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Chapter 1. Concepts and definitions  about Data Acquisition Systems 

 
Electronic systems 

 

An electronic systems is a complex electronic network, which interacts with the physical world through 

sensors (input devices) and actuators (output devices). This definition is graphically represented in 

Fig.1.1, where the arrows indicate information fluxes. The aim of the electronic systems is generally to  

get information about selected aspects of the physical world and, optionally, use the information to 

modify the physical world in a useful way. The main operations that an electronic system can perform 

are listed in Fig.1.1.  

 

 
 

Fig.1.1 

 

The general architecture of an electronic system is shown in fig.1.2. The sensors are handled by the 

DAS sub-system. The DAS output is a digital signal which is read by a digital processor. The aim of 

the latter is completing the acquisition process by estimating the quantities of interest. The information 

is further processed in order to make it suitable for being transmitted, stored or displayed. The digital 

processor also uses the estimated quantities to calculate the correct action to be applied to the physical 

world in order to obtain the desired function (e.g. to set the ambient temperature to a given set-point).  

Data transmission is performed by a communication interface, which implements the required protocol. 

Other subsystems (peripheral interfaces) allow communication with the storage and display devices, 

providing the correct protocol and power. The analog power signals which are typically required for 

driving the actuators are also generated by special subsystems (actuator drivers).  

The design of a complex electronic system generally requires different skills. The DAS involves 

advanced analog design techniques; the digital processor requires designers with both knowledge of 

informatics and automatic digital synthesis; the actuator drivers and peripheral drivers involve power 

electronics design skills, while the communication interface may require the skill of an RF designer.  
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Fig.1.2 

 

Data acquisition systems (DAS). 

 

The aim of a DAS is acquiring information on real world objects by measuring the physical and 

chemical quantities of interest. For simplicity, in the following part of this document we will simply 

indicate these quantities with “physical quantities” or, when there is no ambiguity, only with 

“quantities”. The object, to which the quantities are pertinent, will be indicated as physical world or 

physical domain. The acquired quantities are converted into an analog electrical signal, generally a 

voltage. In most cases it is necessary to convert the analog signals into digital signals in order to 

facilitate processing, storage, visualization and transmission.  

 

Fig. 1.3 shows the various transformations that the information (quantities X and Y) undergoes during 

the acquisition process. At the end of the process, we get two numbers Xm and Ym that represent 

estimates of the quantities X and Y. We have also introduced a third quantity, Z, that we suppose can 

be calculated from X and Y, so that it is not necessary to build an acquisition channel also for Z but the 

Z estimate (Zm), can be simply derived from Xm and Ym. With this choice, Xm and Ym are independent 

quantities, while Zm is a dependent quantity.  
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Fig.1.3 

 

Each independent quantity is acquired by a readout channel. A channel is composed by the cascade of 

several elements: Considering the X readout channel we have: 

 Sensor. The sensor interacts with the physical quantity of interest (X), causing an electrical 

quantity EX to depend on X. In order to unambiguously estimate the X value, the relationship 

from X to EX should be monotonic in the whole range of X vales of interest. Note that EX can 

be any electrical quantity; typical cases are: voltage, current, resistance and capacitance. 

 AFE (Analog Front End), also named “interface”. The aim of this block is to convert the 

quantity EX produced by the sensor into a signal VX (typically a voltage), suitable to be easily 

converted into a digital signal. The AFE may include several functions such as conversion (i.e. 

from resistance to voltage), amplification, filtering (to eliminate out of band noise and 

interfering signals), temperature compensation. For many sensor categories, the AFE should 

also provide the sensors with proper stimuli, necessary for the conversion mechanism. In the 

case that the sensor response is strongly non-linear, it might be convenient to operate 

linearization in the analog domain (i.e. inside the AFE), although linearization as well as other 

non linear operations are preferably performed in the digital domain.  

 Analog-to-digital converter (ADC). This block is necessary to produce a digital representation 

of VX, that we will indicate with VXD. Clearly, the output of the ADC is a code (digital number), 

but this number represents the input quantity through the ADC transfer characteristics. VXD is 

different from VX due to the quantization error and to other ADC errors (offset, gain and non-

linearity errors)..  

 X-estimator. This block implements a numerical algorithm or formula that gets the data from 

the ADC and calculates the number Xm, consisting in an estimate of X.  

Dependent quantities, such as Z, can be derived from Xm and Ym through a proper block 

(Z.estimator) that produces the estimate Zm. implementing the function f(Xm,Ym).  
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Signals. 

 

Information is carried by signals. The latter can be of three different types, as shown in Fig.1.4. Analog 

signal are continuous in magnitude, since they can ideally assume all the values within their range. 

Digital signals are quantized in magnitude, since they can assume only a finite number of values. As a 

result, also the information carried by a digital signal is quantized Analog and digital signals can be 

further divided into continuous time and discrete time signals. A continuous-time signal is valid for any 

instant of the interval of interest. Discrete time signals assume valid values only at instants that can be 

represented by a progression of integer numbers. Since, in all real cases, the time interval of interest is 

finite, then also the number of instants at which the signal is valid is also finite.  

Digital signals are always discrete-time, while analog signals can be either discrete or continuous time. 

For example, discrete time analog signal are present in switched capacitor circuits.  

 

digital signals 

analog signals

discrete time

continuous time

discrete time

 
 

Fig.1.4 

System Performance 

 

The performance of a DAS is given by the “closeness” of the estimates (Xm,Ym.Zm ...) with respect to 

the corresponding physical quantities (X,Y,Z ...). More precisely, the following error can be defined: 

 

 me XXx   (1.1) 

 

This is equivalent to consider that a complete acquisition channel of a DAS (e.g. channel X) can be 

modeled as an ideal system (defined by the identity block I in Fig. 1.5), with the addition of the 

disturbance –xe at the input.  

 

 
Fig. 1.5 

 

 

In a system formed by the cascade of several blocks, the total error xe is the sum of the contribution of 

all blocks. Fig. 1.6 shows the block diagram of the DAS, with the errors highlighted. Each block is 

modeled as an ideal (errorless) block with an adder that sums up an error term at the output. The 

numbers 0, 1, 2, 3, 4 identify the points where the signal is considered. The number 0 identifies the 

original quantity to be measured, the number 1 the quantity at the output of the sensor and so on. The 
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terms ex1, ex2, ex3 are error terms that are considered to be injected at positions 1, 2, 3, respectively. In 

order to calculate the contribution of a single error term to the overall error xe (see fig. 1.5) it is 

necessary to define the sensitivity. If we consider the signal at the i-th position, the sensitivity from the 

input quantity to that position is given by: 

 

 
X

V
k Xi

iX



,0

 (1.2) 

 

where Vxi is the signal at position i-th. The sensitivity can be considered as the small signal gain from 

the input position to the considered output position. It is possible to define the sensitivity from 

whichever position, not only from position 0. Examples of sensitivities are represented in Fig.1.6 by 

means of paths connecting the input to the output position.  
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Fig. 1.6 

 

Each error contribution can be referred to the input quantity through the corresponding sensitivity. 

Consider Fig. 1.7, where the i-th position is examined. We suppose that the error exi is summed up to 

the signal coming from previous blocks.  
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Fig.1.7 
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The corresponding input quantity, xei is given by: 
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  (1.3) 

In order to calculate the total error it is necessary to sum up the input referred values of all error 

components that are injected into the read-out channel by the various blocks.  

 

Note that, if the response of the system is non-linear (for example because of sensor non-linearity), the 

sensitivity is not constant over the input quantity interval. Therefore, if we consider an error source that 

is not dependent on the input signal (for example noise form an amplifier), this error will result in a 

larger input referred uncertainty in intervals of the input quantity where the sensitivity is smaller.  

 

Error on dependent quantities.  

 

We have seen that a dependent quantity is not directly measured but its value is calculated starting from 

the estimates of other quantities, which, on the contrary, are measured (independent quantities). It is 

important to calculate how the errors on the independent quantities affect the error on the dependent 

one. Considering, for example, Z=f(X,Y) and suppose that the function f is implemented by the Z-

estimator with infinite precision. Then the Z estimate will be Zm=f(Xm,Ym). But: 

 

 ),(),( eemmm yYxXfYXfZ   (1.4) 

 

Using the first order Taylor approximation: 
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The error on Z, equal to ZZm, is given by: 
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This expression can be easily extended to the case of more than two independent variables.  

 

Types of errors.  

 

There are three types of errors that can be distinguished:  

1. Quasi static errors. These errors can be considered to be constant during the whole observation 

period. The observation period is the time during which the system is monitored (from several 

seconds to several hours).   

2. Dynamic errors. These are errors that exist only during transients and are due to the slowness 

of the system. 

3. Noise. This term indicates all kind of unwanted time varying systems that are superimposed to 

the signal. It includes random noise, which is due to phenomena involving the charge carries 

(electrons, holes and others) at the microscopic scale, as well as disturbances due to external 

sources, generally referred as interference.  
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Quasi static errors can be divided into the following categories: 

 

-) Offset error 

-) Gain error 

-) Non linearity error.  

The offset error is responsible for the fact that, when an input zero quantity is applied, the output is not 

equal to the conventional zero. More precisely, for a DAS, the input offset Xio is the value of quantity 

X that produces a zero estimate (Xm=0).  

The Gain error can be easily understood if we consider a linear readout system. If we takes into account 

position i-th in the readout chain, than, nominally: 

 

 system)(linear XkV nomXnomXi    (1.7) 

 

where kx-nom is the gain of the system from the X to the i-th position in nominal conditions. Due to an 

error on the gain, we have that the actual gain is: 

 

 
errXnomXrealX kkk    

 

where kX-err is the gain error term. With this value we have: 

 

  XkkV errXnomXrealXi    

 

Since we do not know the actual gain, we have to estimate the input quantity by using the nominal 

gain. Thus: 
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Comparing this equation with Eqn.(1.1), we obtain that the input referred error due to the gain error is  

 

 X
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x
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   (1.8) 

 

We note that:  

(1) the error is proportional to the input quantity. Therefore, the error due to gain inaccuracy is not an 

additive term, since it depends on the input signal.  

(2) the error gain is a relative error, since the ratio kX-err/kX-non appears in the input referred error 

contribution.  

Methods for reducing the gain error: 

In order to obtain precise gains (and thus small gain errors) it is important that the gain depends only on 

two types of contributions:  
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-) Ratios between quantities that have the same dimensions, relating to objects fabricated with the same 

technology. These kind of dimensionless ratios are affected only by matching errors, which can be 

reduced to less than 0.1%. In addition, temperature variations affect in the same way the two terms of 

the ratio, which, as a result, remains unchanged.  

-) Precise quantities (not dimensionless). In nature, there are quantities that can be made very precise, 

such as the output frequency of a quartz oscillator.  

 

Clearly, if the input and output quantity (X and VXi , respectively, in Eq.1.7), have not the same 

dimensions, the gain cannot involve only dimensionless ratios, but should include at least one non-

dimensionless quantity, which, should be made as precise as possible. 

In all cases where the above rules cannot be respected, the gain can be affected by large errors. For 

example, in integrated circuits, if a gain is proportional to the resistance of an on-chip resistor, gain 

errors more than 10 % can be expected. In these cases, it is necessary to individually trim each 

fabricated device.  

 

Ratiometric systems. 

 

In these systems, the gain is purposely made to be proportional to the power supply voltage Vdd. This 

seems an inaccurate approach, since the Vdd is generally provided by power voltage regulators that are 

not as precise as voltage references. This drawback is completely overcome if we combine the 

ratiometric readout channel with an ADC that uses Vdd as its reference voltage (see Fig 1.8). 
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ratiometric
readout
channel

 
 

Fig. 1.8 

 

The gain of the ratiometric system is given by aVdd, where a is a constant. Many systems, such as 

Wheatstone bridges, used to read resistive sensors, are intrinsically ratiometric. The output code of the 

ADC is indicated with D, while n is the ADC resolution. Substituting the expression of VX into the 

output code, we obtain a result that is independent of the Vdd value. In this way, it is possible to use Vdd 

as a voltage reference with no penalty in terms of accuracy. The advantage is that the need of a precise 

voltage reference (such as a band-gap circuit) is avoided.  

 

Non linearity errors.  

 

The errors derive from the use of an approximate law to model the sensor response. In the sketch of 

Fig. 1.9, we show the output voltage of a readout channel (VX) as a function of the input quantity. The 

real sensor response is represented by the curve (actual curve). In order to obtain a precise estimate, the 

X estimator (see Fig. 1.3) should have a transfer characteristic equal to the inverse of the actual 

response. If a computational unit is not available, a possible solution is to use a linear approximation, 
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which can be easily implemented with very simple logical blocks. Clearly, this introduces an error 

which is shown in the figure by the difference between the actual value of the input quantity (X) and its 

estimate (Xm), obtained starting from the output voltage value VX*.  

A non linearity error may still be present also when more precise approximations, such polynomial or 

exponential functions are used (residual non linearity error). It should also be observed that the non-

linearity of the response varies among the different samples of a particular system. These errors will 

remain even if the nominal curve used to interpret the sensor response is virtually exact.  

 

X

VX

actual curve

linear 
approximation

VX*

Xm  
Fig. 1.9 

 

Dynamic errors. 

 

Fig. 1.10 (a) shows the response of a DAS to a step variation of the input quantity. The figure includes 

also (quasi)-static errors, which cause the response to start from and settle to a value which is different 

from the actual X value. Note that the X estimate does not reach the final value immediately and the 

estimate significantly differs from the final value during the transient period. During this transient time, 

the difference between the estimate and the actual X value can be much larger than the static error, so 

that the output of the DAS will be invalid during this time. An important parameter is the settling time, 

tset, defined as the time necessary for the estimate Xm to get closer than a certain margin to the final 

value. In practice, after tset, the difference from the final value stays within a given error band placed 

across the final value. A typical error magnitude used to define the settle time is ±1%. For high 

precision systems, 0.1 % or 0.01 % settling time specifications are also common.  

 

The reason of the system slowness is due to inertial elements, which, in the electronic domain, are 

mainly capacitatances and, less frequently, inductances. An important contribution may also derive 

from the sensor, where non-electrical elements (mechanical and thermal masses, diffusion and 

adsorption phenomena) are likely to play an important role. 

 

The response speed of a DAS can be expressed by two parameters: 

 

-) Frequency bandwidth, BS 

-) Slew rate, sr.  

 

The bandwidth refers to the linear behavior of the system, which generally occurs when the input 

variations are small (e.g. small magnitude steps) or slow. The slew rate is the maximum value of the 

time derivative of Xm. For example, in the case of large steps, the derivatives is no more proportional to 

the step magnitude, but saturates to a maximum value sr.  
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Therefore, the bandwidth affects the response to small signals while the slew rate refers to large 

signals. In most cases both parameters contribute to the settling time, since the system is in the slew-

rate condition in the initial part of the transient and gets into linear operation in the last part. The 

analysis in these conditions is difficult and strongly depends on the system architecture. It is interesting 

to consider the value of the settling time when only one parameter dominates.  

 

time

Xm
X

final value

s
te

p

static error

tset

time

Xm

D
X

m

tset

(a)                                               (b)  
Fig.1.10  

 

For linear responses, when BS dominates, we have the approximate condition: 

 

 
S

set
B

t
1

  (1.9) 

This expression is precise for the 1 % settling time of a system characterized by a second order low-

pass Butterworth response. In the case of first order low pass response, the tset given by the previous 

equation should be multiplied by 0.73. The settling given by (1.9) can be widely exceeded when the 

transfer function is characterized by pairs of complex conjugate poles with a high quality factor (Q). In 

this case, poorly dampened oscillations are present on the step response and the settling time is 

adversely affected.  

 

If the slew rate dominates, as shown in fig. 1.1(b), we simply have: 
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The important difference here is that the settling time depends on the amplitude of the input step (DX) 

 

Noise. 

 

In electronics, the term noise indicates unwanted signals that contaminate the desired signal. This 

definition includes also capacitive or magnetic interference from equipments placed in the vicinity of 

the circuit that we are examining or disturbances induced by incoming electromagnetic waves. From 

now on, unless explicitly stated, we will use the term noise only to indicate random signals generated 

by microscopic phenomena occurring inside the same blocks and devices that form the DAS, including 

the sensor.  

If we consider a constant value for the input quantity, noise produces random oscillations across the 

theoretical output constant value. Noise affects the resolution of the system, which is the minimum 

difference between two values of the input quantity that can be distinguished. Fig. 1.11 (a) shows a 
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sketch of the estimates Xm produced by the DAS as a function of time for two different values of the 

input quantity X. The output estimates varies around the mean value (indicated by the red line) for the 

effect of noise. The interval of possible values that can be assumed by the signal around the mean value 

is called “noise-band”. The amplitude of the noise-band corresponds to the peak-to-peak magnitude of 

the noise (xnp-p). At this point, it should be observed that most cases of random noise are characterized 

by distributions of values theoretically spread over an infinite interval (see for example Gaussian 

noise). In practice, it is possible to consider a finite interval where most values fall, or, more precisely, 

a given percentage of values fall. For a Gaussian distribution, which fits most practical cases with 

reasonable precision, probabilities are shown in Table 1.1, where  indicates the standard deviation.  

 

Interval Total interval width (xnp-p) Probability  1 probability 

± 2 0.683   (68.3 %) 0.317 

±2 4 0.954   (95.4 %) 0.046 

±3 6 0.997    (99.7 %) 0.003 

±4 8  0.999936    (99.9936 %) 6.4105 

      Table 1.1  

 

In the following part of this document, unless differently specified, we will assume a noise interval 

amplitude of 4. Considering Table 1.1, this means that the total signal (ideal signal + noise) will spend 

95 % of time within the noise band. Equivalently, this means that, if we sample the output noise, more 

than 95 % of samples will fall inside the error band.  

 If we consider two different values of the input quantity, as in Fig.1.11(a), separated by the difference 

DX, and we suppose that there are not gain and non-linearity errors, the average value of the output 

estimates are separated just by DX. The noise-bands are shifted also by DX. The figure shows a 

situation where the difference DX is so small that the noise bands corresponding to the two values of 

the input quantity are partially overlapped. The intersection of the two bands includes values of the 

output, which are compatible with both values of the input quantity; therefore, at the instants when the 

signal is inside the intersection region, it is not possible to decide which one of the two input values is 

actually present at the input.  

In order to be able to distinguish between two values of the input quantity, there should be no overlap 

between the corresponding noise bands. The smaller difference that can be distinguished, i.e the 

resolution, occurs when the two noise bands are adjacent, as shown in fig.1.11(b). Since, in this case, 

the two values of the estimate are separated by two half noise-bands, the resolution is simply given by 

the amplitude of the noise-band, i.e. by xnp-p. Considering again how we have defined the error band, if 

we try to use the system to distinguish between two quantities that differs by just the resolution, then 

the answer will be correct for 95.4 % of all cases.  For system requiring a lower error probability, 

different definition of the error band should be adopted (e.g. 6 instead of 4). Clearly, with this 

different definition, the resolution of the system will turn out to be worse (larger minimum DX).  
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Fig. 1.11 

 

Total accuracy of the DAS.  

 

In metrology, accuracy represents the closeness of the result of measurement with respect to the actual 

value. Strictly speaking, the accuracy is not a numerical value, but just a “quality”, which includes 

several quantitative parameters used to define the property of the error (presence of systematic 

components, repeatability and reproducibility, variance of random errors, etc.). In the practical use, the 

accuracy is the difference between the measured and actual values of the input quantity. Generally, 

accuracy does not include noise contributions; since they are zero-mean random signal that can be 

arbitrarily reduced by averaging large sets of measurements. In the case of a DAS, averaging is 

equivalent to apply a low-pass filter to the signal stream, slowing down the system. When we consider 

the errors on the measurements, we should assume that the bandwidth has already been reduced to the 

minimum value needed to guarantee the required system response speed (e.g. settling time). Therefore, 

each sample coming out from the measurement system has to be regarded as a significant sample and 

no more operations are allowed. Consequently, we will include also the noise contribution into the 

definition of total accuracy, since it has to be intended as the closeness of each single sample of the 

output signal (estimates stream, Xm), with respect to the real value of the input quantity. Therefore, the 

accuracy will be given by the sum of the maximum static error (absolute value) and the maximum 

noise error (absolute value). As far as noise is considered, the maximum absolute noise value is the 

peak value, i.e half the peak-to peak value.  

 

Additive errors and detection limit.  

 

In many practical cases, noise and offset do not depend on the input signal, thus they can be considered 

as additive errors. This property is particularly important for defining the detection limit of the system, 

i.e. the capability of detecting very small values of the input quantity. Examples that show how this 

parameter can be important are represented by the detectors of harmful gases, which, for certain 

substances such as nitrogen oxides, should be able to raise a reliable alarm for concentrations as low as 

a few part per billion. Other examples are given by flow sensors designed to detect very small flow 

rates in pipes, in order to detect fluid leaks.  

In order to find out which parameters really affect the detection limit, we have to consider what 

happens when a zero input quantity is applied to the system. From Eq.(1.8) we note that for X=0 there 

cannot be a gain error. In addition, non-linearity errors, occurring at large values of the input signal can 

be neglected. Therefore, the only error sources that affect the measurement are offset and noise, i.e. the 

additive errors. Fig.1.12 (a) shows the output signal band, when a zero input signal is applied. 

Considering Eq. (1.1), the input offset error ( Xio ) shifts the measurement result by –Xio.  Noise adds up 
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random oscillations around this value. All measurements values fall within the noise band, as shown in 

the figure.   

Xmeas

time

X
noise band
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X+max(X )io

X-max(X )io

total 

uncertanty
band

Xio

(a)                                               (b)  
 

Fig.1.12 

 

The situation depicted in Fig. 1.12 (a) refers to a single device, where we can consider the offset as a 

known quantity. In many cases the offset of a given system cannot be measured, or, at least, not with 

sufficient precision. It should also be considered that the offset varies for the effect of temperature and 

device ageing. As a result, in many cases, we have to consider also the offset as an unknown random 

quantity to be represented by its statistical properties. The offset is generally given in terms of 

maximum offset, max(Xio), which is actually the maximum of the absolute value of the offset. The 

possible offset values are generally also symmetrical with respect to zero, so that the range of possible 

offset value will be [max(Xio) , max(Xio)]. Since the noise band is placed across the offset values, the 

total range of values that the measurement system may produce when X=0 is shown in Fig. 1.12(b).  

Thus, the minimum value of the Xm measurement that can be reliably referred to a non-zero input 

quantity is given by (absolute value): 

 

 pnpiom xXXX 
2

1
)max()0min(  (1.11) 

Note that Eq.(1.1) does not give the minimum detectable quantity, which, instead should be calculated 

considering Fig.1.13, where the interval of possible measured values Xm is given as a function of the 

input quantity X, in the case that gain and non-linearity errors have been already corrected. The line 

Xm=X represents the ideal case, where no noise and no offset are present. In the real case, the 

measurements fall in the band indicated in the figure.  
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Fig.1.13 

 

For an input quantity to be reliably recognized as non zero, the interval of output values should have no 

overlap with the interval of possible values produced when X=0. Considering Fig.1.13, it can be easily 

shown that the absolute value of the detection limit should be at least as large as the complete error 

band, i.e: 

 

 pnpio xX  )max(2limitdetection  (1.12) 

 

 Signal limits and dynamic range. 

 

The input quantity values that can be applied to a DAS should stay within a lower limit (Xmin) and an 

upper limit (Xmax) in order for the system performance to be maintained. The limits are generally due to 

excessive non-linearity occurring when the signal magnitude becomes too large. In particular cases, the 

limits can be due to the onset of phenomena that can be destructive for the system.  

The full scale range of a system, indicated with DXFS is given by the difference: 

 

 minmax XXX FS D  (1.13) 

 

Note that Xmin is not necessarily a small quantity, since it may be a negative value with a large absolute 

value. A typical example is given by symmetrical input ranges, where Xmin=Xmax.  

The full scale range is a measure of the real extension of the interval across which the input quantity 

can vary.  

An important parameter that characterizes the system performance is the dynamic range (DR). This is a 

dimensionless ratio given by: 

 

 
X

X
DR FS



D
  (1.14) 

 

where X is generically the smallest quantity that can be detected. Note that the definition of the DR 

varies depending on the way we define X. In systems where the signal bandwidth does not extend 



P. Bruschi -  Notes on Mixed Signal Design  
 

15 

 

down to DC, the offset is not relevant and the minimum detectable quantity is affected only by noise, 

so that X coincides with the system resolution. This is also the case of systems where offset 

compensation is feasible and reliable. In the case that the signal bandwidth includes DC and the offset 

cannot be effectively cancelled X should be considered to be equal to the detection limit calculated in 

Eq.(1.12). In common practice the DR is calculated considering only the noise contributions, so that X 

is the resolution. An interesting interpretation of the DR can be found when we consider that X 

coincides with the resolution. If we consider Xmin, then the closest quantity that can be distinguished 

from Xmin is Xmin+X. Then, we have to add another increment X to reach the next value that can be 

distinguished from Xmin+X. Proceeding in this way, we reach Xmax after (Xmax-Xmin)/ X steps, i.e. after 

a number of steps equal to DR. Then the DR can be considered as the maximum number of different 

levels of the input quantity that can be distinguished by the DAS. This situation is similar (but not 

identical) to what happens in an ADC, which can distinguish only 2n levels, where n is the converter 

resolution (defined as number of bits). For this reason the DR is sometimes expressed in terms of 

number of bits and, on the other hand, it should be observed that a possible way to express the 

resolution of an ADC is to give the DR. Normally the DR is expressed in decibels.  

 

It is important to observe that the DR of the whole system depends on the DR of the blocks that 

compose it. The knowledge of the DRs of the single blocks is not sufficient to calculate the overall DR. 

In fact, the overall DR depends also on the way the output range of each block matches the input range 

of the following block.  

In order to understand this, let us consider Fig. 1.14, where connection between block A and next block 

B is shown. The signal at the output of A, which coincides with the signal at the input of block B, is 

indicated with V. We focus on the input range of block B, limited between Vmin and Vmax. We consider 

that these limits are due only to block B, thus stricter range boundaries can arise from the blocks that 

follow B. Then we have indicated with Xmin and Xmax the limits on the input quantity that derive from 

all blocks of the DAS (including also block B). When X varies from Xmin to Xmax , voltage V swings 

from V(Xmin) and V(Xmax). Figure 1.14 represents also the levels, into which the input range of B is 

ideally divided. As we have shown earlier, the levels derive from the resolution (i.e. noise ) of block B. 

In the case depicted in the figure, when X swings across its input range, voltage V explores only a 

fraction of the input range of block B. Then, the actual number of levels that are involved is smaller 

than all those that can be provided by block B. This is a case that can potentially result in dynamic 

range degradation, especially if the resolution of B is relatively low. In order to exploit all the levels of 

block B, an amplifier could be placed between A and B, provided that this additional block does not 

introduce further range limitation or significant noise.  

 

X

V(Xmin)

V(Xmax) input range 
and levels of
block B

output swing 
of block A, when
X varies across its
full scale range

V

V

Vmin

Vmax

A B

 
 

Fig.1.14 
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If the system is linear, it is possible to demonstrate that the DR of the whole system cannot be larger 

than the DR of each individual block. Let us consider block B, and define its dynamic range as: 

 

 
V

VV
DRB




 minmax  (1.15) 

where V is the maximum error introduced by B (noise, or noise + offset) referred to the input of block 

B. Clearly, since the system is linear, we can write: V=kVX, where kV is a constant corresponding to the 

sensitivity of V vs. X. For simplicity, we will assume that kV is positive; this is not a restriction since the 

procedure can be easily repeated for kV < 0. The error V, referred to the input quantity X will be given 

by V/kV.   
Since the error introduced by block B is only one component of the total error on X, we can write: 

 

   XkVX
k

V
V

V




 (1.16) 

Let us now consider the limits of the range. Clearly, for all values belonging to the X overall range 

(interval  [Xmin and Xmax]) block B should operate correctly, then V should be within the input range of 

block B. Therefore: 

 

   minmaxminmax

maxmax

minmin

maxmax

minmin
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V
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











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
 (1.17) 

 

Then we can operate the following substitution in 1.15: 

 

  
 








minmaxminmax VVXXk

VXk

V

V   

 

Considering Eq.(1.16) and (1.17), this increases the denominator and decreases the numerator of  the 

DRB expression, defined in Eq.(1.15). Then: 

 

 
   

DR
X

XX

Xk

XXk

V

VV
DR

V

V

B 













 minmaxminmaxminmax  (1.18) 

 

where DR indicates the overall dynamic range of the system. This means that that DR of all blocks is 

constrained to be larger than or, at least equal to the target DR of the whole system.  

 

 


