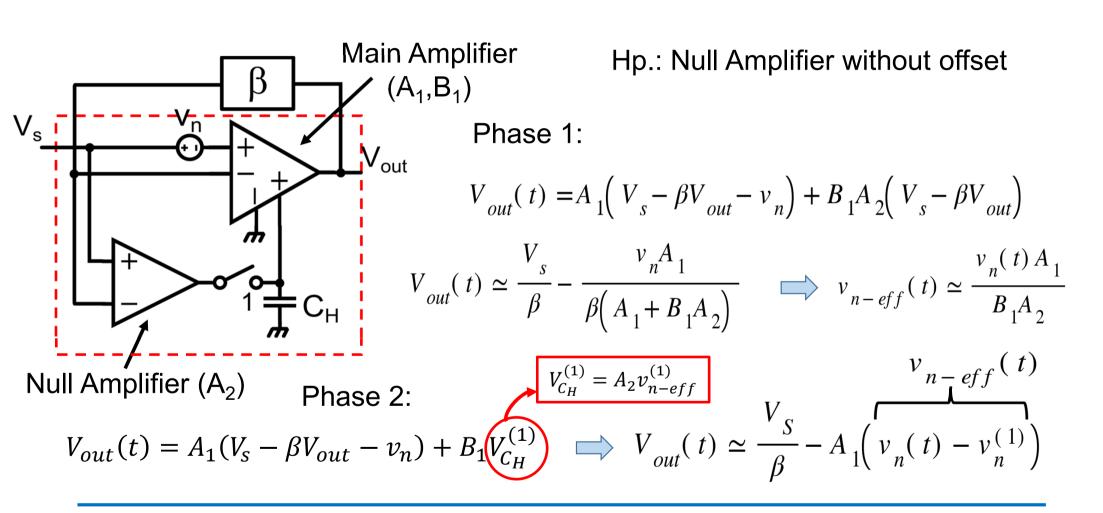
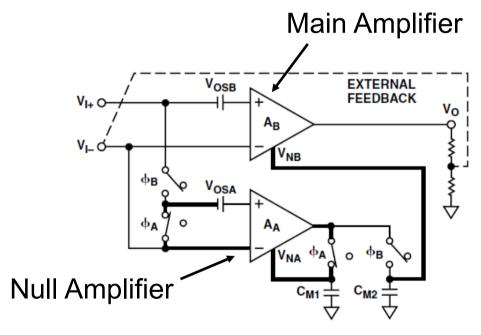
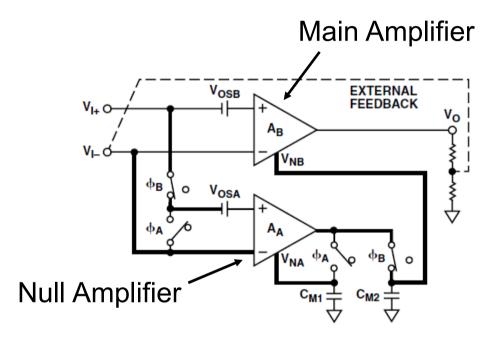

Offset compensation using an additional input port

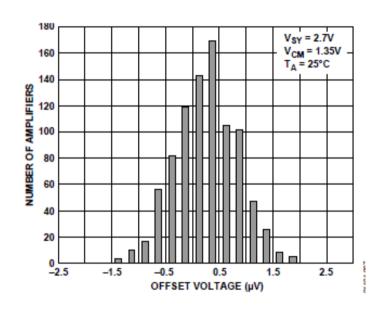


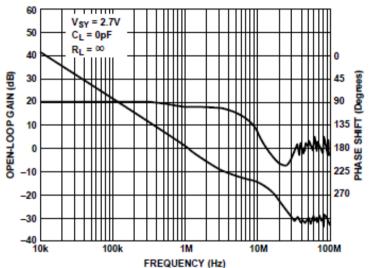
V_{i1} is the input signal port, V_{i2} is the offset calibration port (offset and noise are referred to the input signal port)

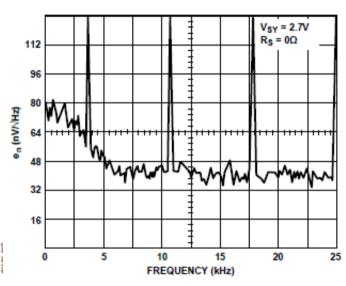

AZ compensation:


Continuous-time AZ amplifiers

Commercial Zero-Drift Operational Amplifiers based on AZ (AD8551, TLC2654, OPA335...)

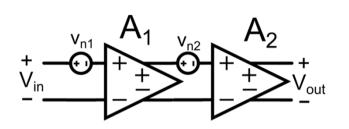



a. Auto-Zero Phase A: null amplifier nulls its own offset.



b. Output Phase B: null amplifier nulls the main amplifier offset.

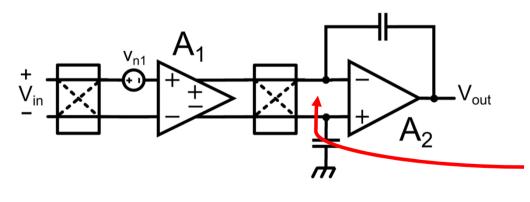
Commercial Zero-Drift Operational Amplifiers based on AZ (AD8551)



$$f_{AZ} = 4 \text{ kHz}$$

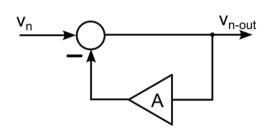
Commercial Zero-Drift Operational Amplifiers based on AZ (AD8551, TLC2654, OPA335...)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
POWER SUPPLY						1
Power Supply Rejection Ratio	PSRR	Vs = 2.7 V to 5.5 V	120	130		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	115	130		dB
Supply Current/Amplifier	Isy	V _O = 0 V		850	975	μΑ
		-40°C ≤ T _A ≤ +125°C		1000	1075	μΑ
DYNAMIC PERFORMANCE				•	•	
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.4		V/µs
Overload Recovery Time				0.05	0.3	ms
Gain Bandwidth Product	GBP			1.5		MHz
NOISE PERFORMANCE				,	•	
Voltage Noise	en p-p	0 Hz to 10 Hz		1.0		μV p-p
	e _n p-p	0 Hz to 1 Hz		0.32		μV p-p
Voltage Noise Density	en	f = 1 kHz		42		nV/√Hz
Current Noise Density	İn	f = 10 Hz		2		fA/√Hz

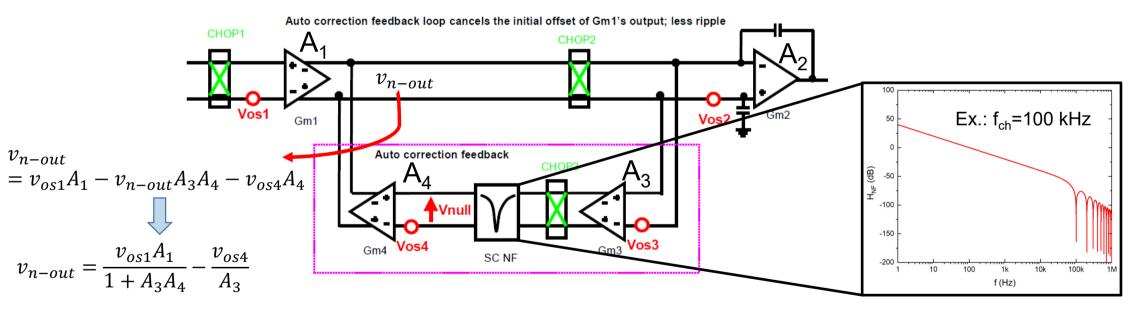

Chopper Amplifier

$$v_{n-out} = A_1 A_2 v_{n1} + A_2 v_{n2}$$

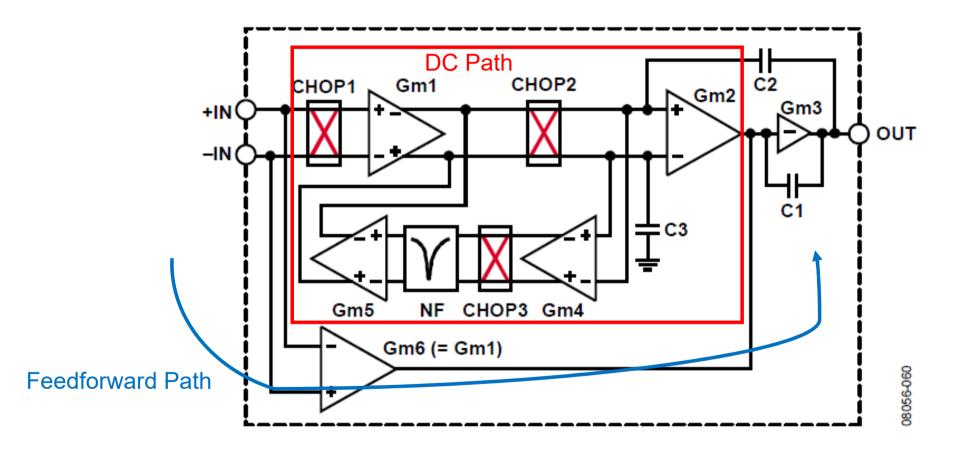
$$v_{n-eff} = v_{n1} + \frac{v_{n2}}{A_1}$$


RTI offset of the second stage is attenuated by A₁

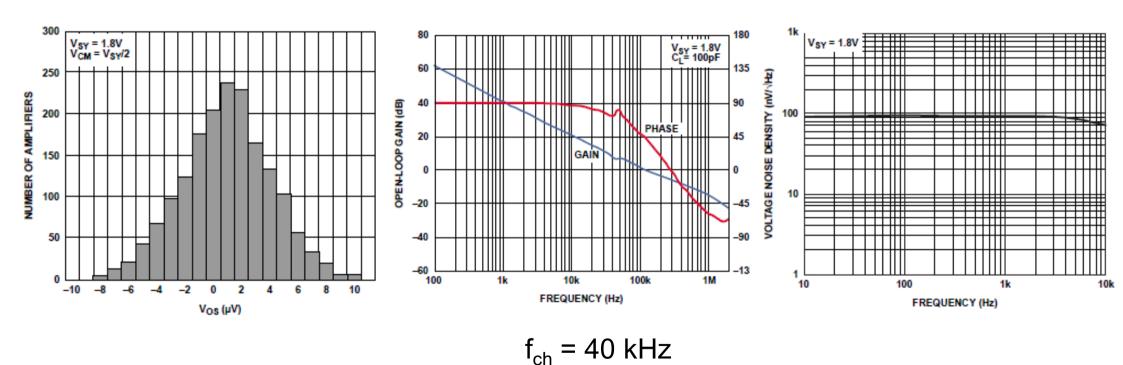
We can apply CHS only to the first stage and use the second stage as 1° order LPF (e.g. Miller Compensation)


Offset ripple is too large to be rejected by a 1° order LPF

Auto-Correction Feedback for Ripple Suppression*


$$v_{n-out} = v_n - Av_{n-out}$$
 \Longrightarrow $v_{n-out} = \frac{v_n}{1+A}$

Amplifier A must be without offset and input signal must not be attenuated!



* Y. Kusuda, "Auto Correction Feedback for Ripple Suppression in a Chopper Amplifier" – IEEE JSSC 2010

Commercial Zero-Drift Operational Amplifiers based on CHS (ADA4051)

Commercial Zero-Drift Operational Amplifiers based on CHS (ADA4051)

Commercial Zero-Drift Operational Amplifiers based on CHS (ADA4051)

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY		Ì				
Power Supply Rejection Ratio	PSRR	1.8 V ≤ V _{SY} ≤ 5.5 V	110	135		dB
		-40°C ≤ T _A ≤ +125°C	106			dB
Supply Current per Amplifier	I _{SY}					
ADA4051-2		Vout = Vsy/2		13	17	μΑ
ADA4051-1		$V_{OUT} = V_{SY}/2$		15	18	μΑ
		-40°C ≤ T _A ≤ +125°C			20	μΑ
DYNAMIC PERFORMANCE					•	
Slew Rate	SR+	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF, G} = 1$		0.04		V/µs
	SR-	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $G = 1$		0.03		V/µs
Settling Time	ts	To 0.1%, V_{IN} = 1 V p-p, R _L = 10 kΩ, C _L = 100 pF		120		μs
Gain Bandwidth Product	GBP	C _L = 100 pF, G = 1		115		kHz
Phase Margin	Фм	C _L = 100 pF, G = 1		40		Degrees
Channel Separation	CS	V _{IN} = 1.7 V, f = 100 Hz		140		dB
NOISE PERFORMANCE	<u> </u>					
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		1.96		μV р-р
Voltage Noise Density	en	f = 1 kHz		95		nV/√Hz
Current Noise Density	in	f = 1 kHz		100		fA/√Hz