
P. Bruschi – Design of Mixed Signal Circuits 1

Introducing myself

Michele Dei: michele.dei@unipi.it

Teaching during this year: 
~20 hours

Topics: 
Comparators, ADCs, DACs, Integrated Filters

New here! 
My hope is to maintain the high standards of this teaching

mailto:michele.dei@unipi.it
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Comparators

1 2d i iV V V 
"0" if 0
"1" if 0

d
out

d

V
V

V


 

Symbol (differential input kind)

1) Detect the sign of a differential analog signal. 
Sometimes S/E input case: 
Vi2 is derived from an internal voltage 
reference 

2) Codify the outcome in digital 
domain
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Applications

Building block in: 
 Mixed-signal front-ends: 

sensors AFEs;
signal-processing (ADCs, DACs)

 Signal-and-function generation
 Digital communication (symbol recognition in a noisy channel)
 Artificial neural networks (perceptron: linear binary classification)
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Continuous-time vs dynamic comparator 
Continuous-time (CT) comparator:

Used in level-crossing event-driven circuits
 Static power consumption
• Can be designed in order to embed 

hystheresis
 Output always valid

Dynamic comparator (or latched comparator): 

Used in clock-synchronous circuits (as the 
comparator needs a driving clock signal)
 No static power consumption

(in basic single-stage configuration)
• No hysteresis
 Sometimes: output valid only during half 

clock period

Vi1

Vi2

Vout

Vi1

Vi2

Vout Vout

Vi1

Vi2

clk
With 
hystheresis

Without 
hystheresis
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CT Comparators: amplifier-based implementations
A high-gain amplifier can be used as a comparator: 
Op-amp topologies can be used in open loop or even positive feedback: 
Speed is prime: no frequency compensation (no stability issues)    

Accuracy loss: a region exists where the logical  
level is undefined

In several applications this may lead to 
unwanted stable or metastable states (→)  “0” or “1”?
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CT Comparators: amplifier-based implementations

Glitches for slow varying input
common issue to all CT comparators without 
hysteresis

If level crossing is used as trigger in a 
complex system with feed back: time 
uncertainty and/or stability issues

If the comparator is interfaced with a 
synchronous digital FSM: Thold, Tsetup 
violation (need for synchronizer circuit 
otherwise data are loss)

Transient behaviour:
(RTI noise on Vi1 port)
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H H LV V V  

Thanks to the hysteresis, the comparator 
produces a valid output level across the whole 
input range. Use of positive feedback: 
“vertical” edges.

The hysteresis introduces an uncertainty band 
that reduces the accuracy but helps rejecting 
noise when the input differential voltage is 
close to zero. 

Possible regenerative comparator:
Op-amp-based Schmitt trigger.
Drawbacks
• Over-sized solution for integrated cells
• Low impedance on the non-inverting input

Regenerative comparators: hysteresis
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Programmable hysteresis from 0 to 160 
mV  (ΔVH) depending on current on pin 
HYS

No built-in hysteresis. 
Datasheet suggests Schmitt trigger configuration

HYS input

The digital output 
has its own VDD

Off-the-shelf devices
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Four-transistor hysteresis cell
Inputs: I1, I2 
Outputs: V1, V2

 
Formed by:
Cross-coupled MOSFETs M2-M3
Load MOSFETS M1, M4

Constraint:
I1 + I2 = I0 = constant

Analysis: I2 in [0, I0]
Notable points:
I2 = 0; I1 = I0

I2 = I1 = I0/2
I2 = I0; I1 = 0

Compact comparator cell for Systems on a Chip

b2,3 = bC

b1,4 = bL
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Let us start from: I2=0 (I1=I0)

2 3 4 0D DI I I  

3 4, 0D DI I since: 3 4 0D DI I 

Considering M4 and M2:

4GS tV V 2 4GS GSV V 2 0DI 

Then it is M1 that carries all current I1: 
1

1 1
2

GS t
L

IV V V


   02
t

L

IV


 

3 1GS GS tV V V 

3 0DI 

(M3 is on)
3 2 0DSV V 

Analysis of the four-transistor cell: starting point
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Analysis of the four-transistor cell: starting point

2 (0) 0V 0
1

2(0) t
L

IV V


 

V1, V2

Design condition: we size bL in such a way that:

1 1(0) (0) 2GS tV V V  The reason will be clear later 1(0)GS t tV V V 
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Analysis of the four-transistor cell: increasing I2

V1, V2

As I2 increases, I1 decreases by the 
same amount, then V1 decreases:

1
1 1

2
GS t

L

IV V V


  
V2 increases: 

as a consequence 
of I2 increase 

while VGS3=V1 decreaseUntil V2 < Vt: M2, M4 are off
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Analysis of the four-transistor cell: V2 reaches Vt

V1, V2

For V2 = Vt, M2 and M4 are still off. 
Then (M1 and M3 have the same 
VGS):

1 1DI I 2 3DI I

Hypothesis: If M3 is now in saturation:

2 1I I2 1I I

βL βC
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Analysis of the four-transistor cell: M3 saturation hypothesis

V1, V2

2 tV V

3 2DS tV V V 

Let us check whether M3 is now in saturation 
(was in triode region at the beginning)

3 1 1(0) 2GS tV V V V  
3 3GS t t DSV V V V  

3 3DS GS tV V V For the design condition 
mentioned earlier

OK
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Analysis of the four-transistor cell: V2 reaches Vt

V1, V2
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Analysis of the four-transistor cell: starting from the opposite end point

V1, V2

Repeating the same procedure but starting from the rightmost point (I1 = 0, I2 = I0), 
we obtain a symmetrical behavior (around I0/2) with V1 and V2 interchanged. 
Now V1 reaches Vt for I1/I2 = rH. 



P. Bruschi – Design of Mixed Signal Circuits 17

Analysis of the four-transistor cell: combining the two behaviours

In this region, there are two possible 
stable states, depending on which 
extreme we started from:

This means that there is hysteresis 

Now, we investigate what happens 
when the lower voltage hits the Vt line
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M2 and M4 turn on (while M1 and M3 are still on) 

Let us focus on M2

1. As M2 turns on, it start stealing current from M1

3. VGS3 =V1, then ID3 reduces, increasing the current 
that flows into M4 

1
1 1

2 D
GS t

L

IV V V


  2. V1 decreases:

4
2 4

2 D
GS t

L

IV V V


  4. V2 increases:

5. VGS2 =V2, then ID2 increases further 

Positive feedback loop

Analysis of the four-transistor cell: 
phenomena that happen when V2 overcome Vt
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Each half circuit is 
equivalent to an amplifier

1 // //out
mC dL dC

in mL

vA g r r
v g

 
   

 

mC

mL

g
A

g


Small signal equivalent circuit
Due to the presence of the 
rd's, the magnitude of A is 
slightly less than 

mC

mL

g
g

Positive feedback loop: small-signal analysis
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1 2 0A A A  

A1 A2

2 3
1 2

1 4

;m m

m m

g g
A A

g g
 

Positive feedback

When V2 overcomes Vt, 
all MOSFETs are on:

   1 1 2 2,m L GS t m C GS tg V V g V V    

   3 3 4 4,m C GS t m L GS tg V V g V V    

1 3 1 2 4 2,GS GS GS GSV V V V V V   

 
 

 
 

2
2 1

1 2

C t C t C

L t L t L

V V V V
A

V V V V
  
  

   
      

Positive feedback loop: small-signal analysis
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Therefore, a stable condition cannot exist if all 
MOSFETs are on. 

1A 1C
H

L

r


  (DC instability)

V1 and V2 cannot be greater than Vt at same time in a stable condition
Then, when M1 is on, M4 is off and vice versa

Important condition

Positive feedback loop: regeneration
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In this case, the positive feedback 
is unable to cause an abrupt 
transition:
Hysteresis is not present 

2

1C

L

A 


 
  

 

1C
H

L

r


 

Positive feedback loop: non-regenerative case (no hysteresis)

This configuration is never used 
(should be regarded as a design error)
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Proceeding from the left, when V2 
overcomes the Vt line, the positive 
feedback makes the voltage evolve 
autonomously
 

The new stable solution is the one we 
already found proceeding back from 
the right: the regeneration stops when 
loop gain is no longer > 1 

 

Positive feedback loop: the “click”
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Only one stable solution 
exists in these regions

Unstable solutions in this 
region (all devices are on)
+ 2 possible stable 
solutions (either M1, M3 
off or M2, M4 off)

Positive feedback loop: stable characteristics and unstable solution

I2 > I1: 
V2 up, V1 down

V2 

V1 Suppose forced initial 
condition:
½ probability to 
evolve to one of the 
two stable solutions  

Most probable 
evolution?
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We start with a p-version of the hysteresis cell

Currents I1 and I2 are derived from the input 
voltage Vid=Vi2-Vi1 by means of a differential pair

Only one at a time between V1 and V2 is 
greater than the p-mos threshold voltage. 

If V1> |Vtp|, V2<|Vtp| MA, MB and Mo2 are 
on, while Mo1 is off: 0outV 

If V2> |Vtp|, V1<|Vtp|, only Mo1 is on:

out ddV V2 1id i iV V V 

A simple comparator based on the 4-transistor hysteresis cell
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2 1 1m idI I g V 

2 1 0I I I 

Using a linear approximation of 
the differential pair:

A simple comparator: upper threshold (VH)
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2 1 1m HI I g V 

2 1 0I I I 

2

1
H

I r
I



 2 1 1 11H m HI I I r g V   

 2 1 1 01HI I I r I    1

0

1
1

mH
H

H

gr V
r I






In quiescent conditions: 0 12 D QI I  1 12 TE mV g

1

1 1
1 2

H
H

H TE

r V
r V




 1
12
1

H
H TE

H

rV V
r






Dividing the upper equation 
by the lower one:

A simple comparator: upper threshold (VH)
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12
1

H
H TE

H

rV V
r




L HV V

14
1

H
H H L TE

H

rV V V V
r


   

  1

1In strong inversion: 2
1

H
H GS t

H

rV V V
r


  



HV

A simple comparator: complete characteristics
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14
1

H
H H L TE

H

rV V V V
r


   



• Make VTE1 as small as possible
• Make rH just slightly larger than 1
However, other requirements impose to make 
rH significantly larger than 1, because:

1) The calculated |bA|=(rH)2 is overestimated, 
since we have neglected the rd's

2) Process error can make rH < 1 if the margin 
to 1 is too small

3) The transition is faster with larger |bA| 

42
3H H TEr V V   

A typical robust choice:

DVH as small as 50 mV

To obtain a small hysteresis

A simple comparator: minimum achievable hysteresis
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The simplest solution is using a pre-amplifier:

,,L H HV V V

* *,H L
H io L io

V VV v V v
G G

   
In discrete time systems 
the amplifier offset can 
be canceled with CDS

gain G:
 *

id id ioV G V v 

* id
id io

V
V v

G
  * H

H
VV
G


 

The hysteresis is divided by the preamplifier gain (G)

A simple comparator: low hysteresis using a preamplifier
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This comparator is designed 
to have a large hysteresis

• When Vout=0, the capacitor is 
charged by IP

• When Vout=1, the capacitor is 
discharged by IN

VR+VH

VR+VL

VC

A simple VCO for low-frequency applications

First step: place the comparator in a feedback loop with a current-
controlled charging-discharging mechanism
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A simple low-frequency VCO: oscillator frequency

rise time =
/
H H

R
P P

V VT C
I C I
 

 

fall time =
/
H H

F
N N

V VT C
I C I
 

 
period = 

1 1
R F H

p N

T T T C V
I I

 
      

 



P. Bruschi – Design of Mixed Signal Circuits 33

A simple low-frequency VCO:
Implementation with "current starved" inverter

2 H

tune

C VT
I



2

tune

H

If
C V


IP

IN

If IP = IN = Itune:

The frequency is proportional 
to the tuning current (CCO) 

Using a linear voltage to current 
converter it is possible to make Itune 
to be proportional to a voltage, 
transforming the CCO into a VCO
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2 2
1

1 1

IN
B D

V
I I

R
 
 

 

OTA

The OTA, and M1 form a two-stage op-amp with output on 
node H, stabilized by CC (Miller compensation). 
The op-amp is closed as a buffer:

H INV V

This circuit can be 
used also to produce 
constant currents 
from a single 
reference voltage 

1
in

R D
V

I I
R

 

A simple voltage-to-current converter
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Speed and metastability issues

Small signal equivalent circuit of 
half cell: + inertial component (C) RV: negative signed for regenerative 

positive feedback

Metastability: the comparator does not provide a clear logical output level in a 
given amount of time
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Speed and metastability issues

Approximations around the “click” points:

Not rigorous but useful for understanding purposes: 
the circuit is non-linear anyway. 
Accurate results only through electrical simulations



P. Bruschi – Design of Mixed Signal Circuits 37

Speed and metastability issues

Under this approximation, the 
circuit is completely symmetric: 

We can study only half circuit, for 
simplicity
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Speed and metastability issues

Transient response characterized by growing 
exponential response: eat

Hence, the higher βA, the faster is the response (as mentioned previously). 

Designing low-hysteresis comparator by pushing βA close to 1 is a BAD IDEA: 
not only process sensitivity may lead to lack of hysteresis, but also the 
comparator would result very slow:

The pre-amp solution with is always used in such cases
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Syllabus
Design of integrated comparators

Done (today’s class): 
1) Ideal behaviour
2) Applications
3) Taxonomy
4) The 4T-hysteretic cell for SoC
5) Simple comparator based on the 4T-hysteretic cell
6) Low-frequency relaxation oscillator based on simple VCO
7) Notes on speed and metastability (optional material)

To do (next class): 
8) Dynamic comparator example: the StrongARM case
9) Other comparator structures from literature (optional material)
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