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1 Data converters 

1.1 Analog to Digital Converters: definitions and limits. 

Definitions 

An analog to digital converter (ADC) is a circuit that produces a numeric representation of an analog 

input quantity, typically a voltage or a current. In most cases, the output numeric representation 

consists in a digital binary code. In the following part of this document, we will consider that the input 

quantity is a voltage, indicated with vin in Fig. 1.1.  

 

Fig.1.1. ADC symbol.  

The output code D is formed by n-bits, therefore it can represent 2n different numbers. We will assume 

that the reader is already familiar with the transfer function of an ADC and the main sources of error, 

such as offset, gain error, integral non-linearity (INL) and differential non-linearity (DNL). 

Furthermore, we will assume that the input voltage can be either unipolar (i.e. referred to ground) or 

differential.  

The ADC is characterized by an input voltage range, which spans from two values indicated with VMIN 

and VMAX, where VMIN < VMAX The magnitude of the interval is indicated with VFS=VMAX-VMN. 

We will refer to the following representation, consisting in considering code D as a representation of an 

unsigned integer, varying between 0 and 2n-1: 
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2
  (1.1) 

In (1.1) vin-dig is the analog representation of code D in terms of input voltages. Voltage vin-dig must be a 

precise approximation of vin. Clearly, due to the finite number of voltage levels that can be represented 

by all possible codes D, there will be a difference between vin and vin-dig. The minimum distance that, 

nominally, is present between two successive vin_dig levels is generally indicated with LSB or with the 

symbol . The LSB is given by: 
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Note that, with this definition, LSB is a voltage, while same acronym is used also to indicate the least 

significant bit in a binary code.  
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For the sake of the discussion that follows, it is important to divide the ADCs into two different 

categories: 

 Nyquist-rate ADCs 

 Oversampling ADCs 

A Nyquist rate ADC performs the conversion without memory, that is the output code depends only on 

the present value of voltage vin, with no contamination from previous conversions. In order to avoid 

signal distortion (aliasing), a Nyquist-rate ADC should respect the well know constraint on the 

sampling frequency (fS):   

 SS Bf 2  (1.3) 

where BS is the signal bandwidth. If the sampling frequency is incremented over the minimum value, 

2BS, there is no advantage in terms of resolution. Most widespread ADC solutions, such as the flash 

ADC, the SAR ADC and the counting ADC are practically Nyquist-rate converters.  

An oversampling ADC operates at a frequency much higher than BS and performs digital filtering of 

the output data. Due to filtering, the output code values depend also on the previous samples, not only 

on the present one. The benefit is an increase in resolution with respect to a Nyquist-rate converter in 

equal conditions of component precision. Generally speaking, an oversampling ADC shifts part of the 

complexity from the analog to the digital domain.  

Factors that limit the resolution of a Nyquist-rate converter. 

Figure 1.2 shows a generic architecture that may represent a wide class of Nyquist rate ADCs. The 

control logic produces a sequence of output codes that are converted into analog by the DAC (digital to 

analog converter) and compared with the input signal. At the end of the conversion cycle the code that 

represent the result of the conversion remains on the output terminal. This code, once converted by the 

DAC, produces a voltage that provides the best approximation of the input voltage among all possible 

DAC outputs. In a SAR converter, the set of all possible codes is explored by means of a binary search. 

In a simple counting ADC, all possible codes are explored sequentially until the best match between vin 

and the DAC output is found. A Flash converted can be considered as a counting DAC where 

comparison of vin with all possible DAC outputs is performed in a parallel fashion.  

 

Fig. 1.2. Simplified architecture representing a SAR or a counting ADC. 
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In all the examined cases, the precision of the ADC is strongly related to the DAC precision. In 

particular, the ADC DNL and INL practically coincides with the DAC DNL and INL.  

Now consider a popular DAC implementation, given by the programmable voltage divider of Fig. 1.3. 

The number of switch is equal to the number of resistors, which, in turn, is equal to 2n. In practice, for 

each possible value of the DAC output voltage there is one resistor and a switch. The switches are 

controlled by a decoder in such a way that, for each possible value of the input code D, only one switch 

is on. This DAC architecture, indicated as “resistor string” DAC, is preferred for high-resolution 

converters since it guarantees a DNL < 1 LSB, or, in other terms a monotonic characteristic. However, 

like all other DAC architectures, the resistor string is affected by INL deriving from mismatch between 

the resist elements. For simplicity, the DAC shown in Fig. 1.3 represents the case VMIN=0, VMAX=Vref, 

then VFS=Vref.  

In order to estimate the INL, let us consider the case depicted in Fig.1.3 (right), which refers to the case 

when the mid-range value, Vref/2, is selected. This occurs when the selected switch picks up the 

voltage, which is located just in the central point of the voltage divider. Then, nominally, the voltage 

divider is split into two resistors, R1 and R2 in the figure, which connect the output to gnd and Vref, 

respectively. We can calculate the error deriving from a mismatch between R1 and R2. As usual, we 

define R  and R such that: 
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With these definitions: 
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The INL error is the difference between the nominal value (Vref /2) and the actual value given by (1.5). 

It is convenient to express the error in units of LSB: 
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In order to have an error < 0.5 LSB, the relative matching error between R2 and R1 should be less than 

1/2n-1. This means, for example, that in a 12 bit DAC the matching error between the two halves of the 

voltage divider should be less than 0.05 %. This is actually possible to obtain with a proper layout and 

the use of non-minimum area resistors. However, higher resolutions generally need complicated post-

fabrication trimming techniques.  

Since the DAC accuracy limits the accuracy of all ADCs corresponding to the block diagram of 

Fig. 1.2, we can conclude that the resolution (number of bits) of SAR, flash and counting ADCs is 

limited to 12-13 bits, unless trimming strategies are employed.  
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Fig. 1.3. (left) Resistor string DAC. (right) half range case (worst case for INL)  

Oversampling ADCs allow overcoming this limitation without the need of increased component 

accuracy. Since oversampling ADCs base their function on filtering out the quantization noise in the 

digital domain, it is important to consider the relationship between effective resolution and noise. These 

arguments are presented in next paragraph. 

Signal to noise ratios and effective resolution 

First, let us consider an equivalent circuit that takes into account the errors introduced by the ADC. 

This simple equivalent circuit is shown in Fig.1.4 The output code D is transformed into the 

representation (vin_dig) that it gives of the input voltage according to Eq. (1.1). The noise component vn 

accounts for the difference between vin (ideal) and the digital representation vin_dig. The effects of 

discretization can be ascribed to a particular noise component: the quantization noise vnq.  

Quantization noise is illustrated by Fig.1.5 for a Nyquist-Rate converter, where a univocal relationship 

between input voltage and output code (or, equivalently, voltage representation of the code). Voltage 

vin1 represents a possible analog input voltage. Due to the finite number of output levels, voltage vin1 is 

converted to a representation (vin_dig) that differs from the input value. The difference between the 

output voltage representation and the input voltage is just the quantization noise vnq. Note that vnq 

depends on the input signal: for particular values of the input voltages, such as vin2, which coincides 

with one of the possible output representations, quantization error can be even zero.  
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Fig.1.4. Equivalent model of the ADC  

 

 

Fig. 1.5. Input-output characteristic of a Nyquist Rete converter, illustrating the origin of quantization noise.  

Considering that the possible input values are uniformly distributed within the input range of the ADC, 

the mean square value of the quantization noise (i.e. the power of the quantization noise) is given by: 

 
12

2
2 

nqv  (1.7) 

It is now important to consider an important parameter, which is the SNR (signal-to-noise ratio) of the 

ADC. This parameter is defined by: 

 
2
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SNR   (1.8) 

where PMAX is the power (i.e. mean square value) of the maximum sinusoidal waveform that can be 

represented by the ADC, while the noise at the denominator may change depending on the particular 

definition of the SNR. Generally, a sinusoidal waveform is also indicated as a “tone”, or “single tone”. 

Fig. 1.6 illustrates that the maximum peak-to-peak magnitude of a waveform that can be applied to the 

ADC without causing saturation is just VMAXVMIN=VFS Then, for a sinusoidal waveform, the maximum 

power is: 
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If the noise voltage considered in (1.8) is only the quantization noise, than, using (1.7) and (1.3) it is 

possible to derive the following expression: 
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Expressing the SNR in decibels, we get a very popular equation: 

   76.102.6log10 10  nSNRSNRdB  (1.11) 

Expression (1.11) refers to the SNR calculated considering only quantization noise. However, the 

presence of other noise sources (such as electronic noise) may have a similar effect to quantization 

noise, since it limits the minimum difference of the input quantity that can be reliably detected. In other 

words, all source of noise limit the resolution. As a result, equation (1.11) is often used to determine a 

resolution (number of bits) from an SNR definition that takes also into account noise components other 

than quantization one.  

 

Fig. 1.6. A simusiod of maximum power.  

In particular, it is possible to take into account even distortion through the parameter SINAD (signal to 

noise and distortion), also indicated as SNDR (signal to noise and distortion ratio), defined as: 
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where PD is the power of the harmonics other than the fundamental. Generally, PD is calculated over a 

reduced number of harmonics. Using (1.11) with SNR=SINAD leads to the definition of the “effective 

number of bits” (ENOB) of a converter: 

 
02.6

76.1
 dBSINAD

ENOB  (1.13) 

Another important consideration that will be used later descends from the relationship between SNR 

and resolution. Let us consider two different ADCs of resolution n1 and n2 and indicate with SNR1 and 

SNR2 their respective signal-to-noise ratios. From (1.10) we obtain: 

  122

1

2 2
nn
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SNR 
  (1.14) 

If the two converter has the same full-scale range, VFS, then the maximum power of a single tone, PMAX, 

is the same for the two converters. Then, using (1.8), the ratio SNR2/SNR1 becomes: 
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Obtaining n2n1 from (1.14) and using (1.15), the following expression can be derived: 
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Equation (1.16) shows the relationship between the difference in resolution between two ADCs and the 

ratio of their respective noise powers. This equation is important because it explains how an increase in 

resolution can be obtained by reducing the noise power of a converter. In next section, it will be shown 

how this goal can be accomplished by means of oversampling.  

1.2 Oversampling data converters 

In order to understand the oversampling mechanism, let us consider Fig. 1.7, showing the result of 

sampling in the frequency domain.  

 

The frequency interval to be considered for the sampled signal (discrete time domain) extends only 

between –fS/2 and fS/2, where fS is the sampling frequency. The replicas of the original signal spectrum, 

indicated in lighter color are used only to build the spectrum within the [–fS/2, fS/2] interval. Since 

aliasing does not occur in both cases of Nyquist-Rate sampling and oversampling, replicas have no 

effect on the final spectrum and could be ignored. The main difference between the two cases are: 

 

Fig. 1.7. Consequence of sampling in the frequency domain with and without oversampling  
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 In the case of Nyquist-Rate sampling, the frequency domain of the sampled signal coincides 

with the signal bandwidth, so that it is not possible to apply filtering without altering the signal 

of interest.  

 In the case of oversampling, the frequency domain is larger than the signal bandwidth, so that it 

is possible to apply a low pass filter with a cut-off frequency fH, such that BS< fH < fS, with no 

effect on the signal.  

Indeed, filtering is applied to reduce quantization noise, improving the effective resolution. Fig. 1.8 

shows the spectral density of quantization noise according to a widely accepted model that assumes: 

1. The spectral density of quantization noise is constant over the whole discrete-time frequency 

domain.  

2. Quantization noise and signal are uncorrelated. 

This model is correct when the input signal is such that many different levels of the ADC are visited 

with a relatively high frequency. The model fails in describing the quantization noise density when the 

input signal is constant (i.e. a dc signal), of small amplitude (of the same order of the LSB or smaller) 

or slowly varying. In the following discussion, we will apply the uniform density model of quantization 

noise, while keeping in mind that it may lead to wrong results when the hypothesis of a large and fast 

input signal does not hold.  

 

Note that the total power of quantization noise, given by (1.7), is independent on the sampling 

frequency. Therefore, if the sampling frequency is increased, then the density get smaller, since the 

same noise power spreads over a larger frequency interval. Fig. 1.9 shows the quantization noise PSDs, 

Snq(f) and S’nq(f) of the same ADC for two different sampling frequencies fS and fS’, respectively. Since 

the total noise power is unchanged, then the following relationship should hold: 

 
'
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f
fSfS   (1.17) 

 

 

Fig. 1.8. Power spectral density of quantization noise according to the uniform density model  
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This phenomenon is used to reduce the spectral density in the signal bandwidth in order to reduce the 

total quantization noise. The principle is illustrated in Fig. 1.10 If a converter is operated at a sampling 

frequency equal to the Nyquist rate, i.e. fS=2BS, then the situation depicted in Fig. 1.10 (a) occurs. The 

spectral density in this case is indicated with Sn-NR(f). Figure 1.10 (b) shows the same converter 

operated with oversampling. The sampling frequency, in this case is higher than the sampling rate by a 

factor rOS, called “oversampling ratio”, commonly indicated also with OSR.  

 

Since, in the case of oversampling, the discrete time frequency domain is wider than the signal 

bandwidth, it is now possible to apply a low pass filter (dashed line in the figure, showing an ideal low-

pass filter). This filter selects the signal spectrum and rejects part of the noise components. This is not 

possible if the sampling frequency is equal to the sampling rate, since the width of frequency domain 

coincides with the signal bandwidth and, and anticipated earlier, any filtering function would alter the 

signal. The block diagram of a simple oversampling converter is shown in Fig. 1.11. The low pass filter 

operates on the digital data stream (Dst) produced by the original ADC. The total power of the 

quantization noise that affects the data at the output of the filter (Dout) is given by: 

 )(2
2

fSBv OSnSOSn    (1.18) 

Applying (1.17) with fS=Nyquist rate=2BS and fS’=fS/rOS, we find that Sn-OS=Sn-NR/rOS, then: 

 

Fig. 1.10. Quanyization noise reduction by means of oversampling.  

 

Fig. 1.9. Power spectral density of quantization noise for two sampling frequencies.  
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Equation (1.19) shows that the quantization noise power at the output of the filter is diminished by the 

OSR factor.  

 

Note that the block indicated with ADC in Fig.1.11 is still a conventional Nyquist-rate converter (e.g. a 

SAR or a flash converter) which is operated at a sampling frequency higher than the Nyquist-rate. The 

oversampling converter is the combination of this “oversampled” ADC and the digital low pass filter. If 

n is the resolution of the original ADC and n’ is the effective number of bits (due only to quantization 

noise) of the output data stream Dout, then the increment in resolution can be calculated from (1.16): 
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As a result, we gain one bit of resolution every time the rOS is increased by a factor of four. It is 

important to stress the fact that this increase is not obtained by improving the component accuracy, but 

only at the cost of a sampling frequency much higher than the minimum value required for signal 

integrity, which is the Nyquist rate.  

The simple oversampling approach has two important drawbacks. First, it is not efficient: in order to 

gain one bit we need to operate at a sampling frequency that is four times the Nyquist rate. If we need 

to achieve a more significant improvement, for example 4 bits, we need to operate at a frequency that is 

44=256 higher than the Nyquist rate. This means a much higher power consumption for a modest 

resolution increase.  

The second problem stems from the mentioned limits of the uniform density model of the quantization 

noise. Consider the block diagram of Fig. 1.11 with a constant input (dc voltage). Since the ADC is a 

Nyquist-rate converter, its output will be determined by only the present input, according to a 

deterministic law as that of Fig. 1.5. The output Dst of the ADC is then a constant code. If the input 

value does not coincide with one of the particular voltage levels that are represented with a zero error, 

then the output code will correspond to an input voltage vin_dig which differs from the actual input vin. 

This difference is the quantization error. Since it is constant, its spectrum is a Dirac delta function, 

placed at f=0.  With such a noise PSD, the low pass filter is useless and the output stream Dout will be 

affected by the same error as Dst. As a result, for dc inputs the oversampling ADC does not have any 

 

Fig. 1.11. Block diagram of an oversampling converter.  
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advantage in terms of resolution. To overcome the limitation occurring with dc inputs, electrical noise 

is sometimes artificially introduced at the input of the amplifier. This technique is called “dithering”. 

Electrical noise, whose magnitude is at most a few LSB, cause the output of the ADC to switch across 

a few adjacent codes in a random fashion. This switching effect operates a sort of modulation of the dc 

quantization noise, spreading its energy across the whole discrete-time frequency interval. The LPF can 

now reject the noise even when the input signal is a dc or slowly varying signal. Since the noise is 

chosen in such a way to have most of its spectral components out of the signal bandwidth, the LPF 

remove also most of the noise introduced to implement the dithering approach.  

The way the dithering approach works is illustrated in Fig. 1.12. Vk and Vk+1 are two input voltages 

corresponding to two adjacent output codes of the ADC. The actual input voltage, supposed constant, is 

indicated with Vdc. The mean of Vk and Vk+1 is the threshold, which, when crossed, determine the 

switching between the two codes. Since Vdc is below the threshold, it would cause the Vk+1 level (i.e. 

the code that represent it) to be constantly present on the output of the ADC. As we have already 

explained, in this case the LPF is ineffective. Adding the dithering noise (vn-dt in the figure) makes the 

input signal to cross the threshold occasionally. Then, the ADC output (vin-dig) will vary between the 

two levels and the LPF, which operates a sort of average, will yield an intermediate value between Vk 

and Vk+1. This corresponds to increase the resolution of the ADC, since it is now possible to represent 

input voltages that are located between two adjacent levels of the original ADC. Clearly, if Vdc is 

closer to one of the two levels Vk and Vk+1 , then that level will appear at the ADC output more 

frequently than the other one, and the average produced by the LPF will be closer to that level.  

   

Although dithering solves the problems occurring with dc signals, oversampling alone is still an 

ineffective way to increase the ADC resolution, since, as we have seen, to gain a modest number of 

 

Fig. 1.12. Operating principle of the dithering method.  
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bits, very large OSRs are required. Such a limitation is solved by means of the delta-sigma converter 

described in next section.  

1.3 Delta sigma converters 

A delta-sigma converter (-), often indicated also with sigma-delta, is a converter that combines two 

different principles, namely: 

 Oversampling 

 Noise shaping 

Noise shaping refers to quantization noise. The effect of noise shaping is equivalent to high-pass 

filtering the quantization noise, in such a way that the total power is not altered, but most of the power 

is shifted out of the signal bandwidth.  

Delta sigma converters include a large variety of different architectures. The most important parameter 

of delta-sigma converters is the order. The higher the order, the more aggressive is noise shaping, 

leaving less noise in the signal bandwidth. In this document, we analyze the simpler case, i.e. the first 

order, discrete-time delta-sigma ADC, represented by the block diagram of Fig. 1.13. 

 

The section included into the red-dashed box is called delta-sigma modulator. It is an all-analog circuit, 

while the output LPF operates in the digital domain. The ADC and DAC have the same number of bits, 

indicated with n. This is also the resolution of the data stream (Dst) produced by the ADC. The 

representation of Dst digital codes in terms of input signals of the ADC are indicated with vst. The DAC, 

ideally transforms the digital code into its voltage representation. In practice, as we have seen, the DAC 

is marked by errors, so that vdac (the output voltage of the DAC) can be different from vst. In the 

following analysis we will assume that the DAC operates in an ideal way, so that vdac=vst. DAC errors 

will be discussed later. 

 

Fig. 1.13. Block diagram of a first-order delta-sigma ADC.  
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Note that the ADC is placed in the forward path of the modulator, while the DAC is in the feedback 

path. Voltage vdac is often referred to as the feedback signal. We will also assume that the input (and 

feedback signal) are sampled at the input of block H. For this reason, block H (the “loop filter”) 

operates in the discrete-time domain. As such, block H is characterized by a Z-domain transfer 

function.  

It is possible to study the delta-sigma modulator using the linearized model shown in Fig. 1.14, where 

the digital code has been replaced by its voltage representation. The ADC is represented by the model 

of Fig. 1.4, where the error due to finite resolution is introduced by quantization noise vnq.  

 

As we have stated earlier, the DAC is considered ideal and then it is not present in the feedback path 

(since vdac=vst). Analysis of the model in Fig. 1.14, produces the following expression of the output data 

stream vst as a function of the input signal and the quantization noise: 

 )()()()()( zNTFzvzSTFzvzv nqinst   (1.21) 
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Let us consider the signal bandwidth that, in an oversampling converter is located at frequencies much 

smaller of fS/2, In the signal bandwidth, the target is obtaining a signal transfer function which is close 

to one and a noise transfer function as low as possible. Considering also stability issues (not analyzed 

in this document for simplicity), the ideal form for H(z) that allows satisfying both requirements is that 

of a discrete-time integrator. In particular: 
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This function can be implemented with the simple block diagram in Fig. 1.15, where block “T” 

represents a delay of one clock cycle. With H(z) given in (1.24), the STF and NTF become: 

 

Fig. 1.14. Linearized model of the first-order delta-sigma modulator.  
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The STF is simply a delay of one clock cycle and then it does not alter the signal, as required. On the 

other hand, the NTF coincides with the discrete-time derivative operation and as such, it rejects the dc 

component and strongly reduces the components at low frequencies. 

 

The denomination of the converter derives from the fact that the signal undergoes a difference (“delta”) 

with the feedback signal and then the difference is integrated (“sigma”, i.e. summed) by the integrator.  

Let us now calculate the transfer function of the NTF in the frequency domain, by substituting z with 

ejT, where T is the clock period. We recall that the clock is at the sampling frequency fS, which is rOS 

times higher than the Nyquist-rate.  
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Replacing  with 2f, we obtain the dependence of NTF on frequency, thus: 
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The delta sigma-modulator produces a data stream with the same resolution of the original ADC 

included in the loop (see Fig.  1.13) but differently from a simple oversampling converter, the 

quantization noise of the data-stream is filtered (i.e. “shaped”) by the NTF. The spectral density of the 

quantization noise at the modulator output, Sn-DS(f) can be calculated considering by the following 

expression. 

 












 

S

OSnOSnDSn
f

f
SfNTFSfS

22
sin4)()(  (1.29) 

where Sn-OS(f) is the spectral density produced by the original ADC operated at the oversampling 

frequency fS=1/T. Figure 1.16 depicts the spectral density Sn-DS(f), showing the shaping effect. Note the 

reduced density in the signal bandwidth, selected by the digital LPF. In practical cases the signal 

 

Fig. 1.15. Block diagram of the discrete-time integrator.  
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bandwidth is much smaller than fs/2 (normally more than 100 timed smaller), thus the noise density in 

the bandwidth is orders of magnitude smaller than in the case of simple oversampling (density Sn-OS).   

 

In order to estimate the effective resolution increase, we have to calculate the total power of the 

quantization noise in the signal bandwidth, which is the noise power at the output of the LPF (vn-out). 
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Since the integral involve only frequencies f ≤ BS and fS =2rOSBS with rOS>>1 (large oversampling 

ratio), then f<BS<<fS . For  this reason the argument of the sine is << 1 and we can approximate the sine 

with its argument. As a result: 
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Since Sn-OS=Sn-NR/rOS, by means of simple algebraic transformations, we obtain the following 

expression: 

 

2
2 2

2

3

2 2 2

3 3

S S n NR S n NR

n out

S OS OS

B B S B S
v

f r r

  



     
      

     
 (1.32) 

Note that 2BSSn-NR is the total power of the quantization noise of the original ADC (which does not 

depend on the sampling frequency and is equal to 2/12). Then: 
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Applying (1.16), the resolution increase, n’-n is: 

 

Fig. 1.16. Power spectral density of the quantization noise at the - modulator output.  
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where:  
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Equation (1.34) means that we have an increment of 1.5 bits every time the OSR (i.e. rOS) is doubled. 

This is much more effective than the mere 0.5 bit of the simple oversampling converter. For example, 

with OSR=64 we gain 9 bit. If the ADC placed into the - modulator has 10 bit, then, with the 

architecture of Fig.  1.13 and OSR=64 we can virtually obtain a 19 bit converter, which is well beyond 

the possibilities of Nyquist-rate converters.  

It is interesting to see what happens in the time-domain within the modulator loop when the input is a 

dc voltage. Fig. 1.17 shows the evolution of the main signal of the modulator. We will consider that the 

integrator H(z) starts with a zero output. Note that an integrator with the response indicated in (1.24) is 

simply an accumulator that, at each clock impulse, adds the input signal to the value accumulated at the 

output. Note that if the output of the integrator is zero, then also the ADC will produce initially a zero 

output.  

 

Therefore, at the first clock impulse (T), the integrator will add just vin to its output, so that the 

integrator output jumps to vin. At the next impulse (2T), the ADC approximates the integrator output to 

the closest available level (Vk-1 in the figure) and the DAC will track the ADC output. The integrator 

will then integrate the difference between vin and Vk-1. Since this difference is positive, the integrator 

output increases by a vinVk-1 step. These steps are repeated until the integrator output stays below the 

threshold between the two adjacent levels (dashed line in the figure). When vint passes the threshold, the 

 

Fig. 1.17. Example of evolution of the main signals in the - modulator.  
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ADC and, consequently, the DAC will change their output to Vk (instant 4T). At the next clock cycle 

(5T), since Vk>vin, the integrator will decrease by Vk-vin. From this instant on, voltage vint will evolve 

with a sequence of positive increments followed by one (bigger) negative step and so on. As we have 

seen, the two steps are given by: 

 
 






 

step (negative) downward

step (positive) upward1

ink

kin

vV

Vv
 (1.36) 

Over a long time-frame, negative and positive steps should balance, otherwise voltage vint would 

diverge. The sequence is generally not periodical, unless the ratio of the two steps is a rational number. 

The output of the ADC (data-stream Dst in Fig. 1.13) is a sequence of Vk-1 and Vk values, corresponding 

to positive and negative steps of the vint voltage, respectively. The output filter extract the average of 

the Dst stream.  

If vin is perfectly halfway between the two adjacent levels, then the positive and negative steps are 

equal. In this case, it is possible to understand that, in a long time interval, the number of positive steps 

should equal the number of negative ones. Then, the occurrence of Vk-1 values in the data stream is 

equal to the occurrence of Vk values. The average at the output of the LPF filter (Dout, representing Vout) 

is then (VkVk-1)/2, so that the input voltage is correctly represented. 

 If vin is closer to Vk-1, the positive steps will be smaller than the negative ones. Therefore, we need a 

larger number of positive steps (i.e. Vk-1 samples in the data-stream) to balance the negative ones (Vk 

values). The average Vout is than closer to Vk-1, matching the input voltage.  

Since, as mentioned earlier, the sequence is not periodical then, in order to get a perfect average we 

would need an infinite time frame. In the frequency domain, this means that the LPF bandwidth tends 

to zero. Considering that the LPF bandwidth sets the signal bandwidth (see Fig.1.16), the OSR, given 

by rOS=fS/2BS ratio would tend to infinity. This is clearly non-feasible and, with a finite OSR, the output 

Dout (Vout) will be marked by a certain amount of noise, visible as a fluctuation of the output codes. This 

fluctuation, which is just the residual quantization error, has a power given by (1.32), corresponding to 

the resolution increase expressed by (1.34).  

It is interesting to observe that, in the asymptotic case of infinite time frame, the average of the data-

stream value (vst) equals vin, indicating that, at least in principle, the delta-sigma approach enables the 

design of ADCs with an arbitrarily low INL. To understand this, let us consider the input of the H(z) 

integrator in Fig. 1.13. If the integrator is ideal, the average of its input (i.e. the dc value of the input) 

should be zero, otherwise the output of the integrator would diverge. Then: 

 dacindacin vvvv  0  (1.37) 

Now, if the DAC is ideal, vdac=vst, then the average value of vst, is equal to vin, with no INL error. In this 

ideal case, the only source of error would be the imperfect average calculated by the LPF due to the 

finite OSR.  

Another interesting point is that, even with a dc input, the signal applied to the internal ADC is not 

constant but varies continuously (see voltage vint in Fig. 1.17). Then, the hypothesis of uniform spectral 

density for the quantization noise is more applicable even in the absence of dithering.  
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In practice, DACs are not ideal, as we have seen at the beginning of this chapter. Since the DAC is in 

the feedback path (see Fig.  1.13), the INL error of the DAC is turned into an error of the ADC. 

Fortunately, an intrinsically linear DAC exists. Such a DAC is the 1-bit DAC, consisting in a simple 

switch network that connects the output to VMIN when the input bit is zero and to VMAX when the bit is 

one. Such a DAC is linear since its output characteristic has only two points, which always lie on a 

straight-line. A delta sigma that uses internally a 1-bit ADC and, consequently, a 1-bit DAC, is shown 

in Fig. 1.18. The example of the figure, VMIN= Vref- and VMAX=Vref+, where Vref+ and Vref-are the two 

analog levels produced by the DAC. The 1-bit ADC is simply a comparator that checks whether its 

input voltage is higher or lower than the middle of the input range.  

 

In the example, the data-stream produced by the internal ADC is actually a bit stream, where the logic 

value “0” and “1” represent the analog values Vref and Vref+, respectively. The final resolution (number 

of bits) is given by the initial resolution (1 bit) plus the resolution increment given by (1.34). To have 

an idea of the resolution that it is possible to achieve, we can consider, for example, an OSR of 512 

(29). From (1.34) with n=1, we get n’=13.6. It is important to stress the fact that such a result can be 

achieved with no need of precise component matching. The bit-stream produced by an 1-bit  

modulator is characterized by an average value that represents the input signal. Since the average of the 

is proportional to the number of “ones” present on a time-frame, the bit-stream is indicated as a “pulse 

density modulated” (PDM) signal.  

The digital LPF is often implemented as a cascade of moving average filters. Since a single moving 

average filter have a frequency response that follows a sinc(f) behavior, the cascade of N blocks 

implements a so-called sincN filter. Sinc filters, which are generally implemented with a CIC (cascaded 

integrator-comb) architecture, have the great advantage of providing the required rejection of the out-

 

Fig. 1.18. Example of a single-bit first order - ADC.  
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of-band quantization noise with no need of performing digital multiplications. This strongly reduce the 

complexity, area and power consumption of the digital circuits. The effect of the filter is limiting the 

output spectrum (both noise and signal) to fS/2rOS=BS. Therefore, there is no need that Dout is updated at 

frequency fS. For this reason, the LPF has also the function of reducing the data rate of the Dout stream 

to 2BS. This is done by dropping the samples in excess. Due to this function, the LPF is also indicated 

as “decimator filter”.  

Although the first order - converter can still represent an attractive solution for its simplicity, better 

performances can be obtained using higher order modulators. An n-order  ADC includes n 

integrators. The higher the order, the more bits are gained when the OSR is doubled. In a first order 

- converter, the resolution increases by 1 and ½ bits every-time the rOS is doubled. For a single bit 

 ADC, achieving 16 bit if resolution would require an OSR of more than 1000. This means that, in 

order to convert an analog signal with 1 kHz bandwidth (2BS=2 kHz), we need a sampling frequency 

(fS) of nearly 2 MHz. A more efficient tradeoff between resolution and OSR can be obtained using a 2nd 

order  modulator, represented in the simplified diagram of Fig. 1.19. 

 

In a second order  ADC, the effective resolution increases by 5/2 bits every time the OSR is 

doubled. Therefore, a 16-bit ADC can be obtained from a 1-bit ADC (a comparator) with an OSR of 

only 128, strongly reducing the sampling frequency required for a given signal bandwidth. Second 

order delta-sigma converters, equipped with sinc3 digital low pass filters, are widely used in integrated 

sensor interfaces. Signals in a 2nd order delta-sigma converters are much less intuitive than in the case 

of the first order converter, shown in Fig. 1.17. 

Multi-bit  ADCs, i.e. delta-sigma converters where the internal ADC has a resolution (number of 

bits) greater than 1, are advantageous because we start from a greater resolution (n) and the increment 

(n’-n) needed to reach the target resolution (n’) is smaller. A smaller increment means a smaller OSR, 

which, for a given signal bandwidth, means a smaller sampling frequency. This is particularly 

important in  ADCs to be used in telecommunication systems where signals with large bandwidth 

have to be converted with a relatively high resolution (to avoid dynamic range degradation). As 

mentioned earlier, the main problem of multi-bit converters is the DAC non-linearity. This problem is 

generally mitigated by using complex DEM (dynamic element matching) that continuously swap the 

elements of the DAC (i.e. the single resistors of the DAC in Fig. 1.3). In this way, on average, in a long 

time frame, all DAC elements tend to be balanced and the DAC behaves linearly.  

 

Fig. 1.19. Simplified block diagram of a 2nd order - ADC.  
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Obviously, the analysis carried on so far is performed considering an ideal analog discrete-time 

integrator (block H). Imperfections of this block (e.g. input refereed offset, non-linearity, finite gain) 

introduce additional errors that should be taken into account while estimating the overall accuracy of 

the ADC. 
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