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ADC applications

• Measurements and data acquisition, from low-frequency to high 
frequency applications (wearables, sensors, IoT, automotive, data-link 
communications)

• Industrial applications (robotics, control systems, PLCs, …)

• Commercial electronics (mobile phones, video and audio devices, 
microcontrollers …)

The ADC mirrors the DAC operation, hence, usually the same applications 
requiring a DAC also require an ADC. This is strictly true when a feedback or a 
control is needed to monitor the DAC output
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Analog to Digital Converters: ideal characteristics

2
FS

in dig MIN n

Vv V D  

VFS

The digital output D can be referred 
to input by the action of an ideal 
DAC, whose full scale (VFS) is 
matched with that of the ADC 

n
FSVLSB

2


The characteristic of an n-bit ADC
with no offset, gain, and non-linearity
errors (only quantization errors): vin-dig is 
the best approximation of vin, given n 

LSB
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ADCs Static Parameters: end-point errors
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• Offset error: difference between the 
actual ADC characteristic and the 
perfect ADC characteristic, evaluated 
at the zero transition

http://ww1.microchip.com/downloads/en/appnotes/atmel-8456-8-and-32-bit-avr-microcontrollers-avr127-understanding-adc-parameters_application-note.pdf

• Gain error: difference between the last step 
midpoint of the actual ADC and the last step 
midpoint of the ideal ADC, after the 
compensation of the offset error

As in DACs, offset and gain are end-points errors, and are, generally easily corrected

http://ww1.microchip.com/downloads/en/appnotes/atmel-8456-8-and-32-bit-avr-microcontrollers-avr127-understanding-adc-parameters_application-note.pdf
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ADCs Static Parameters: DNL, INL
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• (DNL, INL measured after the 
compensation of end-point errors)

As in DACs, INL and DNL are of major concern, since they introduce distortion
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ADCs – Static Parameters

P. Bruschi – Design of Mixed Signal Circuits

True 12 bits? 

m
onotonic

The ADC has 4096 distinct levels (a higher output code always implies a higher input), however the 
readout code is affected by an uncertainty of ~1 LSB = 5V/4096 = +/- 1.22 mV
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Analog to Digital Converters: sampling process
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c

Sampling process:
Nyquist-Shannon sampling 
theorem (Aliasing): ideally, 
no information is lost

Quantization process:
Loss of information →
 Quantization noise

Time-continuous
Infinite levels

Time-discrete
Finite number of 

levels

Analog-to-Digital
converter

Vin(t), comprising the intended input signal + any other unintended signal 
(couplings, noise) must be band-limited by a preceding CT anti-aliasing filter
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Nyquist-Rate vs. Oversampling ADCs

2S Sf BNyquist Rate ADC: No redundant information:
The output code depends only 
on the last conversion. 
Previous conversions do not 
affect the present code

2S Sf BOversampling ADC: Information is redundant: 
The output code at each sample 
time contains information also of 
the previous history of sampled 
data.  

𝑓 𝑆≅ 𝑓 𝑠−𝑁𝑦𝑞

𝑓 𝑆≫ 𝑓 𝑠−𝑁𝑦𝑞
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ADC quantization noise power

The expression of the 
quantization noise assumes that 
the input signal uniformly 
“explores” all the codes 

Root-mean squared: 
Quantization noise 
power (V2): 
+1 bit → LSB halved → 
power/4
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Quantization noise in the frequency domain

Vin is a DC signal

Since the ADC 
samples the input 
data, the output 
frequency domain is
[-fs/2,+fs/2]  

The vnq spectrum 
is a Dirac delta

Vin is fast-
varying signal
of magnitude 
>> LSB

Two extreme cases:
In both cases, the power (area) is

uniform distribution12

2
2 

nqv
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The uniform power spectral density (PSD) model for the 
quantization noise

This model is very useful and simple but should be 
applied with much care. 
In real cases, the quantization noise depends on the input 
signal, and so does its spectrum.
The uniform spectral density model is acceptable when 
the input signal has magnitude and/or frequency such 
that the output levels are changed in a fast and almost 
random way.
This happens when the average time spent by the signal 
on a single level is short (of the order of the sampling 
time). This condition is know as “busy” signal 

∆2

12
1
𝑓 𝑠

n
FSVLSB

2

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Signal to Quantization Noise Ratio (SQNR)

Input 
range of 
the ADC

8

2
FS

MAX
VP 

Quantization noise
power:

12

2
2 

nqv

 1010log 6.02 1.76dBSQNR SQNR n  

Power of an input tone 
at maximum full scale
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Signal to Quantization Noise Ratio (SQNR)
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PMAX

Quantization noise power.

However in real ADCs, there is also 
physical (electrical) noise and 
distortion.
 
Each phenomenon has its own 
characteristic fingerprint in the PSD 

A smaller amplitude of the 
input tone will have a 
smaller peak, hence a 
smaller area (power)
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Signal to Noise and Distortion Ratio (SINAD)

(spurious free dynamic range)

PD=total power of the harmonics 
(except the main tone): clearly 
identified in the PSD

Quantization and electrical noise: they are both broadband, hence undistinguishable 

Dn

MAX

Pv
PSINAD




2 Also indicated as SNDR
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Effective Number Of Bits  (ENOB)

PD=total power of the harmonics 
(except the main tone)

02.6
76.1

 dBSINADENOB
 1010log 6.02 1.76dBSQNR SQNR n  

6.02 1.76dBSINAD ENOB  

Dn

MAX

Pv
PSINAD




2
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Nyquist rate ADCs

Direct conversion:
• Flash converters

Counting and Integrating ADCs:
• Counting converters
• Dual-slope

Binary-Search Algorithm based:
• Successive approximation 

converters (SAR)
• Cylic and Pipeline converters

For a N-bit ADC:

1 cycle of comparison 
fast but with low resolution

2N cycles of comparison
simple/accurate but slow

N cycles of comparison
allows speed/resolution 
trade-off
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State-of-the-art architectures versus resolution/speed trade off

https://web.stanford.edu/~murmann/adcsurvey.html

M
O

R
E 

R
ES

O
LU

TI
O

N

MORE SPEED
1.76

6.02
SINADENOB 



Nyquist rate

Oversampled

https://web.stanford.edu/~murmann/adcsurvey.html
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Binary-Search based ADCs

feedback

Typically, INL 
and DNL are 
mainly due to 
the DAC

For a N-bit ADC, the input signal (or part of it) is compared consecutively with N different levels:

• SAR ADC: input voltage is compared with a feedback voltage, updated after each comparison 
cycle, the algorythm makes VDAC closer and closer to Vin after each comparison

• Pipeline/cyclic ADC: input voltage is compared with a coarse ADC, a matched DAC subtracts 
the result generating a residue which is the input of the next stage/cycle. (N cycles in case of 
cyclic, or N stage in the case of pipeline)

SAR ADC (digital control within the loop) Pipeline ADC (digital outside the loop) 
residue
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A very common SAR ADC: the charge-redistribution SAR with CDS

1

0

n

tot A k
k

C C C




 

02k
kC C

0AC C

1

0 0
0

2
n

k

k

C C




  

preamplified 
comparatorcapacitive DAC

 0 0 02 1 2n nC C C   
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Reset phase

All capacitors are in parallel, with one terminal connected to the 
input voltage Vin.  

The pre-amp is closed 
in unity gain

-vnanalog input 
signal Vin 
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Sampling phase

• The pre-amp is placed in open loop configuration and the 
bottom plates of all capacitors are connected to gnd. 

• The voltage of the top plates (Vtop) is free to evolve (it is 
floating, no current comes from the OA to Vtop)
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Top voltage during the sampling phase

nv

n inv V 

 top Ctot sV V t

Reset Sampling

nv

inV

( ) ( )top in s n sV V t v t  
( 0)inV 

From now on, the SAR algorithm (phases) will try to succesively approach Vtop to  -vn
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SAR phases 

Sequence: SARn-1 ...... SAR0

• Phase SARk begins by connecting the bottom plate of Ck to the reference 
voltage VREF through switch Sk

• This causes a positive jump in voltage Vtop. 
• Bit k-th is the output of the composite comparator (Vb) at the end of phase SARk 
• If bk =0 Sk comes back to gnd (positive jump nulled), else it remains at VREF

composite comparator

kb

Ph
as

e 
SA

R
k
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Composite comparator

The gain of OA is so large 
that the offset and (eventual) 
hysteresis of CMP has 
negligible impact on the 
composite comparator 
characteristics.

Vb

Vtop

ViA

iA topV V

VoA=A(ViA-vn)

Hence, at each SAR 
phase, bk is asserted if the 
positive jump does not 
cross the threshold (-vn)

bk 
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Phase SARk: calculation of the Vtop jump

k
top k

tot

C
V V V

C
   0

0

2
2

k

REF n

CV
C



2
REF

LSB n

VV  

All-capacitor network:
equivalent circuit for 
variations. Capacitors 
can be replaced by a 
resistors of value 1/C

2k
k LSBV V 

DVtop at phase SARk
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Phase SARn-1

1 1
1 2 2

2 2
n n REF REF

n LSB n

V VV V 
   

    1top in s n s nV V t v t V   

   1 11 if b top n n nV V t v t  

Decision for bit bn-1 (taken at time tn-1 = end of phase SARn-1

     12
REF

in s n s n n
VV t v t v t     

Vb

from sampling phase

   
2
REF

in s n s
VV t v t  
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Phase SARn-1

     12
REF

in s n s n n
VV t v t v t     1 1 if:nb  

     12
REF

in s n s n n
VV t v t v t   

Subtraction of two noise samples taken at 
different times: constant and correlated 
components are rejected (CDS).  

Neglecting noise / offset components, the 
condition becomes:

 
2
REF

in s
VV t 

bn-1=1

bn-1=0

This is in conformity with the 
successive approximation 
algorithm

possible values
of Vin(ts) and resulting 
value of bn-1
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Phase SARn-2

Switch Sn-1 goes 
back to gnd if bn-1=0
Otherwise, it remains 
to VREF 

    1 1 2top in s n s n n nV V t v t b V V      

If Sn-1 comes back to gnd, it subtracts DVn-1 from Vtop

1
2 2 4

n REF
n

V VV 



  

 2n nv t  
Decision : bit bn-2 =1 if:

Vb



P. Bruschi – Design of Mixed Signal Circuits 33

Decision for bn-2

if bn-1=1  Vtst(n-2)=
bn-2=1

bn-2=0

bn-2=1

bn-2=0

 2 1 1 21 if:  n in s n n nb V t b V V      

if bn-1=0  Vtst(n-2)=

Vtst(n-2)
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Generalization

At k-th step (phase SARk) , bit bk is determined from the comparison of 
Vin( ts ) with:

1 1 2 2 1 1( ) ....tst n n n n k k kV k b V b V b V V            

Increments applied in previous phases and
maintained only if the corresponding bits are 1

At any step the 
increment is halved

At the last phase, SAR0, the LSB (b0) is determined and the conversion is 
complete. The bits determined in the successive phases are stored inside a 
register  of the control logic and can be retrieved at the end of conversion. 

1

2
k

k
V

V 
 
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Examples of conversion cycle

bn-1 = 1 bn-2 = 0
8 4 8
REF REF REFV V V

  
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ADC linearized model

2
FS

in dig MIN n

Vv V D  

VFS

The converted value is affected by 
an error:

Consequently, a linearized 
model of the ADC is:

This error accounts for all sources of 
non-ideality:
Quantization noise, physical noise and 
distortion
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Uniform quantization noise PSD: properties

12

2
2 

nqvTotal vnq power:

2 1
12vnq

S

S
f




For the same ADC, increasing the sampling frequency reduces the PSD of the 
quantization noise

2 1
12

s
vnq vnq

S S

fS S
f f

  
 

Effect of sampling:
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Oversampling ADCs

LPF

2
2 2

12nq NR S nq NR S nq NRv f S B S  


    

2S OS Sf r B   rOS=Over-Sampling Ratio  (OSR) 

2 2nq OS S nq OSv B S  

2 nq NRS
nq OS nq NR

S OS

SBS S
f r


  



2 22 1S nq NR
nq OS nq NR

OS OS

B S
v v

r r


 


 

Nyquist 
rate ADC

Oversampling ADC

(Ideal LPF)

BS: signal bandwidth
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Resolution increment in a pure oversampling ADC

2
2

3 2
2

nMAX

nq

PSQNR
v

  

Considering two ADCs with same VFS

ADC1:  SQNR1,  n1

ADC2:  SQNR2,  n2

 2 122

1

2 n nSQNR
SQNR


2 2

1 1

2 2
2 2

nq nqMAX

MAXnq nq

v vP
Pv v

  














2
2

2
1

212 log
2
1

n

n

v

v
nn

(The same can be applied considering 
broadband physical noise, bandwidth 
limited in +/- fs/2)
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2S OS Sf r B   "data stream"

2 2 2
2

1
nq nq OS nq NR

OS

v v v
r  

2S Sf B

ADC1, operated at Nyquist rate

Resolution 
improvement

Same
core 
ADC

2 2
1nq nq NRv v 
















2
2

2
1

212 log
2
1

n

n

v

v
nn  

2

2 22

1 1log log
2 2

nq NR
OS

nq OS

v
r

v




 
  
 
 

ADC2 = ADC1+LPF operated with oversampling

Resolution increment in a pure oversampling ADCc
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Resolution increment in a pure oversampling ADC

Redundancy of information helps in reducing the uncertainty
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Pure oversampling ADCs: limits

A minor limit: 

The oversampling approach is based on the assumption that the quantization 
noise respects the uniform PSD model (quantizer input signal is “busy”)

If the input signal is a DC, the quantization noise superimposed on the 
data stream will be constant and then will be unaffected by the LPF. A 
similar problem occurs with signals that are slowly-varying and/or have a 
small magnitude (below 1 LSB and with DC far from any decision level)

constant input constant datum
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Increasing artificially the signal activity: the dithering technique

Dithering

Dithering consists in adding noise 
to the signal.

Noise makes the ADC 
switch across the two 
adjacent levels closer to Vin 

The added noise must have 
spectral components out of the 
signal band so that it is 
rejected by the LPF
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The real limitation of the pure oversampling approach 

 2
1 log
2OS NR OSn n r 

The pure oversampling 
approach is highly 
inefficient !

Example: oversamplig a 12-bit ADC to obtain 16 bits

4 (bits)OS NRn n  44 256
2

S
OS

S

f
r

B
  

In order to obtain a resolution increment 
of a single bit, the sampling frequency 
must be incremented by a factor of 4
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The Delta-Sigma (D-S) ADC

The Delta-Sigma converter combines two principles:

• Oversampling: fs>>2Bs

• Noise shaping (of quantization error)

It was introduced in 1960
The term "Sigma-Delta (S-D)"  ADC is simply synonym.  

The main target is to use more efficiently the oversampling in order to 
increase resolution with less oversampling ratio (rOS)
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The Delta-Sigma (D-S) ADC

The ADC is substituted by a Delta-Sigma modulator:
The modulator is a fedback system composed by the following elements:
● A loop filter (accumulator in figure)
● A low-resolution ADC
● A low-resolution DAC

vfb

Over-sampled ADC: Delta-Sigma ADC:



P. Bruschi – Design of Mixed Signal Circuits 50

Delta-Sigma principle

The Delta-Sigma modulator (1st order) 

we imagine to start with Vint=0
Vint

Vdst

ideal DAC
Vfb = Vdst

Vfb
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Delta-Sigma principle

The digital filter averages the 
data stream that, in the example, 
contains only Vk and Vk+1 levels.

The average will be a value 
between the two levels and will be 
closer to Vin than both Vk and Vk+1 

In this example, value Vk 
appears more frequently than 
Vk+1. Then the average will be 
closer to Vk, as actually Vin is.
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Delta-Sigma principle

ve

vfb

The average of Ve, 
performed over a very 
long time, must be zero, 
otherwise the output of 
the accumulator would 
diverge. 

0e in fbV V V  

fb inV V

If the LPF filter has a bandwidth small enough, it can extract the average of 
the data stream Dk with arbitrary accuracy. If the DAC is ideal (no distortion), 
then the average of Dk gives Vin with an arbitrary resolution. 
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Delta-Sigma principle

What we have seen so far suggests that the delta-sigma modulator can 
produce an output data stream that, once properly filtered, can yield Vin with 
a higher resolution than the original ADC. 

Differently from the pure oversampling ADC, the delta-sigma is capable of 
producing the alternation of two adjacent codes (Vk, Vk+1) even with a DC 
signal without dithering. In the case of an input DC signal, the constant error 
vn is modulated (this is the origin of the name) and can be filtered out.  

As in the oversampling approach, it is necessary to filter the output data 
stream, reducing the bandwidth to the minimum required by the signal 
spectrum.  We will show that high resolution increments can be obtained 
with moderate oversampling ratios. 
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Analysis of a first order delta-sigma modulator

D-S modulator

H(z) is a discrete time transfer 
function, properly represented 
with its z-transform.  

Linearized model of the modulator. The DAC 
is considered ideal; thus, it simply translates 
the voltage representation of Dst (vst) in an 
exactly corresponding analog voltage (vfb=vst)
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Analysis of a first order delta-sigma modulator
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Analysis of a first order delta-sigma modulator
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one clock cycle

This is the 
equivalent of the 
derivative in the DT 
domain

Analysis of a first order delta-sigma modulator
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NTF in the frequency domain
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Output spectral density of the quantization noise

The uniform PSD model of the quantization noise is acceptable because the 
modulator continuously changes the input of the original ADC, sweeping 
across the whole range [-D/2, +D/2] of the quantization noise. 

For more accurate analysis of second order effects, the limits of the uniform 
PSD model should be taken into account. 
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Quantization noise PSD at the output of the D-S modulator
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Quantization noise PSD at the output of the D-S modulator
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NTF: derivation from system perspective
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Output noise power in the Delta-Sigma ADC
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Resolution increment in the first-order D-S ADC
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Resolution increment in the first order D-S ADC

 2
3 log 0.86
2 OSn n r  

Every increment of rOS by a factor of 2 produces a resolution gain of 1 
and 1/2 bit (1.5 bits).
This gain was only 1/2 bit in the pure oversampling ADC

Example

11 bitsn n     2
20.86 log
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 2 0.86
32
n n

OSr
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 240 This OSR value is rather large, but also the gain 
in resolution is very large
Starting with a comparator (single-bit quantizer), 
it is possible to obtain 12 bits
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ADC and DAC non idealities in D-S ADC

The DAC should be linear because it is in the 
feedback path. The DAC noise (that includes also 
non-linearity errors) are simply summed-up to the 
input signal. 

Electrical noise, offset and non-linearity 
errors of the ADC are shaped by the high 
pass NTF of the modulator, then the effect 
on the signal BW is negligible. 

ADC

DAC
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Single-bit D-S ADC

As we have seen, the DAC linearity is a main issue of the D-S approach

A widely used solution is the single bit D-S ADC

In the single bit D-S ADC the internal Nyquist-rate ADC is a single-bit quantizer, 
i.e., a comparator

ADC-1 bit

DAC-1 bit

bit-stream

2
ref ref

CM

V V
V  


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Single-bit D-S ADC

bit-stream

A 1-bit DAC is inherently linear: no distortion degradation of ENOB

 2
3 log 0.86
2 OSn n r  

The filter operates also 
decimation (decimator filter) 

 2
3 log 0.86 1
2 OSn r  

fS

fout = 2BS << fS

Tutorial Analog-Devices 
Delta-Sigma

https://www.analog.com/en/design-center/interactive-design-tools/sigma-delta-adc-tutorial.html
https://www.analog.com/en/design-center/interactive-design-tools/sigma-delta-adc-tutorial.html
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H(z) implementation (Single ended)

Classical, "parasitic 
insensitive" Switched 
Capacitor Integrator
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C zH z
C z


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Note: electrical noise 
and distortion of the 
DT integrator are not 
shaped by the NTF: 
careful design of the 
integrator is required.
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Physical noise

At each phase of the SC integrator, in addition to 
the charge transfer from C1 to C2, the sampling 
process produces noise as a consequence of a 
thermal noise generated due to finite ON 
resistance of the switch: KT/C noise. 

This error is added before the 
accumulation into C2: hence from 
the system-level point of view it is 
injected into the system at the 
system input

Power (V2) of the KT/C process 
on C1:
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No noise shaping

Physical noise

Produced as broadband (thermal) noise among +/-fs/2

Within the signal bandwidth, the power 
is divided by OSR (rOS)
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Higher order D-S ADCs

Example: second-order ADC

Two integrators          2nd order

Advantage: 2.5 bits are gained doubling the OSR (instead of 1.5 bits). 
Same final resolution with a much smaller OSR
The 2nd order D-S ADC is a very popular converter for sensor interfaces.
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