cal Characteri		pA
vs Temperature						
INDUT VOLTAGE NOISE			See Typic	cai Characten	T Curve	pA/°C
INPUT VOLTAGE NOISE		G = 100 P. = 00	See Typic	Car Characteri	Stic curve	parc
Input voltage noise	e _{NII}	G = 100, R _S = 0Ω	See Typic		Suc cuive	
Input voltage noise f = 10Hz	e _{NI}	G = 100, R _S = 0Ω	See Typic	50	Sile cui ve	nV/√Hz
Input voltage noise f = 10Hz f = 100Hz	e _{NI}		See Typic	50 50	Sile cui ve	nV/√Hz nV/√Hz
Input voltage noise f = 10Hz f = 100Hz f = 1kHz	θ _{NI}	Large noise density —	See Typic	50 50 50	Suc curve	nV/√Hz nV/√Hz nV/√Hz
Input voltage noise f = 10Hz f = 100Hz f = 1kHz f = 0.1Hz to 10Hz			See Typic	50 50	Suc curve	nV/√Hz nV/√Hz
Input voltage noise f = 10Hz f = 100Hz f = 1kHz	e _{NI}	Large noise density —	See Typic	50 50 50	Suc curve	nV/√Hz nV/√Hz nV/√Hz

INA 111: J-Fet input

Offeset is considerably worse than AD620 and INA 333, which have a BJT input stage

INA 111

is similar to AD 620


The strong advantage of a JFET input is the negligible noise current density

the AD 620

Precision, Zero-Drift Instrumentation Amplifier

Voltage Noise vs Frequency

The LTC 1100 uses an Autozero technique to cancel the input offset and flicker noise.

The side-effect is foldover, resulting in an increased low-frequency noise density.

	· ·		1		1		
Input Offset Voltage	(Note 2)		±1	±10	±1	±10	μV
Input Offset Voltage Drift	(Note 2)	•	±5	±100	±5	±100	nV/°C