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Integrated Analog Filters

Analog (electronic) signals: information is directly tied to the infinite set of values that a 
voltage, current, charge, frequency, phase that may assume over a finite interval (range) 

 Usually, voltage signals are more conveniently processed by analog filters. 

 Analog signals are continuous magnitude, while in the time domain:

 Continuous Time (CT), defined at each instant of time  → CT Filters

 Discrete Time (DT), defined only on a “countable set” of time instants, usually related to 
a sampling process → DT Filters
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Integrated Analog Filters

Filter ideal operation:
 Modify the magnitude of different frequency components (commonly intended use)

 Modify the phase of different frequency components (i.e. to compensate for an unwanted 
phase response of a filter of an amplifier)

 LTI system: characterized by a H(s) if CT, H(z) if DT (assuming single-input, single-output)

Real filters, however:
 Generally change both the phase and magnitude of a signal

 Are limited by maximum input signal level (given the maximum tolerable distortion), noise, 
parameters spread due to sensitivity of components to external phenomena (temperature 
change, process variability, aging, etc.) 
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Integrated Analog Filters

 Integration of passive components (R, L, C) with active components (ideally VCVS, CCVS, 
VCCS, CCCS) are possible in order to implement, virtually, any suitable H(s), or H(z). 

 Integration (+ proper design and layout) allows to reduce the relative spread of 
homogeneous components: the target is to avoid the use of external discrete components 

 Integrated analog filters can be implemented following well-known design approaches: 

 Passive LC (R) ladder filters

 Cascade of Biquadratic (Biquad) and Bilinear cells

 State Variable Filters (based on integrator primitives)

 Simulation of LC filters with active RC networks
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Integrated Analog Filters

 Inductors are generally difficult to miniaturize

 L = (coil area) x (number of coils)^2 x (magnetic 
permeability)

 Integrated inductors limited to a few nH (max), and 
limited quality factors (<10 at GHz) 

 Stray magnetic field cause unwanted coupling

 Resistors and capacitors can be easily integrated: feasible 
ranges are much wider than for inductors

 For some applications resistors may result to big 
(expensive) → Gm/C and Switched-cap approaches, only 
use capacitors as passive component

Layer Sheet 
resista
nce

Accura
cy

TCR VCR

  Ω/SQ % ppm/
°C

ppm/V

poly 30-200 25-40 500-
1500

20-200

N+ or 
P+ diff.

10-100 20-40 200-
1000

50-300
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Integrated Analog Filters: why not only digital

https://www.analog.com/media/en/training-seminars/design-handbooks/mixedsignal_sect6.pdf
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Integrated Analog Filters: why not only digital

https://www.analog.com/media/en/training-seminars/design-handbooks/mixedsignal_sect6.pdf

Must be CT 
(analog)

System level choices:
 How complex (expensive) at system level?
 fs > 2 BW! High frequency operation, 

expensive in hardware and power
 Is reconfigurability needed? (Need for DSP)
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The Opamp-based Integrator
Need for R components:
Not convenient for low-
frequency applications.

Example:
Pole at 100 Hz, max C=100 pF 
→ R1 = 16 MΩ. 
If poly resistor with 200 Ω/SQ 
is used: SQ = 80000. 
Wmin = 0.25 µm. 
Min pitch = 0.25 µm
→ L = 20 mm
→ A = L*(W+pitch) = 10 mm2

→ prototype cost (180 nm 
CMOS) 4000 Eur/2.25 mm2 
→ Resistor cost: 18 kEurInverting-only configuration
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The Gm-C approach

The Gm block is a perfectly linear transconductor, 
with infinite Zin and Zout

An OTA approximates the Gm block ideal behaviour. 
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Gm-C filters: basic configurations
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Gm-C filters: basic configurations
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Gm-C filters: basic configurations

Gm-C integrator with feed-forward input
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Gm-C filters: basic configurations
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Gm-C filters: the biquadratic cell
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Gm-C filters: the biquadratic cell
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Gm-C filters: configurable biquadratic cell
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Gm-C filters: fully-differential biquadratic cell

Low-pass configuration
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OTA-based Gm transconductor

A simple implementation of a Gm block:

 Differential couple (M1-M2): converts the 
input differential signal into currents I1, I2 

 Current mirrors (M3-M5, M4-M6, M7-M8) 
convey the current to the output node 
performing also the current difference

Iou

t

I
1

I
2

Iout

I1 I2
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OTA-based Gm transconductor
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OTA-based Gm transconductor
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OTA-based Gm transconductor

Source-degenerated transconductor

High power
R limitations (back to square one)

Under certain conditions, the 
transconductance appears to be 
independent of small-signal parameters 
→ linearity
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OTA-based Gm transconductor

Relying on the quadratic expressions (strong 
inversion):
The difference-of-two-squares rule can be 
employed:

If:

Transconductance linearization techniques
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OTA-based Gm transconductor

Pseudo-differential pair

 Both sources are grounded: Vsn = -Vsp = 0

 K = Vcmi, controlled by the CMFB circuit of 
the preceding fully-differential circuit

 Gm = β Vcmi, the CMFB of the preceding  
circuit also controls the transconductance, 
through the VREF terminal
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Self-tuning of Gm-C filters
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Self-tuning of Gm-C filters: master-slave approach



P. Bruschi – Design of Mixed Signal Circuits 25

DT integrator: approximation methods
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DT integrator: approximation methods
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Parasitic insensitive SC integrator

Phase 1

(1) (1)
1 1CV V
(1) (2 )
2 2

prev
C CV V Simplifying hypotheses:

• No offset / noise 
• Perfect virtual short circuit
• No charge injection 2-prev 21

2

0in

out C

V

V V





inV
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Parasitic insensitive SC integrator

Phase 2 (2) (2)
1 2CV V

(2) (2) (1) (2 )2 2
2 2

2 2

prevC C
out C C out

Q Q
V V V V

C C
 

    

 (2) (1)
2 1 1 1 1C C C CQ Q C V V   

   (2) (1) (1) (2)
2 1 2 1 1 1 2CQ C V V C V V        

 (2) (2 ) (1) (2)1
1 2

2

prev
out out

CV V V V
C

  
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Parasitic insensitive SC integrator

If we consider that V1 is sampled 
at the end of phase 2 and maintained 
across phase 1:

 (2) (2 ) (1) (2)1
1 2

2

prev
out out

CV V V V
C

  

 (2) (2 ) (2 ) (2)1
1 2

2

prev prev
out out

CV V V V
C

   

2-prev 21

(n-1)T nT

       1
1 2

2

1 1out out
CV n V n V n V n
C

      



P. Bruschi – Design of Mixed Signal Circuits 30

       1
1 2

2

1 1out out
CV n V n V n V n
C

      

       1 11
1 2

2
out out

CV z V z z V z z V z
C

     

     
1

1 1
1 21 1

2 2

1
1 1out

C CzV z V z V z
C z C z



  
 

Equivalent block diagram

SC integrator: Block diagram and Z-transform

Z-transform

Now singularities are tied to 
capacitors’ matching and clock 
frequency:
 Relatively accurate
 Easily tunable
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SC integrator: Frequency response

bilinear

CT

Euler

0.5

Integrators compared
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


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 
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
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j T j TH e H e 

Forward 
Euler 
Integrator

Backward 
Euler 
Integrator

CT: continuous time integrator
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DT integrator: bilinear approximation methodINSIGHT
S
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DT integrator: Imperfections due to OTA finite gainINSIGHT
S

The opamp has a finite gain A0;
C2 initially charged at V0, C1 at 0 V

When the switch closes, the charge transfer 
begins, resulting finally in a new V0’ and VX’:

After N cycles:

C2 is discharging!
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DT integrator: Imperfections due to OTA finite gainINSIGHT
S

The discharge process can be assimilated to an exponential decay of (sampled every TCK) with 
characteristic constant τ:

The finite gain moved the pole from the origin (ideal integrator) to fp = 1/τ: coherent with the 
analysis of a CT integrator with R and C.
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