
Sensor Interfaces

Sensor Interface: directly connected to the sensor. Detects the typically small variations of the electrical quantity E_X and convert it into a voltage, if required.

Sensors that produce a voltage

Output electrical	Sangar type	Input physical or chemical					
quantity	Sensor type	quantity to be sensed.					
		Temperature difference					
		Temperature					
	Thermoelectric sensors	Fluid flow rate					
		Infrared radiation (bolometers)					
		Gas concentration (catalytic sensors)					
	Electrochemical sensors	Ion concentration in electrolytes					
Voltage		Gas concentration (e.g "lambda					
		probes")					
		Magnetic Field					
	Hall sensors	Position (Proximity)					
		Current measurement					
	Piezoelectric sensors	Force (ac detection)					
	Fiezoeiecuic sensors	Acoustical pressure, acceleration.					

Sensors that produce a current or a charge

Output electrical quantity	Sensor type	Input physical or chemical quantity to be sensed.
Current	Optical sensors (photodiodes)	Infrared, visible and Ultraviolet radiation Imagers Proximity Opacity (e.g. smoke detectors)
	CCD imagers	Visible radiation
Charge	High energy particle detectors	Ionizing radiation and particle detection

Resistive sensors

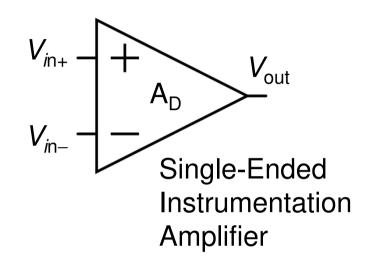
Output electrical quantity	Sensor type	Input physical or chemical quantity to				
	Sensor type	be sensed				
		Temperature				
	Thermistor and RTDs	Fluid flow rates				
	(Resistive Temperature	Fluid velocity (e.g. hot wire				
		anemometers)				
	Detectors)	Gas concentration (catalytic sensors)				
Resistance		Proximity				
		Strain (strain gauges)				
		Force (e.g. electronic scales)				
	Piezo-resistors	Pressure (barometers)				
		Altitude				
		Acceleration				
	Chemi-resistors	Gas or vapor concentration				
		Magnetic field				
	Magneto-resistors	Proximity				
		Orientation (e.g. electronic compass)				
	Photo resistors	Visible radiation				

Capacitive sensors

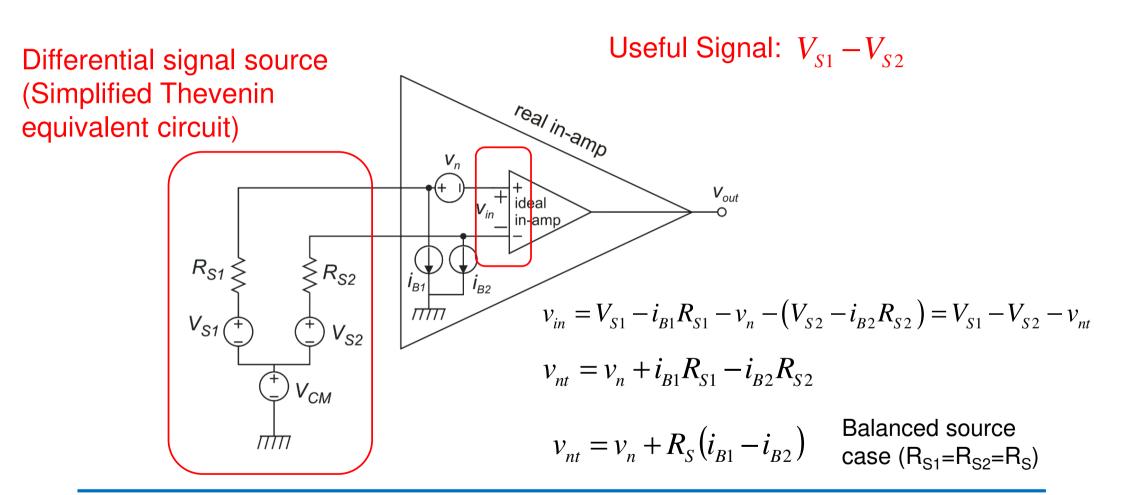
Output		Input physical or chemical quantity to be				
electrical	Sensor type	sensed.				
quantity						
Capacitance		Acceleration				
	Capacitive sensors (mechanical)	Angular velocity (gyroscopes)				
		Pressure				
	Capacitive sensors (chemical)	Gas concentration (e.g. humidity sensors)				

Frequently used sensor interfaces

Output quantity	Type of Interface	Notes		
Voltage	Instrumentation Amplifier (In-Amp)			
Resistance	Instrumentation Amplifier	Resistors should be mounted in a Wheatstone bridge configuration or biased by a current.		
Resistance	Trans-Impedance Amplifier (TIA)	Resistor must be biased with a voltage in order to produce a current		
Current	Trans-Impedance Amplifier (TIA)			
Capacitance	Trans-Impedance Amplifier (TIA)	Converting capacitance into a current by means of a periodic voltage waveform		
	Charge amplifier (switched capacitor)			
Charge	Charge amplifier (switched capacitors)			


Instrumentation Amplifiers (In-Amps)

Required features:


- Precise gain (A_D)
- High input resistance

Other important features

- Differential input
- Low input referred offset voltage
- Low bias currents
- Low input referred voltage and current noise
- High CMRR (for differential amplifiers)
- Large bandwidth

In-amps: errors due to the input noise/offset voltage and currents

Total voltage noise expressions

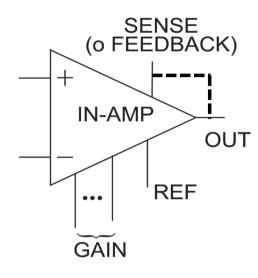
Balanced source case
$$(R_{S1}=R_{S2}=R_S)$$

$$v_{nt} = v_n + R_S (i_{B1} - i_{B2})$$

DC components:
$$v_n = v_{io}$$
 $i_{b1} = I_{B1}$; $i_{b2} = I_{B2}$; $(i_{B1} - i_{B2}) = I_{B1} - I_{B2} = I_{io}$

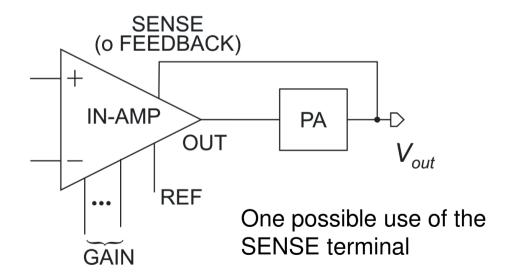
$$v_{iot} = v_{io} + R_S I_{io}$$

Noise components:
$$v_n \Rightarrow S_{vn}$$
;
$$\begin{cases} i_{b1} = i_{n1} \Rightarrow S_{I1}(f) \\ i_{b2} = i_{n2} \Rightarrow S_{I2}(f) \end{cases}$$
 $S_{I12}(f)$

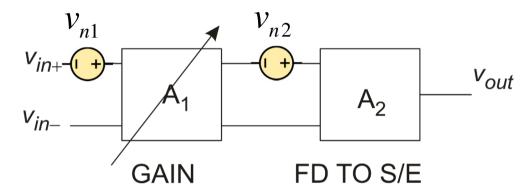

$$S_{vnt} = S_{vn} + R_S^2 (S_{I1} + S_{I2} - 2S_{I1I2})$$

$$S_{vnt} = S_{vn} + 2R_S^2 S_{I}$$
If I_{n1} and I_{n2} are uncorrections $S_{vnt} = S_{vn} + 2R_S^2 S_{I}$

If
$$i_{n1}$$
 and i_{n2} are uncorrelated and $S_{l1} = S_{l2} = S_{l}$:


$$S_{vnt} = S_{vn} + 2R_S^2 S_I$$

Discrete monolithic In-Amps



Typical pin configuration

$$V_{out} = G(V_{IN+} - V_{IN-}) + V_{REF}$$

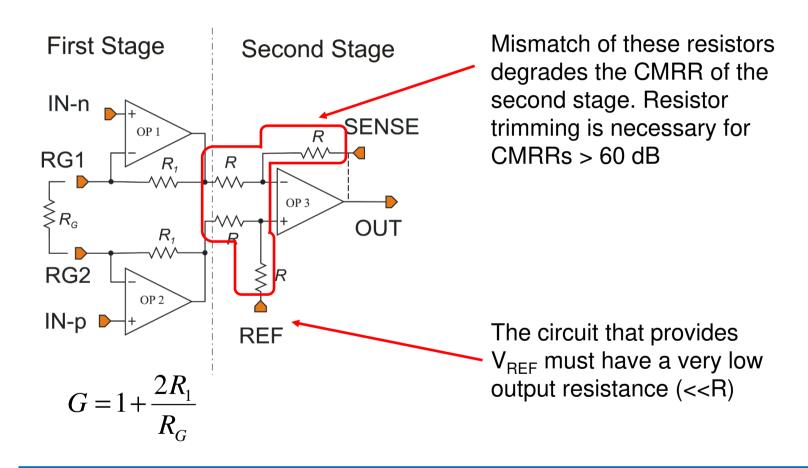
In-Amp with variable gain: Input and Output offset and noise

Typical two-stage architecture of In-amps $G = A_1 A_2$

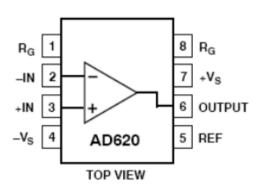
$$G = A_1 A_2$$

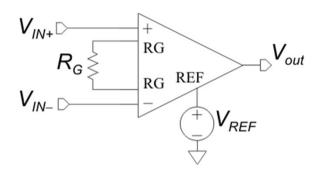
$$v_{n-out} = v_{n1}A_1A_2 + v_{n2}A_2$$
 $v_{nRTI} = \frac{v_{n-out}}{G} = v_{n1} + \frac{v_{n2}}{A_1}$

Generally,
$$A_2 = 1$$
, thus: A_1

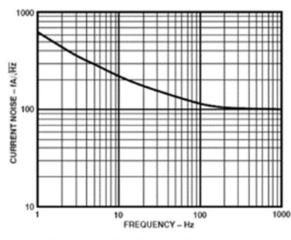

$$A_1 = G$$

Generally,
$$A_2$$
= 1, thus: $A_1 = G$ $v_{nRTI} = v_{n1} + \frac{v_{n2}}{G}$ v_{n1} : input noise v_{n2} : output noise


$$V_{n1}$$
: input noise


$$V_{n2}$$
: output noise

Three-Op-Amp Instrumentation Amplifier



AD 620

$$V_{out} = G(V_{IN+} - V_{IN-}) + V_{REF}$$
$$G = 1 + 49.4k\Omega / R_G$$

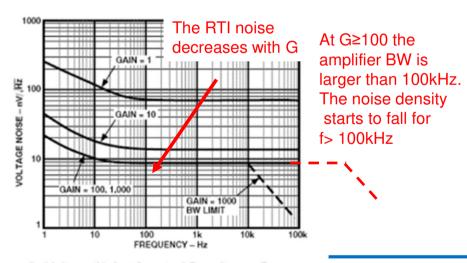
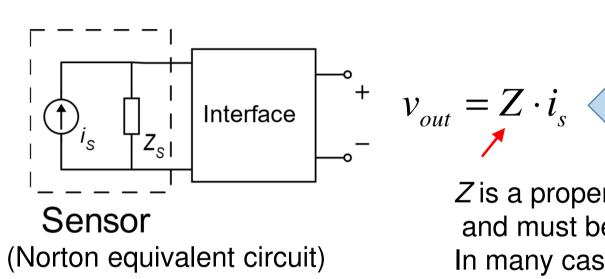


Figure 8. Voltage Noise Spectral Density vs. Frequency, (G = 1-1000)

AD 620

GBW does not increase much beyond the G=10 case: BW affected by second stage Nearly constant GBW product: BW determined by first stage

Model	Conditions	Min	AD626 Typ		Min	AD620B Typ		Min	AD620S ¹ Typ Max	Units
DYNAMIC RESPONSE										
Small Signal -3 dB Bandwidth										
G = 1			1000			1000			1000	kHz
G = 10			800			800		_	800	kHz
G = 100			120			120	Slev	v -Rate	120	kHz
G = 1000			12			12			12	kHz
Slew Rate		0.75	1.2		0.75	1.2		0.75	1.2	V/µs
Settling Time to 0.01%	10 V Step									
G = 1-100			15	Settlin	g times	15			15	μs
G = 1000			150			150			150	μs
NOISE			Out	tput noise	I SS innu	t noise				
Voltage Noise, 1 kHz	Total RTI Noise = $\sqrt{(e^2)}$	//		iput noise	i >> iiipu		D	Samuel Nimit	10	
	I otat KII Noise = V(e-	ni)+(eno/				_		Band Nois		
Input, Voltage Noise, e _{ni}			9	13		_	13		9 13	nV/√Hz
Output, Voltage Noise, eno			72	100		72	100		72 100	nV/√Hz
RTI, 0.1 Hz to 10 Hz										l
G = 1			3.0				6.0		3.0 6.0	μV p-p
G = 10	(Broad-	Band N	اSoise: √S	DD .	0.55	0.8		0.55 0.8	μV p-p
G = 100-1000	6-117	1			I I	0.28	0.4		0.28 0.4	μV p-p
Current Noise	f = 1 kHz		100			100			100	fA/√Hz
0.1 Hz to 10 Hz	Current {	[10			10			10	pA p-p
		ow Freq	uency l	Noise						
			•).1-10 Hz					Low	/ Frequenc
		ogratot	. 5 0 0 1	10112					•	grated ove

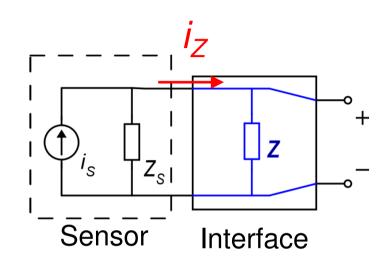

P. Bruschi – Design of Mixed Signal Circuits

ላከዩንበ

The effective input referred offset (RTI) is a combination of the input and output offset		set	AD 6	620	Input o	offset	
VOLTAGE OFFSET Input Offset, Vost Over Temperature Average TC Output Offset, Voso Over Temperature Average TC Offset Referred to the Input vs. Supply (PSR) G = 1 G = 10 G = 100 G = 1000	(Total RTI Error = $V_{OSI} + V_{VS} = \pm 5 \text{ V to } \pm 15 \text{ V}$ $V_S = \pm 5 \text{ V to } \pm 15 \text{ V}$ $V_S = \pm 5 \text{ V to } \pm 15 \text{ V}$ $V_S = \pm 15 \text{ V}$ $V_S = \pm 5 \text{ V}$ $V_S = \pm 5 \text{ V}$ $V_S = \pm 5 \text{ V to } \pm 15 \text{ V}$ $V_S = \pm 5 \text{ V to } \pm 15 \text{ V}$ $V_S = \pm 2.3 \text{ V to } \pm 18 \text{ V}$	80 10 95 11 110 14	185 3 1.0 00 1000 1500 2000 0 15	he input bias uch a small 80 100 120	15 50 85 0.1 7.6 200 500 750 1000 2.5 7.0 s current and in	Output offset 30 125 225 0.3 1.0 400 1000 1500 2000 5.0 15 nput offset current are the result of internal be 120 120 140 110 140	μV μV/°C μV μV μV μV/°C similar, since sias current cancellation dB dB dB dB
INPUT CURRENT Input Bias Current Over Temperature Average TC Input Offset Current Over Temperature Average TC POWER SUPPLY Operating Range ⁴		±2.3	2.5 0 3 1.0 1.5 5		0.5 1.0 3.0 0.3 0.5 0.75 1.5	0.5 2 4 8.0 0.3 1.0 2.0 8.0	nA nA pA/°C nA nA pA/°C
Quiescent Current Over Temperature	$V_S = \pm 2.3 \text{ V to } \pm 18 \text{ V}$	0	.9 1.3 .1 1.6		0.9 1.3 1.1 1.6	0.9 1.3 1.1 1.6	mA mA

The AD 620 in-amp represents a good trade-off between input noise voltage, input bias currents and supply current (quiescent current)

Interfacing a sensor whose output is a current

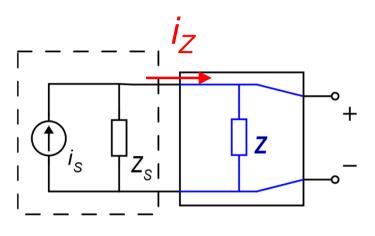

Goal: to obtain a voltage proportional to the sensor current

Z is a property of the interface and must be accurate. In many cases Z is a resistance

 I_S is the quantity to be read, since it contain the useful information

 Z_S is the unavoidable output impedance of the sensor. The ideal case is an infinite Z_S (ideal current source)

The simplest solution


Simply connect a known impedance cross the sensor terminals

$$V_{out} = Z \cdot i_Z$$

$$i_Z = \frac{Z_S}{Z_S + Z} i_S = \frac{1}{1 + \frac{Z}{Z_S}} i_S$$

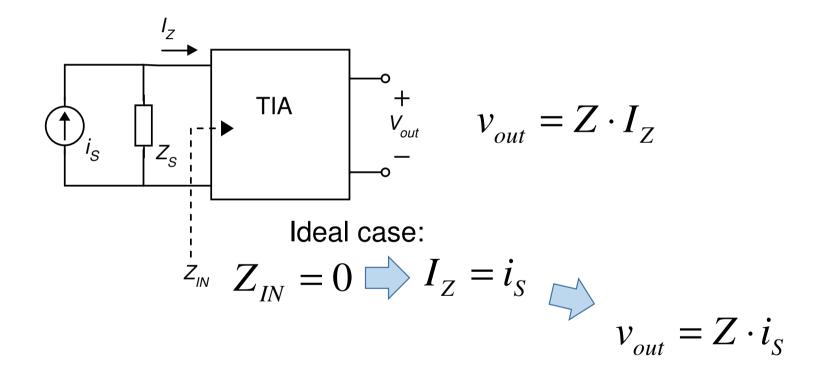
$$i_Z \neq i_S$$

Sensitivity vs Accuracy

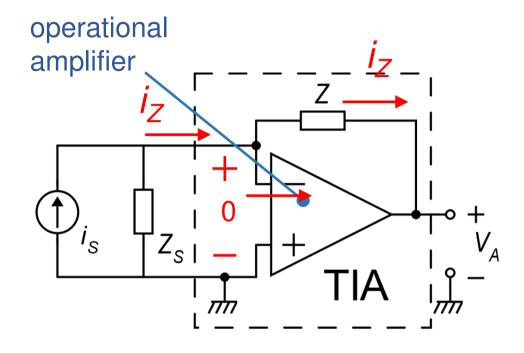
$$v_{out} = Z \cdot i_Z$$

$$i_Z = \frac{1}{1 + \frac{Z}{Z_S}} i_S \cong \left(1 - \frac{Z}{Z_S}\right) i_S$$

$$v_{out} \cong Z \left(1 - \frac{Z}{Z_S} \right) i_S$$


 $v_{out} = Z \cdot i_S$ Nominal law

Z should be large (magnitude) to obtain a high sensitivity

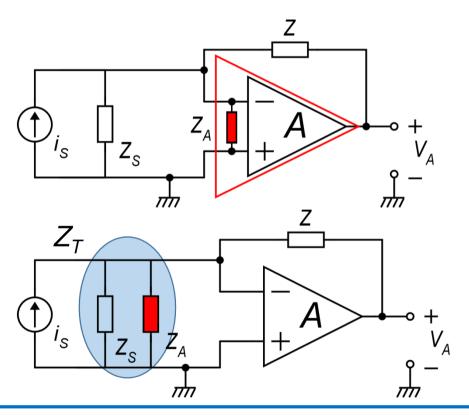

Z should be small (magnitude) to reduce the relative error (high accuracy)

For sensor marked by small values of the Z_S impedance, finding a value of Z that satisfies both requirements is often impossible

A better interface: the Trans-Impedance Amplifier (TIA)

The op-amp based TIA

Ideal case (perfect virtual gnd)

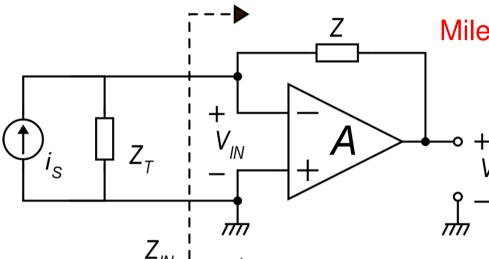

$$\begin{split} V_{IN} &= 0 \Longrightarrow Z_{IN} = 0 \\ I_Z &= i_S \\ v_A &= -Z \cdot I_Z = -Z \cdot i_S \end{split}$$

Sensitivity of the TIA stage (transimpedance)

$$k_{TIA} = \frac{v_{An}}{i_s} = -Z$$

TIA non-idealities

- Finite gain
- Finite input impedance



$$A = \frac{A_0}{1 + j\frac{f}{f_p}}$$

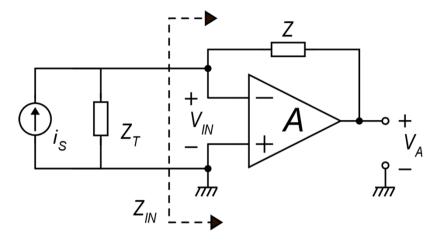
Typical dominant-pole frequency response

$$Z_T = Z_S / / Z_A$$

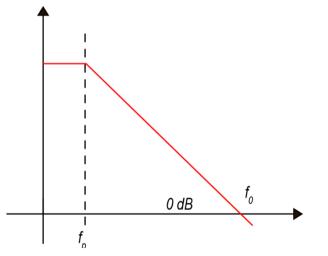
$$Z_T = Z_S //Z_A$$
 TIA: input impedance Z_{IN}

Miler Effect:
$$Z_{IN} = \frac{Z}{1 - E}$$

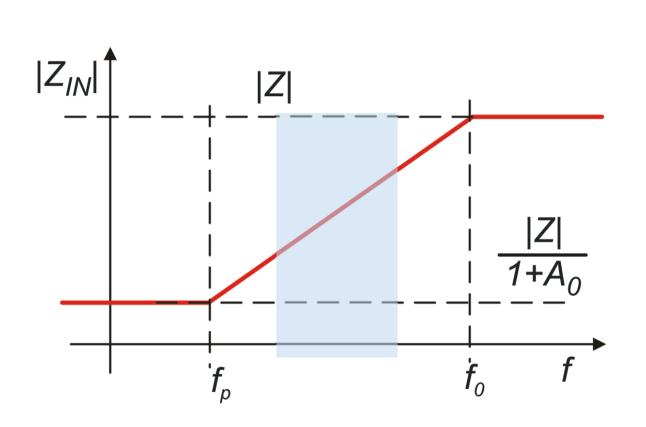
$$Z_{IN} = \frac{Z}{1 - K_M} \qquad K_M$$


$$Z_{IN} = \frac{Z}{1+A}$$

$$Z_{IN} = Z \frac{1}{1 + \frac{A_0}{1 + j\frac{f}{f_p}}}$$


$$= Z \frac{1 + j \frac{f}{f_p}}{1 + A_0 + j \frac{f}{f_p}} = \frac{Z}{1 + A_0} \left[\frac{1 + j \frac{f}{f_p}}{1 + j \frac{f}{(1 + A_0)f_p}} \right]$$

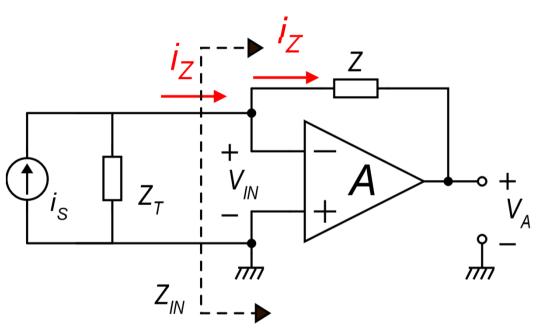
TIA: input impedance Z_{IN}


$$Z_{IN} = \frac{Z}{1 + A_0} \frac{1 + j \frac{f}{f_p}}{1 + j \frac{f}{f_0}}$$

$$f_0 \cong A_0 f_p \cong (1 + A_0) f_p$$

 f_0 is defined as the frequency at which the amplifier gain magnitude is unity (0 dB)

TIA input impedance

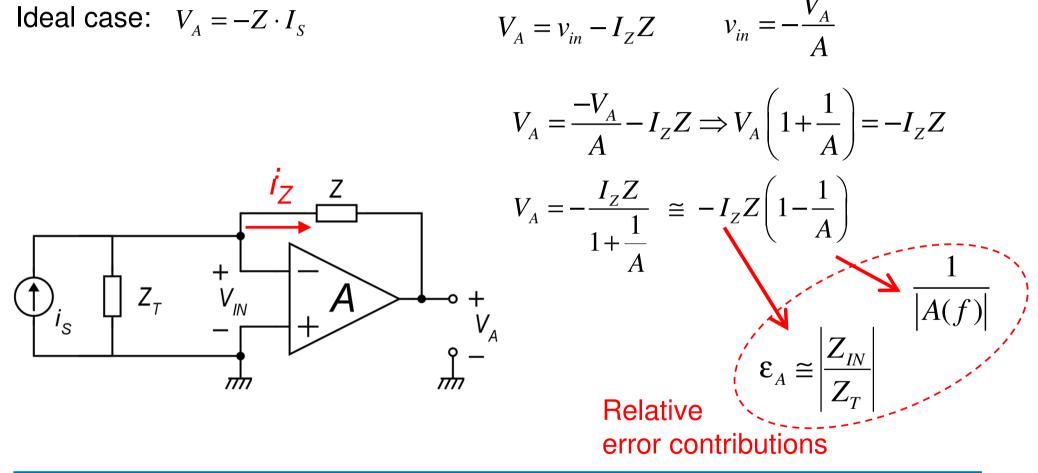

$$Z_{IN} = \frac{Z}{1 + A_0} \frac{1 + j\frac{f}{f_p}}{1 + j\frac{f}{f_0}}$$

$$f_P << f << f_0$$

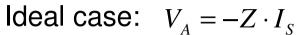
$$Z_{IN} = jZ \frac{f}{f_0}$$

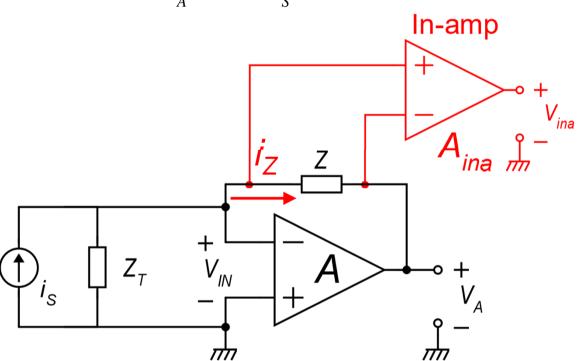
Error due to the finite input impedance: (1) error on I_Z

Ideal case: $V_A = -Z \cdot I_S$


$$I_Z = I_S \frac{Z_T}{Z_{IN} + Z_T} = \frac{1}{1 + \frac{Z_{IN}}{Z_T}}$$

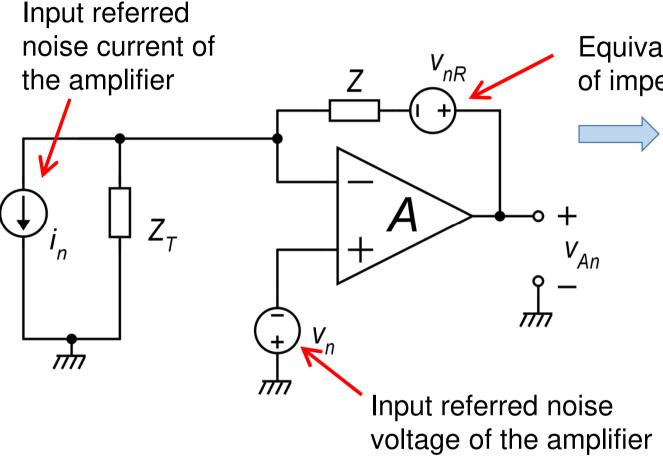
$$\begin{array}{ccc}
 & + & \\
 & V_A & \text{if } |Z_{IN}| << |Z_T| & I_Z \cong I_S \left(1 - \frac{Z_{IN}}{Z_T}\right) \\
 & - &
\end{array}$$


$$\varepsilon_A \cong \left| \frac{Z_{IN}}{Z_T} \right|$$
 Error on current I_Z


Error due to the finite input impedance: (2) error due to $V_{IN} \neq 0$

Ideal case: $V_A = -Z \cdot I_S$

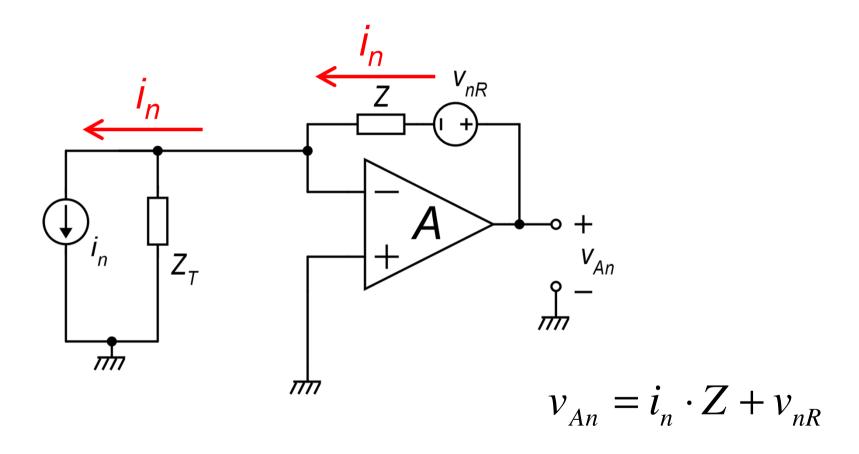
Reducing the 1/A error



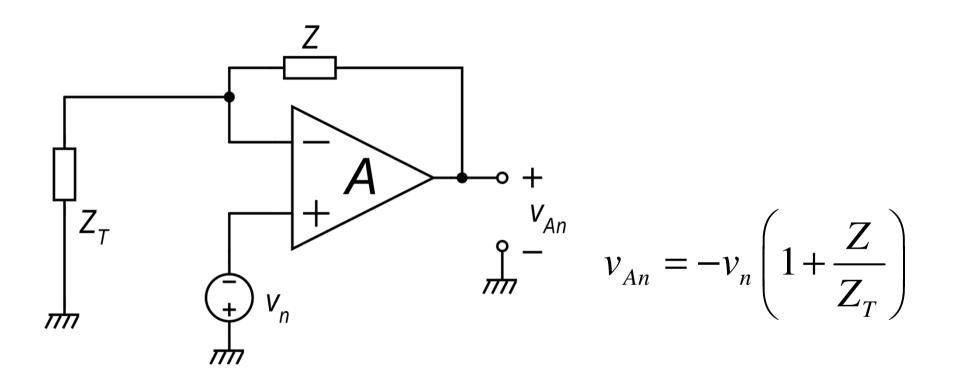
This voltage is affected only by the error due to: $I_S \neq I_Z$

$$^{+}_{V_{ina}} V_{ina} = A_{ina} I_{Z} Z$$

TIA non-ideality: Noise and offset


Equivalent noise source of impedance Z

Thermal Noise:


$$S_{VnR} = 4kT \operatorname{Re}(Z)$$

For noise calculations, we will neglect finite gain effects (hypothesis of perfect virtual *ground*)

Effect of i_n and V_{nR}

Effect of the voltage source

Total output noise voltage and input referred noise current

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

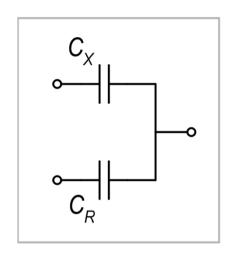
$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

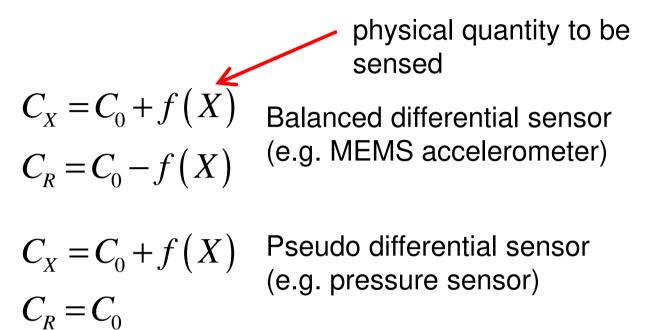
$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

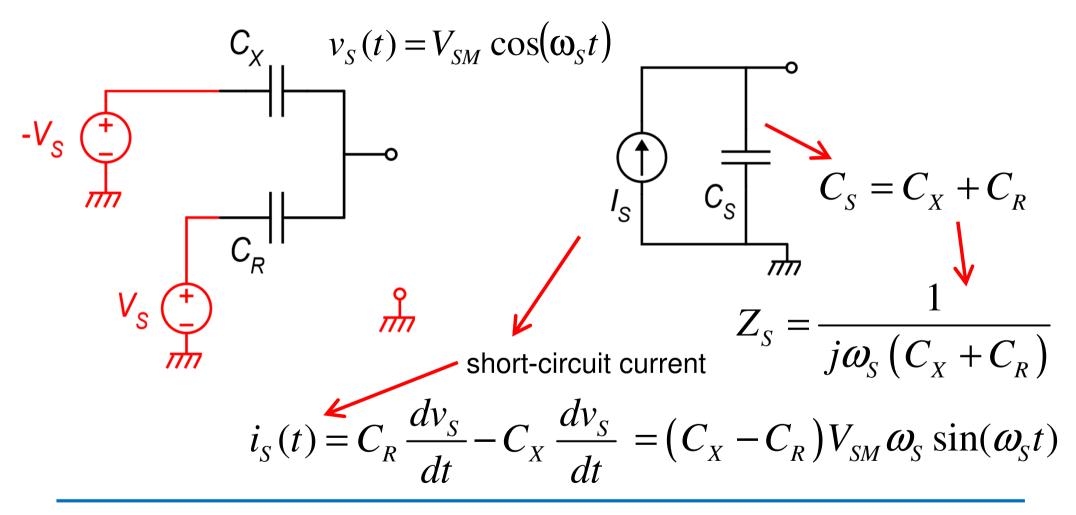

$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$

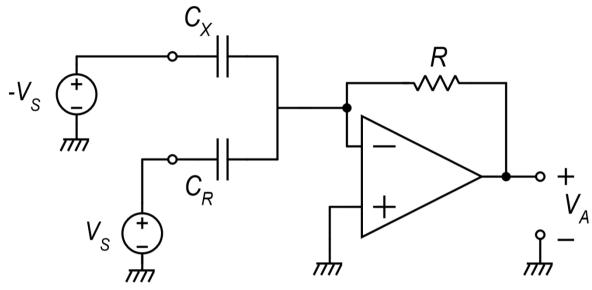
$$V_{An} \cong Zi_{n} - V_{n}\left(1 + \frac{Z}{Z_{T}}\right) + V_{nR}$$


$$i_{n-RTI} \cong -i_n + v_n \left(\frac{1}{Z} + \frac{1}{Z_T}\right) - \frac{v_{nR}}{Z} \qquad for \ Z \to \infty : i_{n-rti} = -i_n + \frac{v_n}{Z_T}$$

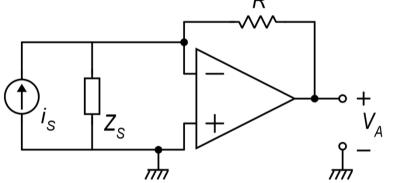
for
$$Z \to \infty$$
: $i_{n-rti} = -i_n + \frac{v_n}{Z_T}$

TIA used to read capacitive sensors


Differential capacitive sensor


 C_0 is typically a large capacitance which does not vary with X, but is widely affected by process spread and often depends on temperature

The interface must read: $\Delta C = C_X - C_R$


Transformation of ΔC into a current

Use of the TIA to read current Is

Substituting the Norton equivalent circuit to the sensor, we have the usual TIA configuration, with Z=R

$$v_{A}(t) = -R \cdot i_{S}(t) = -\Delta C(t) \cdot RV_{SM} \omega_{S} \sin(\omega_{S}t)$$

The useful signal $\Delta C(t)$ is modulated by $\sin(\omega_S t)$:

Demodulation is required to extract $\Delta C(t)$

Synchronous demodulation allows detecting also the sign of $\Delta C(t)$

A few general considerations

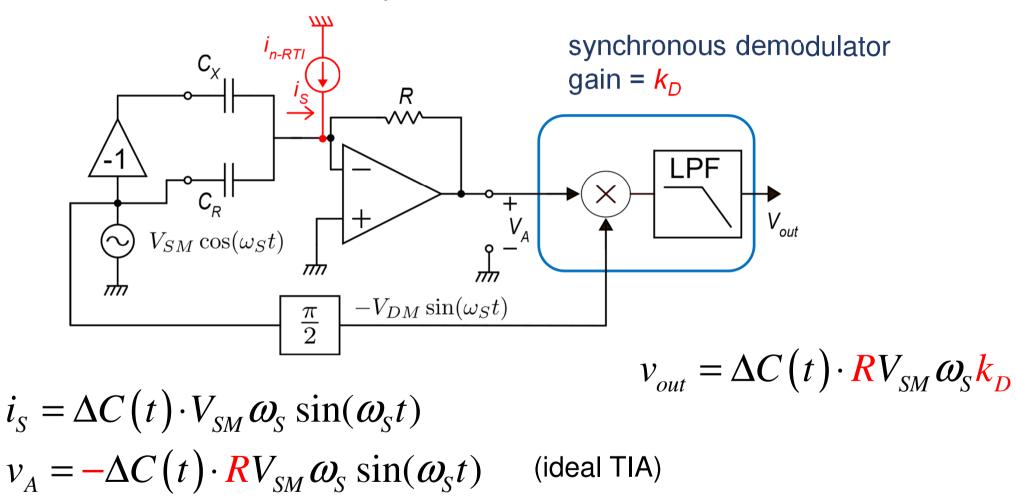
$$i_{S}(t) = \Delta C(t) \cdot V_{SM} \omega_{S} \sin(\omega_{S} t)$$

$$\Delta C(t) \rightarrow \begin{cases} i_{S} \\ \text{of stimulus} \\ v_{S} \end{cases} \qquad \forall Application \\ \text{of stimulus} \\ v_{S} \end{cases}$$

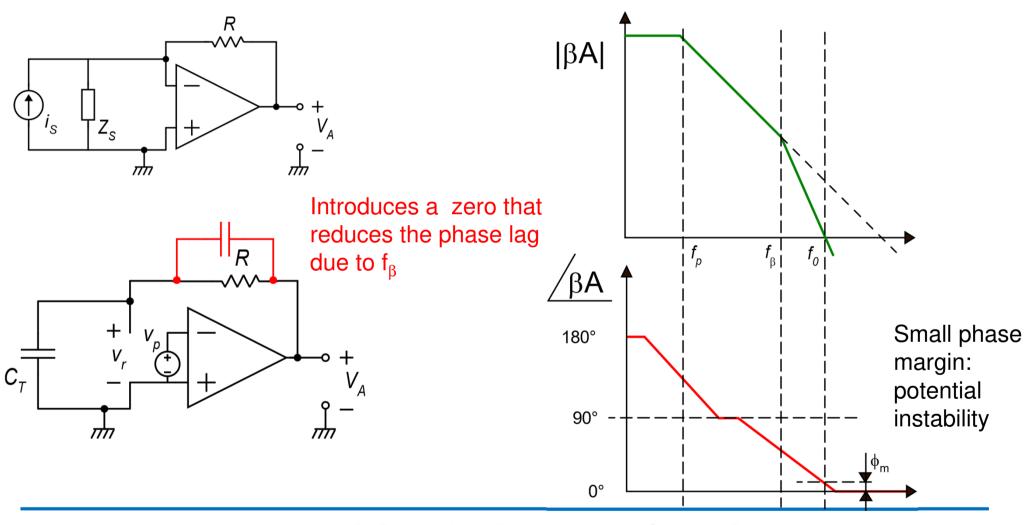
$$TIA \rightarrow v_{A}(t)$$

 $V_{\rm SM}$ must be as large as possible (limited by $V_{\rm dd}$) $\omega_{\rm S}$ cannot be too large because the error due to the finite impedance becomes not acceptable. if $\omega_{\rm S}$ increases:

It is desirable to increase this factor to have a larger signal -to-noise ratio


$$\mathcal{E}_{tot} \cong \left| \frac{Z_{IN}}{Z_T} \right| + \frac{1}{|A(f)|}$$

$$\left| |A(f_S)| \text{ decreases} \right|$$


$$\left| |Z_{IN}| = R \frac{f_S}{f_0} \text{ increases}$$

$$\left| |Z_T| = \frac{1}{\omega_S \left(C_S + C_A \right)} \right|$$
decreases

Complete interface

Brief mention to TIA stability issues

P. Bruschi – Microelectronic System Design