A small-signal method to calculate the effect of component variations

The problem is: if we consider the dc solution of a network, what happens to this solution if the parameters of one or more devices undergo a small change

Example of non-linear network

Small signal approach to parameter variations

We consider that the component whose parameters change can be represented by a two-port network

Both the selected two-port network (Q) and the remaining network (N) can be highly non-linear ($g_{1}, g_{2}, f_{1}, f_{2}$: non-linear)

$$
P \Rightarrow P+\Delta P \quad \Longleftrightarrow \text { Variation of the network solution }
$$

Approximate solution based on small signal analysis

Apply two-currents to the nominal network, as in the figure, with values:

$$
i_{1 P}=\frac{\partial I_{1}}{\partial P} \Delta P \quad i_{2 P}=\frac{\partial I_{2}}{\partial P} \Delta P
$$

The variations caused by the change $P->P+\Delta P$ can be calculated solving the small-signal circuit of the whole network with the only independent sources $i_{1 P}$ and $i_{2 P}$.

Example of parameter change: resistance change

P. Bruschi - Microelectronic System Design

MOSFET

$$
P: V_{t}, \beta
$$

$$
\begin{array}{ll}
I_{1}=I_{G}=0 & \\
I_{2}=I_{D} & i_{1 P}=\frac{\partial I_{g}}{\partial P} \Delta P=0 \\
V_{1}=V_{G S} & i_{2 p}=\frac{\partial I_{D}}{\partial P} \Delta P \\
V_{2}=V_{D S} &
\end{array}
$$

$$
i_{2 p}=\frac{\partial I_{D}}{\partial \beta} \Delta \beta+\frac{\partial I_{D}}{\partial V_{t}} \Delta V_{t}
$$

P. Bruschi - Microelectronic System Design

MOSFET: strong inversion + saturation

nominal device

V_{t}, β nominal parameters

$V_{G S}, V_{D S}, I_{D}$ nominal operating point

$$
V_{t}+\Delta V_{t}, \beta+\Delta \beta
$$

$$
\begin{gathered}
I_{D} \cong \frac{\beta}{2}\left(V_{G S}-V_{t}\right)^{2} \\
i_{2 p}=\frac{\partial I_{D}}{\partial \beta} \Delta \beta+\frac{\partial I_{D}}{\partial V_{t}} \Delta V_{t}=\frac{1}{2}\left(V_{G S}-V_{t}\right)^{2} \Delta \beta-\beta\left(V_{G S}-V_{t}\right) \Delta V_{t}
\end{gathered}
$$

MOSFET: strong inversion + saturation

$$
\begin{aligned}
& i_{2 p}=\underbrace{\left.\frac{1}{2}-V_{G S}\right)^{2} \Delta \beta}_{\frac{1}{2}\left(V_{G S}-V_{t}\right)^{2} \frac{\Delta \beta}{\beta}}-\underbrace{\beta\left(V_{G S}-V_{t}\right) \Delta V_{t}}_{\frac{2}{\left(V_{G S}-V_{t}\right)} \frac{\beta}{2}\left(V_{G S}-V_{t}\right)^{2} \Delta V_{t}} \\
& i_{2 p}=I_{D}\left[\frac{\Delta \beta}{\beta}-\frac{2 \Delta V_{t}}{\left(V_{G S}-V_{t}\right)}\right] \stackrel{\text { DEF }}{=} \Delta I_{D}
\end{aligned}
$$

P. Bruschi - Microelectronic System Design

Matched devices

Quantity of interest

1. The two device are nominally identical.
2. The nominal bias conditions (quiescent currents and voltages) are identical.
3. The nominal transfer functions that tie the quantity of the interest for the circuit (for example the output voltage of an amplifier) to the parametric currents of the two devices $\left(\Delta I_{D 1}\right.$ and $\left.\Delta I_{D 2}\right)$ are opposite.

$$
\Delta U=F\left(\Delta I_{D 1}-\Delta I_{D 2}\right)=F \Delta I_{D 1,2}
$$

Matched devices

$$
\begin{aligned}
& P_{1}=P_{N}+\Delta P_{1} \\
& P_{2}=P_{N}+\Delta P_{2} \\
& P_{1}
\end{aligned}
$$

$$
\Delta U=F \frac{\partial I}{\partial P}\left(P_{1}-P_{2}\right) \quad\left(P_{1}-P_{2}\right) \frac{\mathrm{DEF}}{=} \Delta P_{1,2}
$$

P. Bruschi - Microelectronic System Design

Matched Mosfets

Combined effect of two matched MOSFETs

$$
\Delta U=F\left(\Delta I_{D 1}-\Delta I_{D 2}\right)=F \Delta I_{D 1,2}
$$

$$
\Delta I_{D 1,2}=I_{D}\left(\frac{\Delta \beta_{1,2}}{\beta}-\frac{2 \Delta V_{t 1,2}}{\left(V_{G S}-V_{t}\right)}\right) \quad \begin{aligned}
& \Delta \beta_{1,2}=\beta_{2}-\beta_{1} \\
& \Delta V_{t 1,2}=V_{t 2}-V_{t 1}
\end{aligned}
$$

Effect of parameter change of a single device:

$$
\begin{array}{ll}
\Delta U=F \Delta I_{D} & \left|\Delta \beta_{1,2}\right| \ll\left|\Delta \beta_{1}\right|,\left|\Delta \beta_{2}\right| \\
\Delta I_{D}=I_{D}\left(\frac{\Delta \beta}{\beta}-\frac{2 \Delta V_{t}}{\left(V_{G S}-V_{t}\right)}\right) & \\
\left|\Delta V_{t 1,2}\right| \ll\left|\Delta V_{t 2}\right|,\left|\Delta V_{t 1}\right|
\end{array}
$$

Norton equivalent circuit with dc component

Probing a non.linear network with an arbitrary voltage source V

Test 1. Short circuit current when the probing source assumes a voltage V_{B}. (complete solution, including dc components)

Norton equivalent circuit with dc component

$$
R_{\text {out }}=\frac{\Delta V_{B}}{-\Delta I_{S C}}
$$

Note: $\mathrm{R}_{\text {out }}$ is the small-signal resistance seen across terminals $\mathrm{H}-\mathrm{K}$ in the operating point forced by imposing voltage V_{B} across H -K terminals

Equivalent circuit of the network

The equivalent circuit is valid until voltage
V_{HK} is close enough to V_{B} that the output resistance does not change significantly

Example: equivalent circuit of the output termination of a real amplifier

