Analog (electronic) signals: information is directly tied to the infinite set of values that a **voltage**, current, charge, frequency, phase that may assume over a finite interval (range)

- Usually, voltage signals are more **conveniently** processed by analog filters.
- Analog signals are **continuous magnitude**, while in the time domain:
 - Continuous Time (CT), defined at each instant of time \rightarrow CT Filters
 - Discrete Time (DT), defined only on a "countable set" of time instants, usually related to a sampling process → DT Filters

Filter ideal operation:

- Modify the **magnitude** of different frequency components (commonly intended use)
- Modify the **phase** of different frequency components (i.e. to compensate for an unwanted phase response of a filter of an amplifier)
- LTI system: characterized by a H(s) if CT, H(z) if DT (assuming single-input, single-output)

Real filters, however:

- Generally change both the phase and magnitude of a signal
- Are limited by maximum input signal level (given the maximum tolerable distortion), noise, parameters spread due to sensitivity of components to external phenomena (temperature change, process variability, aging, etc.)

- Integration of passive components (R, L, C) with active components (ideally VCVS, CCVS, VCCS, CCCS) are possible in order to implement, virtually, any <u>suitable</u> H(s), or H(z).
- Integration (+ proper design and layout) allows to reduce the relative spread of homogeneous components: the target is to avoid the use of external discrete components
- Integrated analog filters can be implemented following well-known design approaches:
 - Passive LC (R) ladder filters
 - Cascade of Biquadratic (Biquad) and Bilinear cells
 - State Variable Filters (based on integrator primitives)
 - Simulation of LC filters with active RC networks

- Inductors are generally difficult to miniaturize
 - L = (coil area) x (number of coils)² x (magnetic permeability)
 - Integrated inductors limited to a few nH (max), and limited quality factors (<10 at GHz)
 - Stray magnetic field cause unwanted coupling
- Resistors and capacitors can be easily integrated: feasible ranges are much wider than for inductors
- For some applications resistors may result to big (expensive) → Gm/C and Switched-cap approaches, only use capacitors as passive component

Layer	Sheet resista nce	Accura cy	TCR	VCR
	Ω/SQ	%	ppm/ °C	ppm/V
poly	30-200	25-40	500- 1500	20-200
N+ or P+ diff.	10-100	20-40	200- 1000	50-300

Integrated Analog Filters: why not only digital

,	DIGITAL FILTERS	ANALOG FILTERS	
	High Accuracy	Less Accuracy - Component Tolerances	
	Linear Phase (FIR Filters)	Non-Linear Phase	
	No Drift Due to Component Variations	Drift Due to Component Variations	
	Flexible, Adaptive Filtering Possible	Adaptive Filters Difficult	
	Easy to Simulate and Design	Difficult to Simulate and Design	
	Computation Must be Completed in	Analog Filters Required at	
	Sampling Period - Limits Real Time Operation	High Frequencies and for Anti-Aliasing Filters	
	-		
	Requires High Performance ADC,	No ADC, DAC, or DSP Required	

https://www.analog.com/media/en/training-seminars/design-handbooks/mixedsignal_sect6.pdf

Integrated Analog Filters: why not only digital

DIGITAL FILTERING

ANALOG VERSUS DIGITAL FILTER FREQUENCY RESPONSE COMPARISON

System level choices:

- How complex (expensive) at system level?
- fs > 2 BW! High frequency operation, expensive in hardware and power
- Is reconfigurability needed? (Need for DSP)

The Opamp-based Integrator

Integrator (inverting)

Lossy Integrator (inverting)

Need for R components: Not convenient for lowfrequency applications.

Example: Pole at 100 Hz, max C=100 pF \rightarrow R₁ = 16 MΩ. If poly resistor with 200 Ω /SQ is used: SQ = 80000. Wmin = $0.25 \,\mu$ m. Min pitch = $0.25 \,\mu m$ \rightarrow L = 20 mm \rightarrow A = L^{*}(W+pitch) = 10 mm² \rightarrow prototype cost (180 nm CMOS) 4000 Eur/2.25 mm² \rightarrow Resistor cost: 18 kEur

The Gm-C approach

Ideal operation

$$i_{out} = G_m (v_1 - v_2)$$

The Gm block is a **perfectly linear transconductor**, with **infinite Zin and Zout**

An **OTA** approximates the Gm block ideal behaviour.

Typical non-idealities:

- Finite Rout
- > Input Capacitance
- Frequency dependence of Gm
- Input/Output ranges

OTA-C (Gm-C) Eq. Resistor

Summing Integrator (inverting / non-inverting)

$$v_{out} = \frac{G_{m1}}{sC} \left[\left(v_1 - v_2 \right) + \frac{G_{m2}}{G_{m1}} \left(v_3 - v_4 \right) \right]$$

Summing amplifier (inverting / non-inverting)

$$v_{out} = \frac{G_{m1}}{G_{m3}} (v_1 - v_2) + \frac{G_{m2}}{G_{m3}} (v_3 - v_4)$$

Gm-C integrator with feed-forward input

Gm-C filters: the biquadratic cell

Gm-C filters: the biquadratic cell

Gm-C filters: configurable biquadratic cell

$$\omega_{01} = \frac{G_{m1}}{C_1} \qquad \omega_{02} = \frac{G_{m2}}{C_2}$$

$$\omega_p = \sqrt{\frac{G_{m1}}{C_1} \frac{G_{m2}}{C_2}} \quad Q_P = \sqrt{\frac{G_{m1}}{G_{m2}} \frac{C_2}{C_1}}$$

Function	B0	B1	B2
Low pass	1	0	0
High pass	0	0	1
Band-Pass	0	1	0
Notch	1	0	1

A simple implementation of a Gm block:

- **Differential couple** (M1-M2): converts the input differential signal into currents I₁, I₂
- **Current mirrors** (M3-M5, M4-M6, M7-M8) convey the current to the output node performing also the current difference

Source-degenerated transconductor

$$G_m \approx \frac{g_m}{1+g_m R} \xrightarrow{g_m R \gg 1} \frac{1}{R}$$

 \checkmark Under certain conditions, the transconductance appears to be independent of small-signal parameters \rightarrow linearity $R \gg \frac{1}{g_{m,\min}} = \frac{V_{GS} - V_T}{2I_{D,\min}} = \frac{V_{GS} - V_T}{2(I_0 - I_{R,\max})}$: $I_0 \gg I_{R,\max} + \frac{1}{2R}(V_{GS} - V_T) \approx \frac{V_{id,\max} + \frac{1}{2}(V_{GS} - V_T)}{R}$ **×** High power **X** R limitations (back to square one)

Transconductance linearization techniques

Relying on the quadratic expressions (strong inversion): The difference-of-two-squares rule can be employed:

$$\begin{cases} I_p = \frac{\beta}{2} \left(V_{GSp} - V_T \right)^2 \\ I_n = \frac{\beta}{2} \left(V_{GSn} - V_T \right)^2 & \longrightarrow I_p - I_n = \beta \left(\frac{V_{GSn} + V_{GSp}}{2} - V_T \right) \left(V_{GSp} - V_{GSn} \right) \\ \end{cases}$$
If:
$$\begin{cases} \frac{V_{GSn} + V_{GSp}}{2} = V_{cmi} + \frac{V_{sn} + V_{sp}}{2} = K \text{ (constant)} \\ V_{sn} = -V_{sp} \longrightarrow V_{GSp} - V_{GSn} = V_{id} \end{cases}$$

$$\begin{cases} \frac{V_{GSn}+V_{GSp}}{2} = V_{cmi} + \frac{V_{sn}+V_{sp}}{2} = \mathrm{K} \text{ (constant)} \\ V_{sn} = -V_{sp} \longrightarrow V_{GSp} - V_{GSn} = V_{id} \\ \hline I_p - I_n = \underbrace{\beta \mathrm{K}}_{G_m} \cdot V_{id} \\ \hline G_m \end{cases}$$

- Both sources are grounded: Vsn = -Vsp = 0
- K = Vcmi, controlled by the CMFB circuit of the preceding fully-differential circuit
- Gm = β Vcmi, the CMFB of the preceding circuit also controls the transconductance, through the VREF terminal

Self-tuning of Gm-C filters

In integrated circuits, Gm's and capacitances are strongly affected by PVT variations (up to \pm 30 % variations). For these reasons, in most OTAs the Gm can be controlled by means of a voltage applied to a proper terminal (Vtune). In this way self-tuning of the filter can be accomplished.

DT integrator: approximation methods $y(t) = \int_{\Omega} x(\tau) d\tau \iff \frac{x(s)}{s}$ Time continuous Integral approximation y(nT) = y(nT - T) + Tx(nT - T)y(n) = y(n-1) + Tx(n-1)x(t) $Y(z) = z^{-1}Y(z) + Tz^{-1}X(z)$ nТ $H_{I}(z) = T \frac{z^{-1}}{1 - z^{-1}} = T \frac{1}{z - 1}$ Forward Euler Integration

DT integrator: approximation methods

Parasitic insensitive SC integrator

Parasitic insensitive SC integrator

Parasitic insensitive SC integrator

$$V_{out}^{(2)} = V_{out}^{(2-prev)} + \frac{C_1}{C_2} \left(V_1^{(1)} - V_2^{(2)} \right)$$

If we consider that V_1 is sampled at the end of phase 2 and maintained across phase 1:

 \frown

$$V_{out}^{(2)} = V_{out}^{(2-prev)} + \frac{C_1}{C_2} \left(V_1^{(2-prev)} - V_2^{(2)} \right)$$

$$= V_{out} \left(n - 1 \right) + \frac{C_1}{C_2} \left[V_1 \left(n - 1 \right) - V_2 \left(n \right) \right]$$

$$= V_{out} \left(n - 1 \right) + \frac{C_1}{C_2} \left[V_1 \left(n - 1 \right) - V_2 \left(n \right) \right]$$

SC integrator: Block diagram and Z-transform

$$V_{out}(n) = V_{out}(n-1) + \frac{C_1}{C_2} \left[V_1(n-1) - V_2(n) \right]$$
Z-transform
$$V_{out}(z) = V_{out}(z) z^{-1} + \frac{C_1}{C_2} \left[V_1(z) z^{-1} - V_2(z) \right]$$
Equivalent block diagram

 $V_{out}(z) = + \frac{C_1}{C_2} \frac{z^{-1}}{1 - z^{-1}} V_1(z) - \frac{C_1}{C_2} \frac{1}{1 - z^{-1}} V_2(z)$

Now singularities are tied to capacitors' matching and clock frequency:

- Relatively accurate
- Easily tunable

SC integrator: Frequency response

CT: continuous time integrator

INSIGHT S

DT integrator: bilinear approximation method

DT integrator: Imperfections due to OTA finite gain

The opamp has a finite gain A₀; C₂ initially charged at V₀, C₁ at 0 V

INSIGHT

$$\begin{cases} V_{out} = A_0 (V_{ip} - V_{in}) = A_0 (-V_X) \\ V_{out} = V_X - V_0 \end{cases} \quad V_X = \frac{V_0}{1 + A_0} \quad \mathbf{C_2 is } d_{\mathbf{C_2}} \\ \end{bmatrix}$$

When the switch closes, the charge transfer begins, resulting finally in a new V₀' and V_x': $\begin{cases} \Delta Q_1 = C_1 V'_X = \frac{V'_0}{1+A_0} \\ \Delta Q_2 = \Delta Q_1 = C_2 (V_0 - V'_0) \end{cases}$ $V'_0 = \left(\frac{1}{\frac{C_1/C_2}{1+A_0} + 1}\right) V_0$

After N cycles:

 $V_0[N] = \left(\frac{1}{\frac{C_1/C_2}{1+A_0} + 1}\right)^N V_0$

C₂ is discharging!

DT integrator: Imperfections due to OTA finite gain

INSIGHT

S

The discharge process can be assimilated to an exponential decay of (sampled every TCK) with characteristic constant τ :

$$V_0[N] = \left(\frac{1}{\frac{C_1/C_2}{1+A_0} + 1}\right)^N V_0 = e^{-NT_{CK}/\tau} V_0$$

$$\tau = \frac{T_{CK}}{\ln\left(\frac{C_1/C_2}{1+A_0} + 1\right)} \approx (1+A_0)\frac{C_2}{C_1}T_{CK}$$

The finite gain moved the pole from the origin (ideal integrator) to $fp = 1/\tau$: coherent with the analysis of a CT integrator with R and C.