Integrated Analog Filters

Analog (electronic) signals: information is directly tied to the infinite set of values that a
voltage, current, charge, frequency, phase that may assume over a finite interval (range)

* Usually, voltage signals are more conveniently processed by analog filters.
* Analog signals are continuous magnitude, while in the time domain:
® Continuous Time (CT), defined at each instant of time — CT Filters

® Discrete Time (DT), defined only on a “countable set” of time instants, usually related to
a sampling process — DT Filters
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Integrated Analog Filters

Filter ideal operation:

Modify the magnitude of different frequency components (commonly intended use)

Modify the phase of different frequency components (i.e. to compensate for an unwanted
phase response of a filter of an amplifier)

LTI system: characterized by a H(s) if CT, H(z) if DT (assuming single-input, single-output)

Generally change both the phase and magnitude of a signal

Are limited by maximum input signal level (given the maximum tolerable distortion), noise,
parameters spread due to sensitivity of components to external phenomena (temperature
change, process variability, aging, etc.)
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Integrated Analog Filters
* Integration of passive components (R, L, C) with active components (ideally VCVS, CCVS,
VCCS, CCCS) are possible in order to implement, virtually, any suitable H(s), or H(z).

* Integration (+ proper design and layout) allows to reduce the relative spread of
homogeneous components: the target is to avoid the use of external discrete components

* Integrated analog filters can be implemented following well-known design approaches:
® passive LC (R) ladder filters
® Cascade of Biquadratic (Biquad) and Bilinear cells
® State Variable Filters (based on integrator primitives)

® Simulation of LC filters with active RC networks
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Integrated Analog Filters

* Inductors are generally difficult to miniaturize

* L =(coil area) x (number of coils)*2 x (magnetic
permeability)

* Integrated inductors limited to a few nH (max), and
limited quality factors (<10 at GHz)

* Stray magnetic field cause unwanted coupling FEET f’::i’setta
nce
* Resistors and capacitors can be easily integrated: feasible Q/5Q

ranges are much wider than for inductors
poly 30-200
* For some applications resistors may result to big
(expensive) = Gm/C and Switched-cap approaches, only :;l:gi;ﬁ 10-100

__use capacitors as passive component

Accura
cy

%

25-40

20-40

TCR

ppm/
°C
500-
1500

200-
1000
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Integrated Analog Filters: why not only digital

DIGITAL FILTERS

ANALOG FILTERS

High Accuracy

Linear Phase (FIR Filters)

No Drift Due to Component
Variations

Flexible, Adaptive Filtering Possible
Easy to Simulate and Design
Computation Must be Completed in

Sampling Period - Limits Real Time
Operation

Requires High Performance ADC,
DAC & DSP

Less Accuracy - Component
Tolerances

‘ Mon-Linear Phase

‘ Drift Due to Component
Variations

‘ Adaptive Filters Difficult

Difficult to Simulate and Design

Analog Filters Required at
High Frequencies and for
Anti-Aliasing Filters

‘Hn ADC, DAC, or DSP Required
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Integrated Analog Filters: why not only digital

DIGITAL FILTERING ANALOG VERSUS DIGITAL FILTER
FREQUENCY RESPONSE COMPARISON

bl ANALOG FILTER DIGITAL FILTER

t ! Chebyshev Type 1 FIR, 129-Tap, 0.002dB Ripple,
U \/ a8 6 Pole, 0.5dB Ripple 4 Linear Phase, f, = 10kSPS
f 5 1: 5 ! v i i '

| | N

ANALOG ”E,“] DIGITAL "E,“]' ANALOG 40 : :
ANTIALIASING [|™ DC 7 * LOWPASS 7" DAC [™ ANTI-IMAGING ) R FRR R !
FILTER FILTER FILTER i : '
—80 -4
100 : : : : : . ? .
f 1] 1 2 3 4 3 4
® FREQUENCY (kHz) FREQUENCY (kHz)
/ System level choices:
* How complex (expensive) at system level?
Must be CT * fs > 2 BW! High frequency operation,
(analog) expensive in hardware and power

* |s reconfigurability needed? (Need for DSP)
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Integrator (inverting)

in

Inverting-only configuration

The Opamp-based Integrator

Lossy Integrator (inverting)

Need for R components:
Not convenient for low-
frequency applications.

Example:

Pole at 100 Hz, max C=100 pF
— R, =16 MQ.

If poly resistor with 200 Q/SQ
is used: SQ = 80000.

Wmin =0.25 pm.

Min pitch = 0.25 um

— L=20 mm

— A = L*(W+pitch) = 10 mm?
— prototype cost (180 nm
CMOS) 4000 Eur/2.25 mm?
— Resistor cost: 18 kEur
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The Gm-C approach

—+ out The Gm block is a perfectly linear transconductor,
— with infinite Zin and Zout
V2 _;/ An OTA approximates the Gm block ideal behaviour.
m Typical non-idealities:
» Finite Rout
deal operation » Input Capacitance
» Frequency dependence of Gm
(. =G (vl — vz) > Input/Output ranges
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Gm-C filters: basic configurations

OTA-C (Gm-C) Integrator OTA-C (Gm-C) Eq. Resistor
I, I,=-1=-G, (0-V,)
— gy

* G +
Inm — m — 1
vmf! - SC SC (vl 1’2) V,D )
;nt; :Gm = g R=1/G,
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Gm-C filters: basic configurations

7
Gm1 y Gmf 1 Y
V3 —1+ vﬂUf 3 —{+ : \
|
[ B I
V4 - |~ V4 " [‘ I
+ I
sz sz \ G /' Equivalent resistor:
rrrri km.w n:%f R=1 /GmS
S_umm_mg Integfator | Summing amplifier
(inverting / non-inverting) (inverting / non-inverting)
_ Gml GmZ G G
Vo = ﬂ("' b b =2 (=1, 2 iy -, )

m3 m3
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Gm-C filters: basic configurations

Gm-C integrator with feed-forward input

W, =

G
C
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(0,
H(s)=—-=
S+ﬂ:}p
low pass
high pass
His)— >
S+&Jp

Gm-C filters: basic configurations

V
— 0 + out

— vr_‘rut
Dﬁé op |
F S
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Gm-C filters: the biquadratic cell

B.s>+B " s+B o’
R 1 ST Dy,

Q
+ MWo2 |t H(S) = P
- S V 0
[ Tou s+—Ls+ o
V3 - Qp

A =\,
B,,B B, ={0, 1} p =N
Q — wﬂ]
P

Flexible Biquad @
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2

™,
0

SZ+—”S+wi
Q,

Low pass
0

s P st

_J'.-'l

Q,
0

s+ s+ o
Q,

Gm-C filters: the biquadratic cell

2
\)

®
P+ L5+

Q, ’
High pass

All pass
(phase equalizer)

®
P
\) 2 2
0, sT+ o),
6} 2 W 2
52+—p5+ﬂ)i ) +—p3+mp
0, Q,
Band pass Band Stop
g N

A

All these biquads have

unity gain in their

respective pass-bands
)
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Gm-C filters: configurable biquadratic cell

ml

G G G C
mp — ml 2 Qp — ml 2
C'l CE Gm? C]

-\ By RO i s
,7;7;\1 rjv/; I T Low pass 1 0 0
Vin High pass 0 0 1
Band-Pass 0 1 0
Notch 1 0 1
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Gm-C filters: fully-differential biquadratic cell

%<
£/

VO’I’L
Vop Low-pass configuration
! ‘ G 1 A
I _ ml
— (8) GmS 9 Ol CQ X 02 Gm2 1
’ GmS Gm4 ’ GmS Gm4
= \_ J

4

G1Via = (Gma + sC1)Vig + GsViod
Gm4de = sCy Vg
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M5

M7

OTA-based Gm transconductor

M L

A simple implementation of a Gm block:

* Differential couple (M1-M2): converts the

o—| NP |—o Vout input differential signal into currents |4, |,
v, [V, [7=— currentmirrors (M3-M5, M4-M6, M7-M8)
(I) lout convey the current to the output node
v lﬂ V3 performing also the current difference
R
L
S5 M.
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OTA-based Gm transconductor

3 r \2 :
VD \/2 VD : ﬁ " lf'H.Dl "{{} + Em V
+ip1 = d - d
VDMAX kVDM.AX ) 2 dvﬂ V=0 . :
) i *12 : I f
V.’J 2 VD EID_) :_ﬂ—l_vd dI.E}E — 0 _ gm vj
v v : 2 avyl, , 2 2
\ ¥ DMAX \ ¥ DMAX : o
/
il /

Vo

[
VDMAX
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OTA-based Gm transconductor

Uiy = 1p,) Iirgwear aéprnxir@atinﬂ —
I, 10 rcticttated-arotna-ofigi— 7~

0.5 4oL AL

0.0 1 i i e —‘.- r

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

VI}M.-'IX
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OTA-based Gm transconductor

Source-degenerated transconductor

G G 11731 . 1

T4 g, R

R

C;.’H
Ji p j | \T/_I n
|
| ! 4 |
: ‘
i
Lo | Lo \
— I - : ‘
]; ~ I _|_ Yin ."-"1.5 : ( . ‘
I 0 l+;r;.-_r.- R — [,—1, = J Uid |
]n ~ IT{} — Ui L+ 'UWR

L+ Y

v'Under certain conditions, the
transconductance appears to be
independent of small-signal parameters

— linearity

L Vas—Vr

R> =

O min

I
Ly > g t—=(Vas—Vr) =

2R

X High power

21{”.min B 2[1’“

Vas — Vi
J{H.nmxj
1," e l I 1.;.’ ) o '{;r %
S amax J{ S / T,J

R

X R limitations (back to square one)
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OTA-based Gm transconductor

inversion):

Transconductance linearization techniques

Relying on the quadratic expressions (strong

The difference-of-two-squares rule can be

VGSp Vsp Ven aSn employed:
(1, =2 (Vasy — Vi) Versn + V.
=5 Vaspy — V) ‘asn + Vs -\ s .
S S y — 1,1, =p — ==V ) (Vasy — Vasn)
- r \,1,} / H ) 3 !
I, =5 Vas, — V1) 2
\ 2
Vet Vs Vi 1V, - ~, IR
. Con G — l) P= N (constant) L, — 1, = 8K Vi
It: ., ° : . . Y
\ L;-‘m — VHH ; ‘*'( Sp Lﬁ(.‘.‘%n — ";irf (--"fm
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OTA-based Gm transconductor

. . . Tlr'r'_i.:_'l.l.—l—ivllr’l'_h,_' J r ]|--.--'.'.' | i.--\..' F ¢
Pseudo-differential pair { S /A ; P = I\ (constant)

Ve no— l.-"':w,r;l — l»(; Spo l( Sn — lm’

[J - I.f.' — j K lrm"
Vip °"_| |_"° Vin f \'(":"'/

* Both sources are grounded: Vsn =-Vsp =0

* K =Vcmi, controlled by the CMFB circuit of
the preceding fully-differential circuit

* Gm = 3 Vcmi, the CMFB of the preceding
circuit also controls the transconductance,
through the VREF terminal
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Self-tuning of Gm-C filters

In integrated circuits, Gm's and capacitances are strongly affected by PVT variations (up to £ 30 %
variations). For these reasons, in most OTAs the Gm can be controlled by means of a voltage
applied to a proper terminal (Vtune). In this way self-tuning of the filter can be accomplished.

To understand the self-tuning
<:| principle, consider the effect of tuning
O on the phase response of a 1st order

+ V., o LP filter @
R . P

Vrune<VR ¢' | s | g |

Vtune % VR

Vil Viyne Viune=VR

P. Bruschi — Design of Mixed Signal Circuits 23



Self-tuning of Gm-C filters: master-slave approach

v

I8 D L, 2

Reference
frequency \IIUP

source crystal

oscillator

\(;m Gm ' Phase L
- - Detector

* . b,

1 /g L v 1

The loop varies V. In
such a way that wC of the
two master LP filters
equals the reference
frequency. Since the same
Vtune is fed to the slaves,
their Gm/C ratios are also
proportional to the ref.
frequency.

Master

out &

v

>

90°

o Slaves

~
\

¢1—4;
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DT integrator: approximation methods
x(s)

\)

t
Integral approximation y(t) = J.«’C(T)df = <= Time continuous
0

A |

| : - y(nT)=y(nT -T)+Tx(nT —-T)

Hx . YW=y T

|
B i - Y(z) =z Y(2)+Tz 'X(z)

Forward Euler Integration |::> H‘, (Z) =T - = T ——
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DT integrator: approximation methods

Forward Backward
y(nT)=ynT -T)+Tx(nT -T) y(nT) = y(nT =T) +Tx(nT)
il
Z |
H (z)=T =T — 1
: =7 z—1 H (z)=T :T—Z

1-z"" —1
1 cycle delay

X

< 74
| v 1 '
Z (n) + i +
oo TH Low[1] 5
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Parasitic insensitive SC integrator

C2
+ Phase 1 H

A
[\;’_O/Jﬂ |1_+<‘>_O/2 B Vou Vi — C’+ L < i
V2o n D — V.
sz /7(]:7 +

7
Vin =0 Vé? —- Vl(l) 7777

Simplifying hypotheses: V.. =V, VO =y ey

* No offset / noise
e Perfect virtual short circuit
* No charge injection

2-prev. 1 2
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Parasitic insensitive SC integrator

(2) —_v/(2)
Phase 2 VCl — V2 ‘/O(uzt) :Vc(é) :Vélz) + AQCZ :VO(uzt- prev) + AQCZ
C, C,
_— — — ( (2) (1)
-”C AQc, =AQ, =C Vg - Vi
2
4Q — 1l
- |(|;1+-C1 L ’ AQc, =C, ['Vz(Z) ) (' Vl(l) )] =C, (Vl(l) - Vz(z))
” - out
- prev C
l : VO =V S V)
v, C,
7777
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Parasitic insensitive SC integrator

- prev C
- Ve =V e S0 - Vi)
4 . C1_|_ Ol 2
Dlo” 0—g— ” o .
2\ 2 Yo If we consider that V, iIs sampled
v g5 at the end of phase 2 and maintained
’ 1 across phase 1:
- prev C - prev
Vad =V 7+ Ve - ve)
CZ
Cl
— T VM=V, G- D+ (- D, ()
2-prev\ 1 2 C,
(n-1)T nT
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SC integrator: Block diagram and Z-transform

C 4 D
Var =V, (0= D+ 21 [V, (0= D-V, ()
2 + -t
\ ) V7_ K + T ~ Vout
\
vV, — k
Z-transform - — y
C Equivalent block diagram

v (z)=V (Z)z'1+—1[V1 (z)z'-V, (z)]
C

out
2

Now singularities are tied to
., capacitors’ matching and clock
C, z c, 1 frequency:
v (z)=+ vV (2)- v, (z) |
ou C.1- 7! C.1- 7! * Relatively accurate
2 2 :
* Easily tunable
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| H (e

10

107¢

107 ¢

107

10 ¢

1072}

10

-3

SC integrator: Frequency response

Integrators compared

3

Integrator comparison
T T

2

:

0

1

cC z' C 1
1 -V, (z2)- 21—V, (2)
,1-z
1 Forward
:Cl £ — Euler
L, Gl-z Integrator
C, 1 Backward

107 107

10 10"

0.5

CT: continuous time integrator

] C, 1- 7z~ 1 Euler

Integrator
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INSIGHT

S

DT integrator: bilinear approximation method

fﬁl' rapezoidal integration

x(n)+x(n—1)

| y(n) = y(n—1)+T{

B 2
R
| o Y(z)sz:+1<_>l
| | X 2=
%f/\l\wm (@ 2z ’
————+—»
I N B =
| T 7 22—1:21—2 .
\_ Tz+1 T1+z”

|
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INSIGHT
S

+Vo—
AQ
< | |
AQ1 I | |
+0—= (9 C2
| | o &
| | +
C
Ly X
L = |

The opamp has a finite gain Ao;
C. initially charged at Vo, C1at O V

|

I:J ut — *’4[] ln ‘["

Vap

1";.””." — 1\ T 1"';[]

— 1: 1" ;-‘ — fln f — 1\ }

Vo

Vout

- WV

DT integrator: Imperfections due to OTA finite gain

When the switch closes, the charge transfer
begins, resulting finally in a new Vo' and Vy':

A(h),[ — ( l{ = - Tlll.:ll.”
AQr = AQ, = Co(Vo — V)

L“’ = - e _ Vi
Il 1
After N cycles: ) )
1;1 .\T] — o 1;3
L+ T+

C, is discharging!
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DT integrator: Imperfections due to OTA finite gain

The discharge process can be assimilated to an exponential decay of (sampled every TCK) with
characteristic constant t:

Vi \‘] — Vo=e Mek/ Vi

Teg (Ch
! (1 + J-il{).}(—;T('h'
1

~)
|
X

The finite gain moved the pole from the origin (ideal integrator) to fp = 1/t: coherent with the
analysis of a CT integrator with R and C.
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