
The common gate (CG) stage

Hypothesis: V_k is at gnd in the small signal circuit. For example, it is provided by an ideal voltage source

small-signal circuit with parasitic capacitances

$$c_p = c_{gs-cg} + c_{bs-cg} + c_s$$

current division between R_{in} and z_s

$$i_{out} = i_s \frac{z_s}{z_s + \frac{1}{g_{m-cg}}} = i_s \frac{1}{1 + \frac{1}{g_{m-cg} z_s}}$$

$$\frac{1}{z_s} = \frac{1}{r_s} + sc_p$$

$$i_{out} = i_s \frac{1}{1 + \frac{1}{g_{m-cg}} \left(\frac{1}{r_s} + sc_p\right)}$$

$$i_{out} = i_s \frac{1}{1 + \frac{1}{g_{m-cg} r_s} + \frac{sc_p}{g_{m-cg}}}$$

$$i_{out} = i_{s} \frac{1}{1 + \frac{1}{g_{m-cg}r_{s}}} + \frac{sc_{p}}{g_{m-cg}} \qquad \frac{i_{out}}{i_{s}} = A_{I}(s) = \underbrace{\frac{1}{1 + \frac{1}{g_{m-cg}r_{s}}}}^{A_{I-CG}(0)} \underbrace{\frac{1}{1 + \frac{1}{g_{m-cg}r_{s}}}}^{1 + \frac{1}{g_{m-cg}r_{s}}} \underbrace{\frac{1}{1 + \frac{1}{g_{m-cg}r_{s}}}^{1 + \frac{1}{g_{m-cg}r_{s}}}}^{1 + \frac{1}{g_{m-cg}r_{s}}} \underbrace{\frac{1}{1 + \frac{1}{g_{m-cg}r_{s}}}^{1 + \frac{1}{g_{m-cg}r_{s}}}}^{1 + \frac{1}{g_{m-cg}r_{s}}} \Rightarrow g_{m-cg}r_{s} >> 1$$

Typical case: $r_{s} >> \frac{1}{g_{m-cg}} \Rightarrow g_{m-cg}r_{s} >> 1$

$$A_{I-CG}(0) = \frac{1}{1 + \frac{1}{g_{m-cg}r_s}} \cong 1 \qquad \qquad \omega_p \cong \frac{g_{m-cg}}{c_p}$$

Noise contribution of a CG stage

Every time we have a floating current source, we can split it into two sources with one terminal at ground

$$i'_{n-cg} = i''_{n-cg} = i_{n-cg}$$

Noise contribution of a CG stage

$$i_{n-out} = i'_{n-cg} - i''_{n-cg} A_I(s) = i_{n-cg} \left[1 - A_I(s) \right]$$

$$i'_{n-cg} = i''_{n-cg} = i_{n-cg}$$

In DC:
$$A_I = A_{I-CG}(0) = \frac{1}{1 + \frac{1}{g_{m-cg}r_s}} = \frac{g_{m-cg}r_s}{1 + g_{m-cg}r_s}$$

$$1 - A(0) = 1 - \frac{g_{m-cg}r_s}{1 + g_{m-cg}r_s} = \frac{1}{1 + g_{m-cg}r_s} \qquad \frac{i_{n-out}}{i_{n-cg}} \cong \frac{1}{1 + g_{m-cg}r_s}$$

Summary of properties of a CG stage in typical cases

$$r_s >> \frac{1}{g_{m-cg}} \implies g_{m-cg} r_s >> 1$$

1.
$$A_{I-CG}(0) = \frac{g_{m-cg}r_s}{1+g_{m-cg}r_s} \cong 1$$

$$\mathbf{2.} \qquad \boldsymbol{\omega_p} \cong \frac{g_{m-cg}}{c_p} \qquad c_p \cong c_{gs-cg}$$

3.
$$\frac{i_{n-out}}{i_{n-co}} = |1-A(j\omega)|$$
 Usually, this factor is $<< 1$ for $f << f_p = \frac{\omega_p}{2\pi}$

In DC:
$$\frac{i_{n-out}}{i_{n-cg}} = \frac{1}{1 + g_{m-cg} r_s} \cong \frac{1}{g_{m-cg} r_s} << 1$$